Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1447-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-19-1447-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Disparate energy sources for slow and fast Dansgaard–Oeschger cycles
Diederik Liebrand
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, The University of
Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, United
Kingdom
British Ocean Sediment COre Research Facility (BOSCORF), National
Oceanography Centre, European Way, Southampton SO14 3ZH, United Kingdom
Center for Marine Environmental Sciences (MARUM), University of
Bremen, Klagenfurter Straße 4, 28359 Bremen, Germany
Anouk T. M. de Bakker
CORRESPONDING AUTHOR
Unit of Marine and Coastal Systems, Deltares, Boussinesqweg 1, 2629 HV
Delft, the Netherlands
Heather J. H. Johnstone
Center for Marine Environmental Sciences (MARUM), University of
Bremen, Klagenfurter Straße 4, 28359 Bremen, Germany
Charlotte S. Miller
Center for Marine Environmental Sciences (MARUM), University of
Bremen, Klagenfurter Straße 4, 28359 Bremen, Germany
Related authors
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Diederik Liebrand and Anouk T. M. de Bakker
Clim. Past, 15, 1959–1983, https://doi.org/10.5194/cp-15-1959-2019, https://doi.org/10.5194/cp-15-1959-2019, 2019
Short summary
Short summary
We present a new analysis and interpretation of a well-established climate record that spans the past 5 million years. We describe how the energy the Earth receives from the Sun is transferred among climate cycles with different duration. This analysis offers new insights into the complex evolution of the global climate system and land-ice volumes during this time. Furthermore, it provides a more complete solution to the long-standing 40 000- and ~100 000-year problems of the ice ages.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Annette Hahn, Enno Schefuß, Jeroen Groeneveld, Charlotte Miller, and Matthias Zabel
Clim. Past, 17, 345–360, https://doi.org/10.5194/cp-17-345-2021, https://doi.org/10.5194/cp-17-345-2021, 2021
Diederik Liebrand and Anouk T. M. de Bakker
Clim. Past, 15, 1959–1983, https://doi.org/10.5194/cp-15-1959-2019, https://doi.org/10.5194/cp-15-1959-2019, 2019
Short summary
Short summary
We present a new analysis and interpretation of a well-established climate record that spans the past 5 million years. We describe how the energy the Earth receives from the Sun is transferred among climate cycles with different duration. This analysis offers new insights into the complex evolution of the global climate system and land-ice volumes during this time. Furthermore, it provides a more complete solution to the long-standing 40 000- and ~100 000-year problems of the ice ages.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Related subject area
Subject: Teleconnections | Archive: Ice Cores | Timescale: Millenial/D-O
Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period
Connecting the Greenland ice-core and U∕Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events
An improved north–south synchronization of ice core records around the 41 kyr 10Be peak
Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP)
The last deglaciation: timing the bipolar seesaw
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary
Short summary
The last glacial period was characterized by a number of rapid climate changes seen, for example, as abrupt warmings in Greenland and changes in monsoon rainfall intensity. However, due to chronological uncertainties it is challenging to know how tightly coupled these changes were. Here we exploit cosmogenic signals caused by changes in the Sun and Earth magnetic fields to link different climate archives and improve our understanding of the dynamics of abrupt climate change.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
A. Svensson, M. Bigler, T. Blunier, H. B. Clausen, D. Dahl-Jensen, H. Fischer, S. Fujita, K. Goto-Azuma, S. J. Johnsen, K. Kawamura, S. Kipfstuhl, M. Kohno, F. Parrenin, T. Popp, S. O. Rasmussen, J. Schwander, I. Seierstad, M. Severi, J. P. Steffensen, R. Udisti, R. Uemura, P. Vallelonga, B. M. Vinther, A. Wegner, F. Wilhelms, and M. Winstrup
Clim. Past, 9, 749–766, https://doi.org/10.5194/cp-9-749-2013, https://doi.org/10.5194/cp-9-749-2013, 2013
J. B. Pedro, T. D. van Ommen, S. O. Rasmussen, V. I. Morgan, J. Chappellaz, A. D. Moy, V. Masson-Delmotte, and M. Delmotte
Clim. Past, 7, 671–683, https://doi.org/10.5194/cp-7-671-2011, https://doi.org/10.5194/cp-7-671-2011, 2011
Cited articles
Alley, R. B., Anandakrishnan, S., and Jung, P.: Stochastic resonance in the
North Atlantic, Paleoceanography, 16, 190–198, https://doi.org/10.1029/2000PA000518, 2001.
Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P.,
Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H.,
Fluckiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Gronvold, K.,
Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J.,
Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M.,
Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H.,
Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn,
D., Schwander, J., Shoji, H., Siggard-Andersen, M. L., Steffensen, J. P.,
Stocker, T., Sveinbjornsdottir, A. E., Svensson, A., Takata, M., Tison, J.
L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., White, J. W. C., and
Project, N. G. I. C.: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M.,
Rothlisberger, R., Ruth, U., Siggaard-Andersen, M. L., Steffensen, J. P.,
Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The Greenland Ice Core
Chronology 2005, 15–42 ka. Part 1: constructing the time scale, Quaternary
Sci. Rev., 25, 3246–3257, https://doi.org/10.1016/j.quascirev.2006.08.002, 2006.
Armstrong, E., Izumi, K., and Valdes, P.: Identifying the mechanisms of
DO-scale oscillations in a GCM: a salt oscillator triggered by the
Laurentide ice sheet, Clim. Dynam., 60, 3983–4001, https://doi.org/10.1007/s00382-022-06564-y, 2022.
Batchelor, C. J., Marcott, S. A., Orland, I. J., He, F., and Edwards, R. L.:
Decadal warming events extended into central North America during the last
glacial period, Nat. Geosci., 16, 257–261, https://doi.org/10.1038/s41561-023-01132-3, 2023.
Bauska, T. K., Marcott, S. A., and Brook, E. J.: Abrupt changes in the
global carbon cycle during the last glacial period, Nat. Geosci., 14, 91–96, https://doi.org/10.1038/s41561-020-00680-2, 2021.
Boers, N., Ghil, M., and Rousseau, D.-D.: Ocean circulation, ice shelf, and
sea ice interactions explain Dansgaard–Oeschger cycles, P. Natl. Acad. Sci.
USA, 115, E11005–E11014, 47, https://doi.org/10.1073/pnas.1802573115, 2018.
Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A.,
Kubatzki, C., Roth, K., and Kromer, B.: Possible solar origin of the
1,470-year glacial climate cycle demonstrated in a coupled model, Nature,
438, 208–211, https://doi.org/10.1038/nature04121, 2005.
Braun, H., Ditlevsen, P., and Kurths, J.: New measures of multimodality for
the detection of a ghost stochastic resonance, Chaos, 19, 1–12, https://doi.org/10.1063/1.3274853, 2009.
Brook, E. J., Sowers, T., and Orchardo, J.: Rapid variations in atmospheric
methane concentration during the past 110,000 Years, Science, 273,
1087–1091, https://doi.org/10.1126/science.273.5278.1087, 1996.
Corrick, E. C., Drysdale, R. N., Hellstrom, J. C., Capron, E., Rasmussen, S.
O., Zhang, X., Fleitmann, D., Couchoud, I., and Wolff, E.: Synchronous
timing of abrupt climate changes during the last glacial period, Science,
369, 963–969, https://doi.org/10.1126/science.aay5538, 2020.
Crick, L., Burke, A., Hutchison, W., Kohno, M., Moore, K. A., Savarino, J., Doyle, E. A., Mahony, S., Kipfstuhl, S., Rae, J. W. B., Steele, R. C. J., Sparks, R. S. J., and Wolff, E. W.: New insights into the ∼74 ka Toba eruption from sulfur isotopes of polar ice cores, Clim. Past, 17, 2119–2137, https://doi.org/10.5194/cp-17-2119-2021, 2021.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N., Hammer, C. U., and Oeschger, H.: North Atlantic climatic oscillations
revealed by deep Greenland ice cores, in: Climate processes and climate
sensitivity, edited by: Hansen, J. E. and Takahashi, T., American
Geophysical Union, Washington D.C., 288–298, https://doi.org/10.1029/GM029p0288, 1984.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjornsdottir,
A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past
climate from a 250-Kyr ice-core record, Nature, 364, 218–220, https://doi.org/10.1038/364218a0, 1993.
de Bakker, A. T. M., Herbers, T. H. C., Smit, P. B., Tissier, M. F. S., and
Ruessink, B. G.: Nonlinear infragravity-wave interactions on a gently
sloping laboratory beach, J. Phys. Oceanogr., 45, 589–605, https://doi.org/10.1175/JPO-D-14-0186.1, 2015.
de Bakker, A. T. M., Tissier, M. F. S., and Ruessink, B. G.: Beach steepness
effects on nonlinear infragravity-wave interactions: A numerical study, J.
Geophys. Res.-Oceans, 121, 554–570, https://doi.org/10.1002/2015JC011268, 2016.
Ditlevsen, P. and Crucifix, M.: On the importance of centennial variability
for ice ages, Pages Magazine, 3, 152–153, https://doi.org/10.22498/pages.25.3.152, 2017.
Ditlevsen, P. D., Svensmark, H., and Johnsen, S.: Contrasting atmospheric
and climate dynamics of the last-glacial and Holocene periods, Nature, 379,
810–812, https://doi.org/10.1038/379810a01, 1996.
Ditlevsen, P. D., Kristensen, M. S., and Andersen, K. K.: The recurrence
time of Dansgaard-Oeschger events and limits on the possible periodic
component, J. Climate, 18, 2594–2603, https://doi.org/10.1175/JCLI3437.1, 2005.
Ditlevsen, P. D., Andersen, K. K., and Svensson, A.: The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle, Clim. Past, 3, 129–134, https://doi.org/10.5194/cp-3-129-2007, 2007.
Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S., and Kissel, C.:
Dansgaard-Oeschger cycles: Interactions between ocean and sea ice intrinsic
to the Nordic seas, Paleoceanography, 28, 491–502, https://doi.org/10.1002/palo.20042, 2013.
Elliot, M., Labeyrie, L., and Duplessy, J.-C.: Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka), Quaternary Sci. Rev., 21, 1153–1165, https://doi.org/10.1016/S0277-3791(01)00137-8, 2002.
Gottwald, G. A.: A model for Dansgaard–Oeschger events and millennial-scale
abrupt climate change without external forcing, Clim. Dynam., 56, 227–243, https://doi.org/10.1007/s00382-020-05476-z, 2021.
Griem, L., Voelker, A. H. L., Berben, S. M. P., Dokken, T. M., and Jansen,
E.: Insolation and Glacial Meltwater Influence on Sea-Ice and Circulation
Variability in the Northeastern Labrador Sea During the Last Glacial Period,
Paleoceanogr. Paleocl., 34, 1689–1709, https://doi.org/10.1029/2019PA003605, 2019.
Hagelberg, T., Pisias, N., and Elgar, S.: Linear and nonlinear couplings
between orbital forcing and the marine δ18O record during the late
Neogene, Paleoceanography, 6, 729–746, https://doi.org/10.1029/91PA02281, 1991.
Hagelberg, T. K., Bond, G., and deMenocal, P.: Milankovitch Band Forcing of
Sub-Milankovitch Climate Variability during the Pleistocene,
Paleoceanography, 9, 545–558, https://doi.org/10.1029/94PA00443, 1994.
Hasselmann, K., Munk, W., and MacDonald, G.: Bispectra of ocean waves, in:
Proceedings of the Symposium on Time Series Analysis, edited by: Rosenblatt,
M., John Wiley, New York, London, 125–139, 1963.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's
orbit: Pacemaker of the ice ages, Science, 194, 1121–1132, https://doi.org/10.1126/science.194.4270.1121, 1976.
Herbers, T. H. C. and Burton, M. C.: Nonlinear shoaling of directionally
spread waves on a beach, J. Geophys. Res.-Oceans, 102, 21101–21114, https://doi.org/10.1029/97JC01581, 1997.
Herbers, T. H. C., Russnogle, N. R., and Elgar, S.: Spectral energy balance
of breaking waves within the surf zone, J. Phys. Oceanogr.,
30, 2723–2737, https://doi.org/10.1175/1520-0485(2000)030<2723:SEBOBW>2.0.CO;2, 2000.
Hinnov, L. A., Schulz, M., and Yiou, P.: Interhemispheric space-time
attributes of the Dansgaard-Oeschger oscillations between 100 and 0 ka,
Quaternary Sci. Rev., 21, 1213–1228, https://doi.org/10.1016/S0277-3791(01)00140-8, 2002.
Hodell, D. A., Crowhurst, S. J., Lourens, L., Margari, V., Nicolson, J., Rolfe, J. E., Skinner, L. C., Thomas, N. C., Tzedakis, P. C., Mleneck-Vautravers, M. J., and Wolff, E. W.: A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic, Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, 2023.
Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum
temperature variability, Nature, 441, 329–332, https://doi.org/10.1038/nature04745, 2006.
Kelsey, A.: Abrupt climate change and millennial-scale cycles: an astronomical mechanism, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2022-49, 2022.
Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and Leuenberger, M.: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core, Clim. Past, 10, 887–902, https://doi.org/10.5194/cp-10-887-2014, 2014.
King, T.: Quantifying nonlinearity and geometry in time series of climate,
Quaternary Sci. Rev., 15, 247–266, https://doi.org/10.1016/0277-3791(95)00060-7, 1996.
Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., and Yeager, S.:
Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions,
J. Climate, 28, 7741–7763, https://doi.org/10.1175/JCLI-D-14-00728.1, 2015.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Le Treut, H. and Ghil, M.: Orbital forcing, climatic interactions, and
glaciation cycles, J. Geophys. Res., 88, 5167–5190, https://doi.org/10.1029/JC088iC09p05167, 1983.
Liebrand, D. and de Bakker, A. T. M.: Bispectra of climate cycles show how ice ages are fuelled, Clim. Past, 15, 1959–1983, https://doi.org/10.5194/cp-15-1959-2019, 2019.
Lin, J., Svensson, A., Hvidberg, C. S., Lohmann, J., Kristiansen, S., Dahl-Jensen, D., Steffensen, J. P., Rasmussen, S. O., Cook, E., Kjær, H. A., Vinther, B. M., Fischer, H., Stocker, T., Sigl, M., Bigler, M., Severi, M., Traversi, R., and Mulvaney, R.: Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka), Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, 2022.
Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Abrupt
climate and weather changes across time scales, Paleoceanogr. Paleocl., 35, e2019PA003782, https://doi.org/10.1029/2019PA003782, 2020.
Lohmann, J. and Svensson, A.: Ice core evidence for major volcanic eruptions at the onset of Dansgaard–Oeschger warming events, Clim. Past, 18, 2021–2043, https://doi.org/10.5194/cp-18-2021-2022, 2022.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz,
J.: Orbital and millennial-scale features of atmospheric CH4 over the past
800,000 years, Nature, 453, 383–386, https://doi.org/10.1038/nature06950, 2008.
MacAyeal, D. R.: Binge/purge oscillations of the Laurentide ice sheet as a
cause of the North Atlantic's Heinrich events, Paleoceanography, 8,
775–784, https://doi.org/10.1029/93PA02200, 1993.
Markle, B. R., Steig, E. J., Buizert, C., Schoenemann, S. W., Bitz, C. M., Fudge, T. J., Pedro, J. B., Ding, Q., Jones, T. R., White, J. W. C., and Sowers, T.: Global atmospheric teleconnections during Dansgaard–Oeschger events, Nat. Geosci., 10, 36–40, https://doi.org/10.1038/ngeo2848, 2017.
Matyasovszky, I.: Trends, time-varying and nonlinear time series models for
NGRIP and VOSTOK paleoclimate data, Theor. Appl. Climatol.,
101, 433–443, https://doi.org/10.1007/s00704-009-0229-3, 2010.
Menviel, L. C., Skinner, L. C., Tarasov, L., and Tzedakis, P. C.: An
ice-climate oscillatory framework for Dansgaard–Oeschger cycles, Nature
Reviews Earth & Environment, 1, 677–693, https://doi.org/10.1038/s43017-020-00106-y, 2020.
Mitsui, T., Lenoir, G., and Crucifix, M.: Is the glacial climate scale
invariant?, Dynamics and Statistics of the Climate System, 3, dzy011, https://doi.org/10.1093/climsys/dzy011, 2019.
Paillard, D., Labeyrie, L., and Yiou, P.: AnalySeries, Macintosh program
performs time-series analysis, EOS Transactions AGU, 77, 379, https://doi.org/10.1029/96EO00259, 1996.
Paine, A. R., Wadsworth, F. B., and Baldini, J. U. L.: Supereruption doublet
at a climate transition, Communications Earth & Environment, 2, 219, https://doi.org/10.1038/s43247-021-00293-6, 2021.
Pelletier, J. D.: The power spectral density of atmospheric temperature from
time scales of 10–2 to 106 yr, Earth Planet. Sc. Lett., 158, 157–164, https://doi.org/10.1016/S0012-821X(98)00051-X, 1998.
Peristykh, A. N. and Damon, P. E.: Persistence of the Gleissberg 88-year
solar cycle over the last ∼ 12,000 years: Evidence from
cosmogenic isotopes, J. Geophys. Res., 108, 1003, https://doi.org/10.1029/2002JA009390, 2003.
Pestiaux, P., Van der Mersch, I., Berger, A., and Duplessy, J. C.:
Paleoclimatic variability at frequencies ranging from 1 cycle per 10 000
years to 1 cycle per 1000 years: evidence for nonlinear behaviour of the
climate system, Climatic Change, 12, 9–37, https://doi.org/10.1007/BF00140262, 1988.
Petersen, S. V., Schrag, D. P., and Clark, P. U.: A new mechanism for
Dansgaard-Oeschger cycles, Paleoceanography, 28, 24–30, https://doi.org/10.1029/2012PA002364, 2013.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer,
H., Goto-Azuma, K., Hansen, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res., 111, 1–16, https://doi.org/10.1029/2005JD006079, 2006.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer,
H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp,
T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Rial, J. A. and Saha, R.: Modeling abrupt climate change as the interaction
between sea ice extent and mean ocean temperature under orbital insolation
forcing, in: Abrupt Climate Change: Mechanisms, Patterns, and Impacts,
Geoph. Monog. Series, 57–74, 193, https://doi.org/10.1029/2010GM001027, 2011.
Riechers, K., Mitsui, T., Boers, N., and Ghil, M.: Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations, Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022, 2022.
Rousseau, D.-D., Bagniewski, W., and Ghil, M.: Abrupt climate changes and the astronomical theory: are they related?, Clim. Past, 18, 249–271, https://doi.org/10.5194/cp-18-249-2022, 2022.
Scafetta, N., Milani, F., Bianchini, A., and Ortolani, S.: On the
astronomical origin of the Hallstatt oscillation found in radiocarbon and
climate records throughout the Holocene, Earth-Sci. Rev., 162, 24–43, https://doi.org/10.1016/j.earscirev.2016.09.004, 2016.
Schmidt, M. W., Vautravers, M. J., and Spero, H. J.: Rapid subtropical North Atlantic salinity oscillations across Dansgaard–Oeschger cycles, Nature, 443, 561–564, https://doi.org/10.1038/nature05121, 2006.
Schmidt, O. T.: Bispectral mode decomposition of nonlinear flows, Nonlinear
Dynam., 102, 2479–2501, https://doi.org/10.1007/s11071-020-06037-z, 2020.
Schulz, M.: On the 1470-year pacing of Dansgaard-Oeschger warm events,
Paleoceanography, 17, 1014, https://doi.org/10.1029/2000PA000571, 2002.
Schulz, M., Berger, W. H., Sarnthein, M., and Grootes, P. M.: Amplitude
variations of 1470-year climate oscillations during the last 100,000 years
linked to fluctuations of continental ice mass, Geophys. Res. Lett., 26,
3385–3388, https://doi.org/10.1029/1999GL006069, 1999.
Schulz, M., Paul, A., and Timmermann, A.: Relaxation oscillators in concert:
A framework for climate change at millennial timescales during the late
Pleistocene, Geophys. Res. Lett., 29, 2193, https://doi.org/10.1029/2002GL016144, 2002.
Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between
millennial-scale events 64,000-24,000 years ago, Paleoceanography, 15,
565–569, https://doi.org/10.1029/2000PA000513, 2000.
Stuiver, M. and Braziunas, T. F.: Sun, ocean, climate and atmospheric
14CO2: an evaluation of causal and spectral relationships, The Holocene, 3,
289–305, https://doi.org/10.1177/095968369300300401, 1993.
Sun, Y., McManus, J. F., Clemens, S. C., Zhang, X., Vogel, H., Hodell, D.
A., Guo, F., Wang, T., Liu, X., and An, Z.: Persistent orbital influence on
millennial climate variability through the Pleistocene, Nat. Geosci., 14,
812–818, https://doi.org/10.1038/s41561-021-00794-1, 2021.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
University of Copenhagen, Centre for Ice and Climate, Niels Bohr Institute: https://www.iceandclimate.nbi.ku.dk/, https://www.iceandclimate.nbi.ku.dk/data/2010-11-19_GICC05modelext_for_NGRIP.xls, https://www.iceandclimate.nbi.ku.dk/data/2010-11-19_GICC05modelext_for_NGRIP.txt, last access: 15 July 2023.
van Hoesel, A., Hoek, W. Z., Pennock, G. M., and Drury, M. R.: The Younger
Dryas impact hypothesis: a critical review, Quaternary Sci. Rev., 83, 95–114, https://doi.org/10.1016/j.quascirev.2013.10.033, 2014.
van Kreveld, S., Sarnthein, M., Erlenkeuser, H., Grootes, P., Jung, S., Nadeau, M. J., Pflaumann, U., and Voelker, A.: Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger Cycles in the Irminger Sea, 60–18 Kyr, Paleoceanography, 15, 425–442, https://doi.org/10.1029/1999PA000464, 2000.
Vettoretti, G. and Peltier, W. R.: Fast Physics and Slow Physics in the
Nonlinear Dansgaard–Oeschger Relaxation Oscillation, J. Climate., 31,
3423–3449, https://doi.org/10.1175/JCLI-D-17-0559.1, 2018.
Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Atmospheric
CO2 control of spontaneous millennial-scale ice age climate oscillations,
Nat. Geosci., 15, 300–306, https://doi.org/10.1038/s41561-022-00920-7, 2022.
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K.,
Siggaard-Andersen, M.-L., Steffensen, J. P., Svensson, A., Olsen, J., and
Heinemeier, J.: A synchronized dating of three Greenland ice cores
throughout the Holocene, J. Geophys. Res., 111, D13102, https://doi.org/10.1029/2005JD006921, 2006.
Wagner, G., Beer, J., Masarik, J., Muscheler, R., Kubik, P. W., Mende, W., Laj, C., Raisbeck, G. M., and Yiou, F.: Presence of the solar
de Vries cycle (205 years) during the last ice age, Geophys. Res. Lett., 28,
303–306, https://doi.org/10.1029/2000GL006116, 2001.
Wara, M. W., Ravelo, A. C., and Revenaugh, J. S.: The pacemaker always rings
twice, Paleoceanography, 15, 616–624, https://doi.org/10.1029/2000PA000500, 2000.
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson,
A.: Millennial-scale variability during the last glacial: The ice core
record, Quaternary Sci. Rev., 29, 2828–2838, https://doi.org/10.1016/j.quascirev.2009.10.013, 2010.
Zhang, X., Barker, S., Knorr, G., Lohmann, G., Drysdale, R., Sun, Y.,
Hodell, D., and Chen, F.: Direct astronomical influence on abrupt climate
variability, Nat. Geosci., 14, 819–826, https://doi.org/10.1038/s41561-021-00846-6, 2021.
Short summary
Climate cycles with millennial periodicities are enigmatic because no Earth external climate forcing exists that operates on millennial timescales. Using a statistical analysis of a famous Greenlandic air temperature record, we show that two disparate energy sources (one astronomical and one centennial) fuel millennial climate variability. We speculate that two distinct Earth internal cryospheric/climatic/oceanic processes are responsible for the transfer of energy to millennial climate cycles.
Climate cycles with millennial periodicities are enigmatic because no Earth external climate...