Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1409-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1409-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Millennial hydrological variability in the continental northern Neotropics during Marine Isotope Stages (MISs) 3–2 (59–15 cal ka BP) inferred from sediments of Lake Petén Itzá, Guatemala
Rodrigo Martínez-Abarca
CORRESPONDING AUTHOR
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, 38106 Braunschweig, Germany
Michelle Abstein
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, 38106 Braunschweig, Germany
Frederik Schenk
Department of Geological Sciences, Bolin Centre for Climate
Research, Stockholm University, 10691 Stockholm, Sweden
Department of Geosciences and Geography, University of Helsinki,
00014 Helsinki, Finland
David Hodell
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Philipp Hoelzmann
Institut für Geographische Wissenschaften, Physische Geographie, Freie Universität Berlin, 12249 Berlin, Germany
Mark Brenner
Department of Geological Sciences, Land Use and Environmental
Change Institute, University of Florida, Gainesville, Florida 32611, USA
Steffen Kutterolf
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
Sergio Cohuo
Tecnológico Nacional de México, I. T. de Chetumal, Chetumal,
77013, Mexico
Laura Macario-González
Tecnológico Nacional de México, I. T. de la Zona Maya, Quintana Roo, 77013, Mexico
Mona Stockhecke
Large Lakes Observatory (LLO), University of Minnesota Duluth, Duluth, Minnesota 55812, USA
Jason Curtis
Department of Geological Sciences, Land Use and Environmental
Change Institute, University of Florida, Gainesville, Florida 32611, USA
Flavio S. Anselmetti
Institute of Geological Sciences, Oeschger Centre for Climate
Change Research, University of Bern, 3012 Bern, Switzerland
Daniel Ariztegui
Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland
Thomas Guilderson
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Ocean Sciences Department, University of California, Santa Cruz,
Santa Cruz, California 95064, USA
Alexander Correa-Metrio
Instituto de Geología, Universidad Nacional Autónoma de
México, Mexico City, 04510, Mexico
Centro de Geociencias, Universidad Nacional Autónoma de
México, Juriquilla, 76230, Mexico
Thorsten Bauersachs
Institute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany
Liseth Pérez
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, 38106 Braunschweig, Germany
Antje Schwalb
Institut für Geosysteme und Bioindikation, Technische
Universität Braunschweig, 38106 Braunschweig, Germany
Related authors
No articles found.
Nicola C. Thomas, Heather L. Ford, Mervyn Greaves, and David A. Hodell
EGUsphere, https://doi.org/10.5194/egusphere-2025-4566, https://doi.org/10.5194/egusphere-2025-4566, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We reconstruct interbasinal temperature and salinity gradients using stacked Mg/Ca and benthic δ¹⁸O records for the past 1.5 Myr. Across the Middle Pleistocene Transition, the deep Atlantic cooled and the Pacific became more saline, increasing deep ocean density stratification. The glacial ocean became a more effective carbon trap, which lowered atmospheric pCO2, and led to the growth of larger ice sheets. Results support a physical role for abyssal ocean stratification in explaining the MPT.
Biagio Giaccio, Bernd Wagner, Giovanni Zanchetta, Adele Bertini, Gian Paolo Cavinato, Roberto de Franco, Fabio Florindo, David A. Hodell, Thomas A. Neubauer, Sebastien Nomade, Alison Pereira, Laura Sadori, Sara Satolli, Polychronis C. Tzedakis, Paul Albert, Paolo Boncio, Cindy De Jonge, Alexander Francke, Christine Heim, Alessia Masi, Marta Marchegiano, Helen M. Roberts, Anders Noren, and the MEME team
Sci. Dril., 33, 249–266, https://doi.org/10.5194/sd-33-249-2024, https://doi.org/10.5194/sd-33-249-2024, 2024
Short summary
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024, https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Short summary
In this study, we analysed 14 sea-ice proxy records and compared them with the results from two different climate simulations from the Atlantic sector of the Arctic Ocean over the Common Era (last 2000 years). Both proxy and model approaches demonstrated a long-term sea-ice increase. The good correspondence suggests that the state-of-the-art sea-ice proxies are able to capture large-scale climate drivers. Short-term variability, however, was less coherent due to local-to-regional scale forcings.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Sudip Acharya, Maximilian Prochnow, Thomas Kasper, Linda Langhans, Peter Frenzel, Paul Strobel, Marcel Bliedtner, Gerhard Daut, Christopher Berndt, Sönke Szidat, Gary Salazar, Antje Schwalb, and Roland Zech
E&G Quaternary Sci. J., 72, 219–234, https://doi.org/10.5194/egqsj-72-219-2023, https://doi.org/10.5194/egqsj-72-219-2023, 2023
Short summary
Short summary
This study presents a palaeoenvironmental record from Lake Höglwörth, Bavaria, Germany. Before 870 CE peat deposits existed. Erosion increased from 1240 to 1380 CE, followed by aquatic productivity and anoxia from 1310 to 1470 CE. Increased allochthonous input and a substantial shift in the aquatic community in 1701 were caused by construction of a mill. Recent anoxia has been observed since the 1960s.
Steffen Kutterolf, Mark Brenner, Robert A. Dull, Armin Freundt, Jens Kallmeyer, Sebastian Krastel, Sergei Katsev, Elodie Lebas, Axel Meyer, Liseth Pérez, Juanita Rausch, Armando Saballos, Antje Schwalb, and Wilfried Strauch
Sci. Dril., 32, 73–84, https://doi.org/10.5194/sd-32-73-2023, https://doi.org/10.5194/sd-32-73-2023, 2023
Short summary
Short summary
The NICA-BRIDGE workshop proposes a milestone-driven three-phase project to ICDP and later ICDP/IODP involving short- and long-core drilling in the Nicaraguan lakes and in the Pacific Sandino Basin to (1) reconstruct tropical climate and environmental changes and their external controlling mechanisms over several million years, (2) assess magnitudes and recurrence times of multiple natural hazards, and (3) provide
baselineenvironmental data for monitoring lake conditions.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Sebastian Schaller, Marius W. Buechi, Bennet Schuster, and Flavio S. Anselmetti
Sci. Dril., 32, 27–42, https://doi.org/10.5194/sd-32-27-2023, https://doi.org/10.5194/sd-32-27-2023, 2023
Short summary
Short summary
In the frame of the DOVE (Drilling Overdeepened Alpine Valleys) project and with the support of the International Continental Scientific Drilling Program (ICDP), we drilled and recovered a 252 m long sediment core from the Basadingen Through. The Basadingen Trough, once eroded by the Rhine glacier during several ice ages, reaches over 300 m under the modern landscape. The sedimentary filling represents a precious scientific archive for understanding and reconstructing past glaciations.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Petter L. Hällberg, Frederik Schenk, Kweku A. Yamoah, Xueyuen Kuang, and Rienk H. Smittenberg
Clim. Past, 18, 1655–1674, https://doi.org/10.5194/cp-18-1655-2022, https://doi.org/10.5194/cp-18-1655-2022, 2022
Short summary
Short summary
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal under Late Glacial conditions. During Northern Hemisphere winters, it was highly arid in this region that is today humid year-round. The seasonal aridity was driven by orbital forcing and stronger East Asian winter monsoon. A breakdown of deep convection caused a reorganized Walker Circulation and a mean state resembling El Niño conditions.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Moritz Nykamp, Jacob Hardt, Philipp Hoelzmann, Jens May, and Tony Reimann
E&G Quaternary Sci. J., 70, 1–17, https://doi.org/10.5194/egqsj-70-1-2021, https://doi.org/10.5194/egqsj-70-1-2021, 2021
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Ulrich Harms, Ulli Raschke, Flavio S. Anselmetti, Michael Strasser, Volker Wittig, Martin Wessels, Sebastian Schaller, Stefano C. Fabbri, Richard Niederreiter, and Antje Schwalb
Sci. Dril., 28, 29–41, https://doi.org/10.5194/sd-28-29-2020, https://doi.org/10.5194/sd-28-29-2020, 2020
Short summary
Short summary
Hipercorig is a new modular lake sediment coring instrument based on a barge and a hydraulic corer system driven by a down-the-hole hammer. Hipercorig's performance was tested on the two periglacial lakes, namely Mondsee and Constance, located on the northern edge of the Alpine chain. Up to 63 m of Holocene lake sediments and older meltwater deposits from the last deglaciation were recovered for the first time.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Cited articles
Amador, J. A., Magaña, V. O., and Pérez, J. B.: The low-level jet and
convective activity in the Caribbean, in: Proc. 24th Conf. on Hurricanes and
Tropical Meteorology American Meteorological Society: Fort Lauderdale, 29 May–2 June 2000, Fort Lauderdale, Florida, 114–115, https://ams.confex.com/ams/last2000/techprogram/paper_12834.htm (last access: 17 July 2023), 2000.
Anselmetti, F. S., Ariztegui, D., Hodell, D. A., Hillesheim, M. B., Brenner,
M., Gilli, A., McKenzie, J. A., and Mueller, A. D.: Late Quaternary
climate-induced lake level variations in Lake Petén Itzá, Guatemala,
inferred from seismic stratigraphic analysis, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 230, 52–69, doi10.1016/j.palaeo.2005.06.037, 2006.
Arienzo, M. M., Swart, P. K., Pourmand, A., Broad, K., Clement, A. C., Murphy, L. N., Vonhof, H. B., and Kakuk, B.: Bahamas speleothem reveals climate= variability associated with Heinrich events. Earth Planet. Sc. Lett., 430, 377–386, https://doi.org/10.1016/j.epsl.2015.08.035, 2015.
Arienzo, M. M., Swart, P. K., Broad, K., Clement, A. C., Pourmand, A., and
Kakuk, B.: Multi-proxy evidence of millennial climate variability from
multiple Bahamian speleothems, Quaternary Sci. Rev., 161, 18–29, https://doi.org/10.1016/j.quascirev.2017.02.004, 2017.
Bard, E., Rostek, F., Turon, J. L., and Gendreau, S.: Hydrological impact of
Heinrich events in the subtropical Northeast Atlantic, Science, 289,
1321–1324, https://doi.org/10.1126/science.289.5483.1321, 2000.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/11-BA618, 2011.
Bloemsma, M. R.: Development of a modelling framework for core data integration using XRF scanning, PhD thesis, Delft University of Technology, Delft, the Netherlands, 229 pp., https://doi.org/10.4233/uuid:95a90787-edc7-4f1f-9e6a-b2453effabdb, 2015.
Boggs, S. (Ed.): Principles of sedimentology and stratigraphy, Pearson
Prentice Hall, New Jersey, USA, ISBN 0-13-154728-3, 2006.
Boyle, J. F.: Organic geochemical methods in palaeolimnology, in: Tracking
environmental change using lake sediments, edited by: Last, W. and Smol, J. P., Springer, Dordrecht, the Netherlands, 83–141, ISBN 0-306-47670-3, 2001.
Bradbury, J. P.: Limnologic history of Lago de Patzcuaro, Michoacan, Mexico
for the past 48,000 years: impacts of climate and man, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 163, 69–95, https://doi.org/10.1016/S0031-0182(00)00146-2, 2000.
Bradley, R. S. and Diaz, H. F.: Late Quaternary abrupt climate change in
the tropics and sub-tropics: The continental signal of Tropical Hydroclimatic Events (THEs), Rev. Geophys., 59, e2020RG000732, https://doi.org/10.1029/2020RG000732, 2021.
Broecker, W., Bond, G., Klas, M., Clark, E., and McManus, J.: Origin of the
northern Atlantic's Heinrich events, Clim. Dynam., 6, 265–273,
https://doi.org/10.1007/BF00193540, 1992.
Bush, M. B., Correa-Metrio, A. Y., Hodell, D. A., Brenner, M., Anselmetti, F. S., Ariztegui, D., Mueller, A. D., Curtis, J. H., Grzesik, D. A., Burton, C., and Gilli, A.: Re-evaluation of climate change in lowland Central America during the Last Glacial Maximum using new sediment cores from Lake Petén Itzá, Guatemala, in: Past climate variability in South America and surrounding regions, edited by: Vimeux, F., Sylvestre, F., and Khodri, M., Springer, Dordrecht, the Netherlands, 113–128, https://doi.org/10.1007/978-90-481-2672-9_5, 2009.
Caballero, M., Lozano, S., Ortega, B., Urrutia, J., and Macias, J. L.:
Environmental characteristics of Lake Tecocomulco, northern basin of Mexico,
for the last 50,000 years, J. Paleolimnol., 22, 399–411, https://doi.org/10.1023/A:1008012813412, 1999.
Caballero, M., Lozano-García, S., Ortega-Guerrero, B., and Correa-Metrio, A.: Quantitative estimates of orbital and millennial scale
climatic variability in central Mexico during the last years, Quaternary Sci. Rev., 205, 62–75, https://doi.org/10.1016/j.quascirev.2018.12.002, 2019.
Chávez-Lara, C. M., Roy, P. D., Caballero, M. M., Carreño, A. L., and Lakshumanan, C.: Lacustrine ostracodes from the Chihuahuan Desert of Mexico and inferred Late Quaternary paleoecological conditions, Rev. Mex. de Cienc. Geol., 29, 422–431, 2012.
Clark, P. U., Marshall, S. J., Clarke, G. K., Hostetler, S. W., Licciardi, J. M., and Teller, J. T.: Freshwater forcing of abrupt climate change during the last glaciation, Science, 293, 283–287, https://doi.org/10.1126/science.1062517, 2001.
Cohuo, S., Macario-González, L., Pérez, L., and Schwalb, A.: Overview of Neotropical-Caribbean freshwater ostracode fauna (Crustacea, Ostracoda): identifying areas of endemism and assessing biogeographical affinities, Hydrobiologia, 786, 5–21, https://doi.org/10.1007/s10750-016-2747-1, 2017.
Cohuo, S., Macario-González, L., Pérez, L., Sylvestre, F.,
Paillès, C., Curtis, J. H., Kuterolf, S., Wojewódka, M., Zawisza, E., Szeroczynska, K., and Schwalb, A.: Climate ultrastructure and aquatic community response to Heinrich Stadials (HS5a-HS1) in the continental
northern Neotropics, Quaternary Sci. Rev., 197, 75–91, https://doi.org/10.1016/j.quascirev.2018.07.015, 2018.
Cohuo, S., Macario-González, L., Wagner, S., Naumann, K., Echeverría-Galindo, P., Pérez, L., Curtis, J., Brenner, M., and Schwalb, A: Influence of late Quaternary climate on the biogeography of
Neotropical aquatic species as reflected by non-marine ostracodes, Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, 2020.
Correa-Metrio, A., Bush, M. B., Cabrera, K. R., Sully, S., Brenner, M.,
Hodell, D. A., Escobar, J., and Guilderson, T.: Rapid climate change and
no-analog vegetation in lowland Central America during the last 86,000 years, Quaternary Sci. Rev., 38, 63–75, https://doi.org/10.1016/j.quascirev.2012.01.025, 2012.
Davies, S., Lamb, H., and Roberts, S.: Micro-XRF Core Scanning in
Palaeolimnology: Recent Developments, in: Micro-XRF Studies of Sediment
Cores, Developments in Paleoenvironmental Research Vol. 17, edited by:
Croudace, I. and Rothwell, R., Springer, Dordrecht, the Netherlands,
189–226, https://doi.org/10.1007/978-94-017-9849-5_7, 2015.
Dean, W. E.: The carbon cycle and biogeochemical dynamics in lake sediments,
J. Paleolimnol., 21, 375–393, https://doi.org/10.1023/A:1008066118210, 1999.
Dean, W. E. and Megard, R. O.: Environment of deposition of CaCO3 in Elk lake, Minnesota, in: Elk Lake, Minnesota: Evidence for rapid climate change in the north-central United States, edited by: Bradbury, J. P. and Dean, E., US Geological Survey, Colorado, USA, 97–115, ISBN 0-8137-2276-4, 1993.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y.,
Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., and Haug, G. H.: Links between tropical rainfall and North Atlantic climate during the
last glacial period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/ngeo1712, 2013a.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y., Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., and Haug, G. H.: Cariaco Basin and Arabian Sea Sediment Reflectance Data Over the Last 100,000 Years, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/2waz-pz97, 2013b.
Díaz, K. A., Pérez, L., Correa-Metrio, A., Franco-Gaviria, J. F.,
Echeverría, P., Curtis, J., and Brenner, M.: Holocene environmental history of tropical, mid-altitude Lake Ocotalito, México, inferred from
ostracodes and non-biological indicators, Holocene, 27, 1308–1317,
https://doi.org/10.1177/0959683616687384, 2017.
Donders, T. H., de Boer, H. J., Finsinger, W., Grimm, E. C., Dekker, S. C.,
Reichart, G. J., and Wagner-Cremer, F.: Impact of the Atlantic Warm Pool on
precipitation and temperature in Florida during North Atlantic cold spells, Clim. Dynam., 36, 109–118, https://doi.org/10.1007/s00382-009-0702-9, 2011.
Dunlea, A. G., Murray, R. W., Tada, R., Alvarez-Zarikian, C. A., Anderson, C. H., Gilli, A., Giosan, L., Gorgas, T., Hennekam, R., Irino T., Murayama, M., Peterson, L., Reichart, G. J., Seki, A., Zheng, H., and Ziegler, M.:
Intercomparison of XRF core scanning results from seven labs and approaches
to practical calibration, Geochem. Geophy. Geosy., 21, e2020GC009248, https://doi.org/10.1029/2020GC009248, 2020.
Echeverría Galindo, P. G., Pérez, L., Correa-Metrio, A., Avendaño, C. E., Moguel, B., Brenner, M., Cohuo, S., Macario, L.,
Caballero, M., and Schwalb, A.: Tropical freshwater ostracodes as environmental indicators across an altitude gradient in Guatemala and
Mexico, Rev. Biol. Trop., 67, 1037–1058, https://doi.org/10.15517/RBT.V67I4.33278, 2019.
Engleman, E. E., Jackson, L. L., and Norton, D. R.: Determination of carbonate carbon in geological materials by coulometric titration, Chem. Geol., 53, 125–128, 1985.
Engstrom, D. R. and Wright Jr., H. E.: Chemical stratigraphy of lake sediments as a record of environmental change, in: Lake sediments and environmental history: studies in palaeolimnology and palaeoecology in honour of Winifred Tutin, edited by: Haworth, E. Y. and Lund, J. W. G., Leicester University Press, Leicester, UK, ISBN 9780718512200, 1984.
Escobar, J., Hodell, D. A., Brenner, M., Curtis, J. H., Gilli, A., Mueller,
A. D., Anselmetti, F. S., Ariztegui D., Grzesik, D. A., Pérez, L., Schwalb A., and Guilderson, T. P.: A ∼43-ka record of paleoenvironmental
change in the Central American lowlands inferred from stable isotopes of
lacustrine ostracods, Quaternary Sci. Rev., 37, 92–104, https://doi.org/10.1016/j.quascirev.2012.01.020, 2012.
Friedrich, J., Janssen, F., Aleynik, D., Bange, H. W., Boltacheva, N., Çagatay, M. N., Dale, A. W., Etiope, G., Erdem, Z., Geraga, M., Gilli, A., Gomoiu, M. T., Hall, P. O. J., Hansson, D., He, Y., Holtappels, M., Kirf, M. K., Kononets, M., Konovalov, S., Lichtschlag, A., Livingstone, D. M., Marinaro, G., Mazlumyan, S., Naeher, S., North, R. P., Papatheodorou, G., Pfannkuche, O., Prien, R., Rehder, G., Schubert, C. J., Soltwedel, T., Sommer, S., Stahl, H., Stanev, E. V., Teaca, A., Tengberg, A., Waldmann, C., Wehrli, B., and Wenzhöfer, F.: Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon, Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, 2014.
Gale, E., Pattiaratchi, C., and Ranasinghe, R.: Vertical mixing processes in
intermittently closed and open lakes and lagoons, and the dissolved oxygen
response, Estuar. Coast. Shelf Sci., 69, 205–216, https://doi.org/10.1016/j.ecss.2006.04.013, 2006.
Gibson, K. A. and Peterson, L. C.: A 0.6 million year record of millennial-scale climate variability in the tropics, Geophys. Res. Lett., 41, 969–975, https://doi.org/10.1002/2013GL058846, 2014.
Grauel, A.-L., Hodell, D. A., and Bernasconi, S. M.: Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka, Earth Planet. Sc. Lett., 438, 37–46, https://doi.org/10.1016/j.epsl.2016.01.001, 2016.
Grimm, E. C., Watts, W. A., Jacobson Jr., G. L., Hansen, B. C., Almquist, H.
R., and Dieffenbacher-Krall, A. C.: Evidence for warm wet Heinrich events in
Florida, Quaternary Sci. Rev., 25, 2197–2211, https://doi.org/10.1016/j.quascirev.2006.04.008, 2006.
Groot, M. H., Hooghiemstra, H., Berrio, J. C., and Giraldo, C.: North Andean
environmental and climatic change at orbital to submillennial time-scales:
vegetation, water levels and sedimentary regimes from Lake Fúquene
130–27 ka, Rev. Palaeobot. Palynol., 197, 186–204, https://doi.org/10.1016/j.revpalbo.2013.04.005, 2013.
Groot, M. H. M., Bogotá, R. G., Lourens, L. J., Hooghiemstra, H., Vriend, M., Berrio, J. C., Tuenter, E., Van der Plicht, J., Van Geel, B., Ziegler, M., Weber, S. L., Betancourt, A., Contreras, L., Gaviria, S., Giraldo, C., González, N., Jansen, J. H. F., Konert, M., Ortega, D., Rangel, O., Sarmiento, G., Vandenberghe, J., Van der Hammen, T., Van der Linden, M., and Westerhoff, W.: Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles, Clim. Past, 7, 299–316, https://doi.org/10.5194/cp-7-299-2011, 2011.
Grousset, F. E., Pujol, C., Labeyrie, L., Auffret, G., and Boelaert, A.:
Were the North Atlantic Heinrich events triggered by the behavior of the
European ice sheets?, Geol. J., 28, 123–126, https://doi.org/10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2, 2000.
Hällberg, P. L., Schenk, F., Yamoah, K. A., Kuang, X., and Smittenberg,
R. H.: Seasonal aridity in the Indo-Pacific Warm Pool during the Late Glacial
driven by El Niño-like conditions, Clim. Past, 18, 1655–1674, https://doi.org/10.5194/cp-18-1655-2022, 2022.
Heinrich, H.: Origin and consequences of cyclic ice rafting in the Northeast
Atlantic Ocean during the past 130,000 years, Quatern. Res., 29, 143–152,
https://doi.org/10.1016/0033-5894(88)90057-9, 1988.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of
the North Atlantic and their global climate imprint, Rev. Geophys., 42,
RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Hodell, D., Anselmetti, F., Brenner, M., and Ariztegui, D.: The Lake
Petén Itzá Scientific Drilling Project, Sci. Drill., 3, 25–29,
https://doi.org/10.2204/iodp.sd.3.02.2006, 2006.
Hodell, D. A., Anselmetti, F. S., Ariztegui, D., Brenner, M., Curtis, J. H.,
Gilli, A., Grzesik, D.A., Guilderson, T. J., Mueller A. D., Bush, M. B.,
Correa-Metrio, A., Escobar, J., and Kutterolf, S.: An 85-ka record of
climate change in lowland Central America, Quaternary Sci. Rev., 27, 1152–1165, https://doi.org/10.1016/j.quascirev.2008.02.008, 2008.
Hodell, D. A., Evans, H. F., Channell, J. E., and Curtis, J. H.: Phase
relationships of North Atlantic ice-rafted debris and surface-deep climate
proxies during the last glacial period, Quaternary Sci. Rev., 29, 3875–3886,
https://doi.org/10.1016/j.quascirev.2010.09.006, 2010.
Hodell, D. A., Turchyn, A. V., Wiseman, C. J., Escobar, J., Curtis, J. H.,
Brenner, M., Gilli, A., Mueller, A. D., Anselmetti, F., Ariztegui, D., and
Brown, E. T.: Late Glacial temperature and precipitation changes in the
lowland Neotropics by tandem measurements of δ18O in biogenic
carbonate and gypsum hydration water, Geochim. Cosmochim. Ac., 77, 352–368,
https://doi.org/10.1016/j.gca.2011.11.026, 2012.
Hodell, D. A., Nicholl, J. A., Bontognali, T. R., Danino, S., Dorador, J.,
Dowdeswell, J. A., Einsle, J., Kuhlmann H., Martrat, B., Mleneck-Vautravers,
M. J., Rodríguez-Tovar, F. J., and Röhl, U.: Anatomy of Heinrich
Layer 1 and its role in the last deglaciation, Paleoceanography, 32, 284–303, https://doi.org/10.1002/2016PA003028, 2017.
Holmes, J. A., Metcalfe, S. E., Jones, H. L., and Marshall, J. D.: Climatic
variability over the last 30 000 years recorded in La Piscina de Yuriria, a
Central Mexican crater lake, J. Quaternary Sci., 31, 310–324, https://doi.org/10.1002/jqs.2846, 2016.
Hu, H. and Dominguez, F.: Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes, J. Hydrometeorol., 16, 19–35, https://doi.org/10.1175/JHM-D-14-0073.1, 2015.
IGN – Instituto Geográfico Nacional: IGN (1970) Carta Geológica de la Republica de Guatemala, Esc: , http://www.infoiarna.org.gt/wp-content/uploads/2022/02/Mapa-geologico.pdf (last access: June 2022), 1970.
INSIVUMEH – Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología: INSIVUMEH (2021) Información meteorológica, https://insivumeh.gob.gt/ (last access: June 2022), 2021.
Jaeschke, A., Rühlemann, C., Arz, H., Heil, G., and Lohmann, G.: Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period, Paleoceanogr. Paleoclimatol., 22, PA4206, https://doi.org/10.1029/2006PA001391, 2007.
Johnsen S. J., Clausen, H. B., Dansgaard, W., Fuhrert, K., Gundestrup, N. Hammer, C. U., Iversen, P., Jouzel J., Stauffer, B., and Steffensen, J. P.: Irregular glacial interstadials recorded in a new Greenland ice core, Nature, 359, 311–313, https://doi.org/10.1038/359311a0, 1992.
Jullien, E., Grousset, F. E., Hemming, S. R., Peck, V. L., Hall, I. R.,
Jeantet, C., and Billy, I.: Contrasting conditions preceding MIS3 and MIS2
Heinrich events, Global Planet. Change, 54, 225–238, https://doi.org/10.1016/j.gloplacha.2006.06.021, 2006.
Jullien, E., Grousset, F., Malaizé, B., Duprat, J., Sanchez-Goni, M. F.,
Eynaud, F., Charlier, K., Schneider, R., Bory, A., Bout, B., and Flores, J.
A.: Low-latitude “dusty events” vs. high-latitude “icy Heinrich events,
Quatern. Res., 68, 379–386, https://doi.org/10.1016/j.yqres.2007.07.007, 2007.
Kitoh, A. and Murakami, S.: Tropical Pacific climate at the mid-Holocene and
the Last Glacial Maximum simulated by a coupled ocean-atmosphere general
circulation model, Paleoceanography, 17, 1047, https://doi.org/10.1029/2001PA000724, 2002.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998, https://doi.org/10.1016/j.quascirev.2004.07.014, 2005.
Kutterolf, S., Schindlbeck, J. C., Anselmetti, F. S., Ariztegui, D., Brenner, M., Curtis, J., Schmid, D., Hodell, D. A., Mueller, A., Pérez, L., Pérez, W., Schwalb, A., Frische, M., and Wang, K. L.: A 400-ka
tephrochronological framework for Central America from Lake Petén Itzá (Guatemala) sediments, Quaternary Sci. Rev., 150, 200–220, https://doi.org/10.1016/j.quascirev.2016.08.023, 2016.
Labeyrie, L., Vidal, L., Cortijo, E., Paterne, M., Arnold, M., Duplessy,
J. C., Vautravers, M. L., Labracherie, M., Duprat, J., Turon, J. L., Grousset, F. E., and van Weering, T.: Surface and deep hydrology of the northern Atlantic Ocean during the past 150,000 years, Philos. T. Roy. Soc. Lond., 348, 255–264, https://doi.org/10.1098/rstb.1995.0067, 1995.
Lachniet, M. S., Johnson, L., Asmerom, Y., Burns, S. J., Polyak, V., Patterson, W. P., and Azouz, A.: Late Quaternary moisture export across
Central America and to Greenland: evidence for tropical rainfall variability
from Costa Rican stalagmites, Quaternary Sci. Rev., 28, 3348–3360, https://doi.org/10.1016/j.quascirev.2009.09.018, 2009.
Lachniet, M. S., Asmerom, Y., Bernal, J. P., Polyak, V. J., and Vazquez-Selem, L.: Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 yr, P. Natl. Acad. Sci. USA, 110, 9255–9260, https://doi.org/10.1073/pnas.1222804110, 2013.
Lachniet, M. S., Denniston, R. F., Asmerom, Y., and Polyak, V. J.: Orbital
control of western North America atmospheric circulation and climate over
two glacial cycles, Nat. Commun., 5, 1–8, https://doi.org/10.1038/ncomms4805, 2014.
Last, W. M.: Mineralogical analysis of lake sediments, in: Tracking
environmental change using lake sediments, edited by: Last, W. and Smol, J. P., Springer, Dordrecht, the Netherlands, 143–187, ISBN 0-306-47670-3, 2001.
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L.,
and Bard, E.: Moisture transport across Central America as a positive
feedback on abrupt climatic changes, Nature, 445, 908–911, https://doi.org/10.1038/nature05578, 2007a.
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., and Bard, E.: Eastern Equatorial Pacific (MD02-2529) 90 KYr SST and SSS Reconstructions, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/qr9a-na19, 2007b.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lisiecki, L. E. and Stern, J. V.: Regional and global benthic δ18O stacks for the last glacial cycle, Paleoceanogr. Paleoclimatol., 31,
1368–1394, https://doi.org/10.1002/2016PA003002, 2016.
Löwenberg-Neto, P.: Neotropical region: a shapefile of Morrone's (2014)
biogeographical regionalization, Zootaxa, 3802, 300–300, https://doi.org/10.11646/zootaxa.3802.2.12, 2014.
Lozano-García, S., Ortega, B., Roy, P. D., Beramendi-Orosco, L., and
Caballero, M.: Climatic variability in the northern sector of the American
tropics since the latest MIS 3, Quatern. Res., 84, 262–271, https://doi.org/10.1016/j.yqres.2015.07.002, 2015.
Lozano-García, S., Torres-Rodríguez, E., Figueroa-Rangel, B.,
Caballero, M., Sosa-Nájera, S., Ortega-Guerrero, B., and Acosta-Noriega,
C.: Vegetation history of a Mexican Neotropical basin from the late MIS 6 to
early MIS 3: The pollen record of Lake Chalco, Quaternary Sci. Rev., 297, 107830, https://doi.org/10.1016/j.quascirev.2022.107830, 2022.
Macario-González, L., Cohuo, S., Hoelzmann, P., Pérez, L.,
Elías-Gutiérrez, M., Caballero, M., and Schwalb, A.: Geodiversity
influences limnological conditions and freshwater ostracode species
distributions across broad spatial scales in the northern Neotropics,
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, 2022.
Martínez-Abarca, R., Lozano-García, S., Ortega-Guerrero, B., and
Caballero-Miranda, M.: Incendios y actividad volcánica: historia de
fuego en la cuenca de México en el Pleistoceno tardío con base en
registros de material carbonizado en el lago de Chalco, Rev. Mex. de Cienc.
Geol., 36, 259–269, 2019.
Martínez-Abarca, L. R., Lozano-García, S., Ortega-Guerrero, B.,
Chávez-Lara, C. M., Torres-Rodríguez, E., Caballero, M., Brown, E. T., Sosa-Najera, S., Acosta-Noriega, C., and Sandoval-Ibarra, V.: Environmental changes during MIS6-3 in the Basin of Mexico: A record of
fire, lake productivity history and vegetation, J. S. Am. Earth Sci., 109,
103231, https://doi.org/10.1016/j.jsames.2021.103231, 2021a.
Martínez-Abarca, R., Ortega-Guerrero, B., Lozano-García, S.,
Caballero, M., Valero-Garcés, B., McGee, D., Brown, E. T., Stockhecke, M., and Hodgetts, A. G.: Sedimentary stratigraphy of Lake Chalco (Central
Mexico) during its formative stages, Int. J. Earth Sci., 110, 2519–2539,
https://doi.org/10.1007/s00531-020-01964-z, 2021b.
Martínez-Abarca, R., Bücker, M., Hoppenbrock, J., Flores-Orozco, A., Pita de la Paz, C., Fröhlich, K., Buckel, J., Lauke, T., Moguel, B.,
Bonilla, M., Rubio-Sandoval, K., Echeverría-Galindo, P., Landois, S.,
García, M., Caballero, M., Rodríguez, S., Morales, W., Escolero, O., Correa-Metrio, A., Wojewódka-Przybył, M., Schwarz, A., Krahn, K.,
Schwalb, A., and Pérez, L.: Evidence of large water-level variations
found in deltaic sediments of a tropical deep lake in the karst mountains of
the Lacandon forest, Mexico, J. Paleolimnol., 69, 99–121, https://doi.org/10.1007/s10933-022-00264-7, 2023.
Mason, B. and Moore, C. B. (Eds.): Principles of geochemistry, in: 4th Edn., John Wiley & Sons, New York, USA, ISBN 3-432-94611-2, 1982.
Mays, J. L., Brenner, M., Curtis, J. H., Curtis, K. V., Hodell, D. A.,
Correa-Metrio, A., Escobar, J., Dutton, A. L., Zimmerman A. R., and Guilderson, T. P.: Stable carbon isotopes (δ13C) of total organic carbon and long-chain n-alkanes as proxies for climate and environmental change in a sediment core from Lake Petén-Itzá, Guatemala, J. Paleolimnol., 57, 307–319, https://doi.org/10.1007/s10933-017-9949-z, 2017.
McManus, J., Francois, R., Gherardi, J. M., Keigwin, L. D., and Brown-Leger,
S.: Collapse and rapid resumption of Atlantic meridional circulation linked
to deglacial climate changes, Nature, 428, 834–837, https://doi.org/10.1038/nature02494, 2004.
Medina-Elizalde, M., Burns, S. J., Polanco-Martinez, J., Lases-Hernández, F., Bradley, R., Wang, H. C., and Shen, C. C.: Synchronous precipitation reduction in the American Tropics associated with Heinrich 2, Sci. Rep., 7, 1–12, https://doi.org/10.1038/s41598-017-11742-8, 2017.
Metcalfe, S., Say, A., Black, S., McCulloch, R., and O'Hara, S.: Wet conditions during the last glaciation in the Chihuahuan Desert, Alta Babicora Basin, Mexico, Quatern. Res., 57, 91–101, https://doi.org/10.1006/qres.2001.2292, 2002.
Metcalfe, S. E., Barron, J. A., Roy, P., and Davies, S.: Late Quaternary
change in the North American (Mexican) Monsoon: variability in terrestrial
and marine records and possible mechanisms, in: AGU Spring Meeting
Abstracts, USA, May 2013, May 2013, San Francisco, USA, PP43A-02, https://ui.adsabs.harvard.edu/abs/2013AGUSMPP43A..02M/abstract (last access: 17 July 2023), 2013.
Meyers, P. A.: Applications of organic geochemistry to paleolimnological
reconstructions: a summary of examples from the Laurentian Great Lakes, Org.
Geochem., 34, 261–289, https://doi.org/10.1016/S0146-6380(02)00168-7, 2003.
Meyers, P. A. and Ishiwatari, R.: Organic matter accumulation records in
lake sediments, in: Physics and chemistry of lakes, edited by: Lerman, A.,
Imboden, D. M., and Ga, J. R., Springer, Berlin, Germany, 279–328, https://doi.org/10.1007/978-3-642-85132-2_10, 1995.
Moernaut, J., Van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel,
M., Cardenas, J., Kilian, R., Ladron de Guevara, B., Pino, M., Urrutia, R.,
and De Batist, M.: Lacustrine turbidites produced by surficial slope sediment remobilization: a mechanism for continuous and sensitive turbidite
paleoseismic records, Mar. Geol., 384, 159–176, https://doi.org/10.1016/j.margeo.2015.10.009, 2017.
Mueller, A. D.: Late Quaternary Environmental Change in the Lowland Neotropics: The Petén Itzá Scientific Drilling Project, Guatemala,
PhD thesis, ETH Zurich, Zurich, Switzerland, 129 pp., https://doi.org/10.3929/ethz-a-005927704, 2009.
Mueller, A. D., Anselmetti, F. S., Ariztegui, D., Brenner, M., Hodell, D. A., Curtis, J. H., Escobar, J., Guilli, A., Grzesik, D.A., Guilderson, T. P.,
Kutterolf, S., and Plötze, M.: Late Quaternary palaeoenvironment of
northern Guatemala: evidence from deep drill cores and seismic stratigraphy
of Lake Petén Itzá, Sedimentology, 57, 1220–1245, https://doi.org/10.1111/j.1365-3091.2009.01144.x, 2010.
Mulder, T., Gillet, H., Hanquiez, V., Reijmer, J. J. G., Droxler, A. W., Recouvreur, A., Fabregas, N., Cavailhes, T., Fauquembergue, K., Blank, D. G., Guiastrennec, L. Seibert, C. Bashah, S., Bujan, S., Ducassou, E., Principaud, M., Conesa, G., Le Goff, J., Ragusa, J., Busson, J., and Borgomano, J.: Into the deep: A coarse-grained carbonate turbidite valley and canyon in ultra-deep carbonate setting, Mar. Geol., 407, 316–333, https://doi.org/10.1016/j.margeo.2018.11.003, 2019.
Naeher, S., Gilli, A., North, R. P., Hamann, Y., and Schubert, C. J.:
Tracing bottom water oxygenation with sedimentary ratios in Lake Zurich, Switzerland, Chem. Geol., 352, 125–133, https://doi.org/10.1016/j.chemgeo.2013.06.006, 2013.
Ortega-Guerrero, B., Avendaño, D., Caballero, M., Lozano-García, S., Brown, E. T., Rodríguez, A., García, B., Barceinas, H., Soler, M. A., and Albarrán, A.: Climatic control on magnetic mineralogy during the late MIS 6–Early MIS 3 in Lake Chalco, central Mexico, Quaternary Sci. Rev., 230, 106163, https://doi.org/10.1016/j.quascirev.2020.106163, 2020.
Otto-Bliesner, B. L., Schneider, R., Brady, E. C., Kucera, M., Abe-Ouchi, A., Bard, E., Braconnot, P., Crucifix, M., Hewitt, C. D., Kageyama, M., Marti, O., Paul, A., Rosell-Melé, A., Waelbroeck, C., Weber, S. L., Weinelt, M., and Yu, Y.: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum, Clim. Dynam., 32, 799–815, https://doi.org/10.1007/s00382-008-0509-0, 2009.
Paillès, C., Sylvestre, F., Escobar, J., Tonetto, A., Rustig, S., and
Mazur, J. C.: Cyclotella petenensis and Cyclotella cassandrae, two new fossil diatoms from Pleistocene sediments of Lake Petén-Itzá, Guatemala, Central America, Phytotaxa, 351, 247–263, https://doi.org/10.11646/phytotaxa.351.4.1, 2018.
Pérez, L., Frenzel, P., Brenner, M., Escobar, J., Hoelzmann, P., Scharf,
B., and Schwalb, A.: Late Quaternary (24–10 ka BP) environmental history of the Neotropical lowlands inferred from ostracodes in sediments of Lago
Petén Itzá, Guatemala, J. Paleolimnol., 46, 59–74, https://doi.org/10.1007/s10933-011-9514-0, 2011.
Pérez, L., Curtis, J., Brenner, M., Hodell, D., Escobar, J., Lozano, S.,
and Schwalb, A.: Stable isotope values (δ18O & δ13C) of multiple ostracode species in a large Neotropical lake as indicators of past changes in hydrology, Quaternary Sci. Rev., 66, 96–111,
https://doi.org/10.1016/j.quascirev.2012.10.044, 2013.
Pérez, L., Correa-Metrio, A., Cohuo, S., González, L. M., Echeverria-Galindo, P., Brenner, M., Curtis, J., Kutterolf, S., Stockhecke,
M., Schenk, F., Bauersachs, T., and Schwalb, A.: Ecological turnover in
neotropical freshwater and terrestrial communities during episodes of abrupt
climate change, Quatern. Res., 101, 26–36, https://doi.org/10.1017/qua.2020.124, 2021.
Peterson, L. C., Haug, G. H., Hughen, K. A., and Röhl, U.: Rapid changes
in the hydrologic cycle of the tropical Atlantic during the last glacial, Science, 290, 1947–1951, https://doi.org/10.1126/science.290.5498.1947, 2000.
Ramírez-Barahona, S. and Eguiarte, L. E.: The role of glacial cycles in promoting genetic diversity in the Neotropics: the case of cloud forests during the Last Glacial Maximum, Ecol. Evol., 3, 725–738, https://doi.org/10.1002/ece3.483, 2013.
R Core Team: R: a language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, https://www.R-project.org (last access: January 2023), 2018.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Raymsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Sourhon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reining, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal BP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Rincón-Martínez, D., Lamy, F., Contreras, S., Leduc, G., Bard, E.,
Saukel, C., Blanz, T., Mackensen, A., and Tiedemann, R.: More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal
shifts of the equatorial front and the Intertropical Convergence Zone in the
eastern tropical Pacific, Paleoceanography, 25, PA2210, https://doi.org/10.1029/2009PA001868, 2010.
Roy, P. D., Quiroz-Jiménez, J. D., Pérez-Cruz, L. L., Lozano-García, S., Metcalfe, S. E., Lozano-Santacruz, R., López-Balbiaux, N., Sánchez-Zavala, J. L., and Romero, F. M.: Late
Quaternary paleohydrological conditions in the drylands of northern Mexico:
a summer precipitation proxy record of the last 80 cal ka BP, Quaternary Sci. Rev., 78, 342–354, https://doi.org/10.1016/j.quascirev.2012.11.020, 2013.
Royer, A., Malaizé, B., Lécuyer, C., Queffelec, A., Charlier, K.,
Caley, T., and Lenoble, A.: A high-resolution temporal record of environmental changes in the Eastern Caribbean (Guadeloupe) from 40 to 10 ka BP, Quaternary Sci. Rev., 155, 198–212, https://doi.org/10.1016/j.quascirev.2016.11.010, 2017.
Schmidt, M. W., Vautravers, M. J., and Spero, H. J.: Western Caribbean sea
surface temperatures during the late Quaternary, Geochem. Geoph. Geosy., 7, Q02P10, https://doi.org/10.1029/2005GC000957, 2006a.
Schmidt, M. W., Vautravers, M. J., and Spero, H. J.: Western Caribbean ODP 999A Mg/Ca and d18O Data and SST Reconstruction, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/xfg0-xk62, 2006b.
Simmons, C. S., Tarano, J. M., and Pinto, J. H. (Eds.): Clasificacion de
reconocimiento de los suelos de la Republica de Guatemala, Ministerio de
Agricultura, Guatemala City, Guatemala, https://searchworks.stanford.edu/view/5513257 (last access: March 2022), 1959.
Spence, J. M., Taylor, M. A., and Chen, A. A.: The effect of concurrent
seasurface temperature anomalies in the tropical Pacific and Atlantic on
Caribbean rainfall, Int. J. Climatol., 24, 1531–1541, https://doi.org/10.1002/joc.1068, 2004.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D.,
Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O.,
Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.:
A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4,
47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Talbot, M. R. and Johannessen, T.: A high resolution palaeoclimatic record
for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter, Earth Planet. Sc. Lett., 110, 23–37, https://doi.org/10.1016/0012-821X(92)90036-U, 1992.
Tjallingii, R., Claussen, M., Stuut, J. B. W., Fohlmeister, J., Jahn, A.,
Bickert, T., Lamy, F., and Röhl, U.: Coherent high-and low-latitude
control of the northwest African hydrological balance, Nat. Geosci., 1,
670–675, https://doi.org/10.1038/ngeo289, 2008.
Trend-Staid, M. and Prell, W. L.: Sea surface temperature at the Last
Glacial Maximum: A reconstruction using the modern analog technique,
Paleoceanography, 17, 1065, https://doi.org/10.1029/2000PA000506, 2002.
Van De Kamp, P. C.: Arkose, subarkose, quartz sand, and associated muds
derived from felsic plutonic rocks in glacial to tropical humid climates, J.
Sediment. Res., 80, 895–918, https://doi.org/10.2110/jsr.2010.081, 2010.
Vriend, M., Groot, M. H. M., Hooghiemstra, H., Bogotá-Angel, R. G., and
Berrio, J. C.: Changing depositional environments in the Colombian Fúquene Basin at submillennial time-scales during 284–27 ka from unmixed grain-size distributions and aquatic pollen, Neth. J. Geosci., 91, 199–214, https://doi.org/10.1017/S0016774600001591, 2012.
Waelbroeck, C., Pichat, S., Böhm, E., Lougheed, B. C., Faranda, D.,
Vrac, M., Missiaen, L., Vazquez Riveiros, N., Burckel, P., Lippold, J., Arz,
H. W., Dokken, T., and Dapoigny, A.: Relative timing of precipitation and
ocean circulation changes in the western equatorial Atlantic over the last
45 kyr, Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, 2018.
Wang, C.: Variability of the Caribbean low-level jet and its relations to
climate, Clim. Dynam., 29, 411–422, https://doi.org/10.1007/s00382-007-0243-z, 2007.
Warken, S. F., Scholz, D., Spötl, C., Jochum, K. P., Pajón, J. M.,
Bahr, A., and Mangini, A.: Caribbean hydroclimate and vegetation history
across the last glacial period, Quaternary Sci. Rev., 218, 75–90, https://doi.org/10.1016/j.quascirev.2019.06.019, 2019.
Warken, S. F., Vieten, R., Winter, A., Spötl, C., Miller, T. E., Jochum,
K. P., Schröder-Ritzrau, A., Mangini, A., and Scholz, D.: Persistent link between Caribbean precipitation and Atlantic Ocean circulation during
the Last Glacial revealed by a speleothem record from Puerto Rico, Paleoceanogr. Paleoclimatol., 35, e2020PA003944, https://doi.org/10.1029/2020PA003944, 2020a.
Warken, S. F., Scholz, D., Spötl, C., Jochum, K. P., Pajon, J. M., Bahr, A., and Mangini, A.: Stable isotopes covering 96–7 ka BP from stalagmite CM (Santo Tomas Cave, Cuba), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.912646, 2020b.
Weltje, G., Bloemsma, M., Tjallingii, R., Heslop, D., Röhl, U., and
Croudace, I.: Prediction of Geochemical Composition from XRF Core Scanner
Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties, in: Micro-XRF
Studies of Sediment Core, edited by: Croudace, I. and Rothwell, R., Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-017-9849-5_21, 2015.
Weltje, G. J. (Ed.): Provenance and dispersal of sand-sized sediments:
Reconstruction of dispersal patterns and sources of sand-sized sediments by
means of inverse modelling techniques, Utrecht University, Utrecht, the Netherlands, https://dspace.library.uu.nl/handle/1874/274730 (last access: May 2022), 1994.
Wersin, P., Höhener, P., Giovanoli, R., and Stumm, W.: Early diagenetic
influences on iron transformations in a freshwater lake sediment, Chem.
Geol., 90, 233–252, https://doi.org/10.1016/0009-2541(91)90102-W, 1991.
Whyte, F. S., Taylor, M. A., Stephenson, T. S., and Campbell, J. D.: Features of the Caribbean low level jet, Int. J. Climatol., 28, 119–128, https://doi.org/10.1002/joc.1510, 2008.
Yarincik, K. M., Murray, R. W., and Peterson, L. C.: Climatically sensitive
eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the
past 578,000 years: Results from Al/Ti and K/Al, Paleoceanography, 15,
210–228, https://doi.org/10.1029/1999PA900048, 2000.
Yu, S. L., Hamrick, J. M., and Lee, D.: Wind Effects on Air-Water Oxygen
Transfer in a Lake, in: Gas Transfer at Water Surfaces. Water Science and
Technology Library, vol. 2, edited by: Brutsaert, W. and Jirka, G. H.,
Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-017-1660-4_33, 1984.
Zarriess, M., Johnstone, H., Prange, M., Steph, S., Groeneveld, J., Mulitza,
S., and Mackensen, A.: Bipolar seesaw in the northeastern tropical Atlantic
during Heinrich stadials, Geophys, Res. Lett., 38, L04706, https://doi.org/10.1029/2010GL046070, 2011.
Ziegler, M., Nürnberg, D., Karas, C., Tiedemann, R., and Lourens, L. J.:
Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt
cold events, Nat. Geosci., 1, 601–605, https://doi.org/10.1038/ngeo277, 2008.
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In...