Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1321-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1321-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A High Arctic inner shelf–fjord system from the Last Glacial Maximum to the present: Bessel Fjord and southwest Dove Bugt, northeastern Greenland
Kevin Zoller
CORRESPONDING AUTHOR
Department of Geosciences, UiT The Arctic University of Norway, Box
6050 Langnes, 9037 Tromsø, Norway
Jan Sverre Laberg
Department of Geosciences, UiT The Arctic University of Norway, Box
6050 Langnes, 9037 Tromsø, Norway
Tom Arne Rydningen
Department of Geosciences, UiT The Arctic University of Norway, Box
6050 Langnes, 9037 Tromsø, Norway
Katrine Husum
Norwegian Polar Institute, Box 6606 Langnes, 9296 Tromsø, Norway
Matthias Forwick
Department of Geosciences, UiT The Arctic University of Norway, Box
6050 Langnes, 9037 Tromsø, Norway
Related authors
No articles found.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Ingrid Leirvik Olsen, Tom Arne Rydningen, Matthias Forwick, Jan Sverre Laberg, and Katrine Husum
The Cryosphere, 14, 4475–4494, https://doi.org/10.5194/tc-14-4475-2020, https://doi.org/10.5194/tc-14-4475-2020, 2020
Short summary
Short summary
We present marine geoscientific data from Store Koldewey Trough, one of the largest glacial troughs offshore NE Greenland, to reconstruct the ice drainage pathways, ice sheet extent and ice stream dynamics of this sector during the last glacial and deglaciation. The complex landform assemblage in the trough reflects a dynamic retreat with several periods of stabilization and readvances, interrupting the deglaciation. Estimates indicate that the ice front locally retreated between 80–400 m/year.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Jan Erik Arndt, Robert D. Larter, Claus-Dieter Hillenbrand, Simon H. Sørli, Matthias Forwick, James A. Smith, and Lukas Wacker
The Cryosphere, 14, 2115–2135, https://doi.org/10.5194/tc-14-2115-2020, https://doi.org/10.5194/tc-14-2115-2020, 2020
Short summary
Short summary
We interpret landforms on the seabed and investigate sediment cores to improve our understanding of the past ice sheet development in this poorly understood part of Antarctica. Recent crack development of the Brunt ice shelf has raised concerns about its stability and the security of the British research station Halley. We describe ramp-shaped bedforms that likely represent ice shelf grounding and stabilization locations of the past that may reflect an analogue to the process going on now.
Gabriel West, Darrell S. Kaufman, Francesco Muschitiello, Matthias Forwick, Jens Matthiessen, Jutta Wollenburg, and Matt O'Regan
Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, https://doi.org/10.5194/gchron-1-53-2019, 2019
Short summary
Short summary
We report amino acid racemization analyses of foraminifera from well-dated sediment cores from the Yermak Plateau, Arctic Ocean. Sample ages are compared with model predictions, revealing that the rates of racemization generally conform to a global compilation of racemization rates at deep-sea sites. These results highlight the need for further studies to test and explain the origin of the purportedly high rate of racemization indicated by previous analyses of central Arctic sediments.
M. Łącka, M. Zajączkowski, M. Forwick, and W. Szczuciński
Clim. Past, 11, 587–603, https://doi.org/10.5194/cp-11-587-2015, https://doi.org/10.5194/cp-11-587-2015, 2015
Short summary
Short summary
Storfjordrenna was deglaciated about 13,950 cal yr BP. During the transition from the sub-glacial to glaciomarine setting, Arctic Waters dominated its hydrography. However, the waters were not uniformly cold and experienced several warmer spells. Atlantic Water began to flow onto the shelves off Svalbard and into Storfjorden during the early Holocene, leading to progressive warming and significant glacial melting. A surface-water cooling and freshening occurred in late Holocene.
S. M. P. Berben, K. Husum, P. Cabedo-Sanz, and S. T. Belt
Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, https://doi.org/10.5194/cp-10-181-2014, 2014
D. E. Groot, S. Aagaard-Sørensen, and K. Husum
Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, https://doi.org/10.5194/cp-10-51-2014, 2014
C. V. Dylmer, J. Giraudeau, V. Hanquiez, and K. Husum
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-15077-2013, https://doi.org/10.5194/bgd-10-15077-2013, 2013
Revised manuscript has not been submitted
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
Related subject area
Subject: Continental Surface Processes | Archive: Marine Archives | Timescale: Holocene
Mid–late Holocene event registered in organo-siliciclastic sediments of Lagoa Salgada carbonate system, southeast Brazil
Precipitation as the main driver of Neoglacial fluctuations of Gualas glacier, Northern Patagonian Icefield
Anna Paula Soares Cruz, Cátia Fernandes Barbosa, Angélica Maria Blanco, Camila Areias de Oliveira, Cleverson Guizan Silva, and José Carlos Sícoli Seoane
Clim. Past, 15, 1363–1373, https://doi.org/10.5194/cp-15-1363-2019, https://doi.org/10.5194/cp-15-1363-2019, 2019
Short summary
Short summary
Salgada Lagoon is a hypersaline lake investigated for its sedimentation history in order to interpret past climatic events. We studied the geochemistry of sediments from 5800 years ago until the present and found sea level oscillations, different climatic conditions, and proxies for vegetation cover and productivity, which highlight a dry event 4200 years ago that matches a global event of the same age, marking changes to favorable conditions for carbonates microbial mats and stromatolites.
S. Bertrand, K. A. Hughen, F. Lamy, J.-B. W. Stuut, F. Torrejón, and C. B. Lange
Clim. Past, 8, 519–534, https://doi.org/10.5194/cp-8-519-2012, https://doi.org/10.5194/cp-8-519-2012, 2012
Cited articles
Arndt, J. E.: Marine geomorphological record of Ice Sheet development in
East Greenland since the Last Glacial Maximum, J. Quaternary Sci., 33, 853–864,
https://doi.org/10.1002/jqs.3065, 2018.
Arndt, J. E., Jokat, W., Dorschel, B., Mykleburst, R., Dowdeswell, J. A.,
and Evans, J.: A new bathymetry of the Northeast Greenland continental
shelf: Constraints on glacial and other processes, AGU Publ. Geochem.
Geophy. Geosy., 16, 267–300, https://doi.org/10.1002/2014GC005684,
2015.
Arndt, J. E., Jokat, W., and Dorschel, B.: The last glaciation and
deglaciation of the Northeast Greenland continental shelf revealed by
hydro-acoustic data, Quaternary Sci. Rev., 160, 45–56, 2017.
Batchelor, C. L., Dowdeswell, J. A., and Rignot, E.: Submarine landforms
reveal varying rates and styles of deglaciation in North-West Greenland
fjords, Mar. Geol., 402, 60–80,
https://doi.org/10.1016/j.margeo.2017.08.003, 2018.
Bennike, O. and Björck, S.: Chronology of the last recession of the
Greenland Ice Sheet, J. Quaternary Sci., 17, 211–219,
https://doi.org/10.1002/jqs.670, 2002.
Bennike, O. and Weidick, A.: Late Quaternary history around
Nioghalvfjerdsfjorden and Jøokelbugten, North-East Greenland, Boreas, 30,
205–227, https://doi.org/10.1111/j.1502-3885.2001.tb01223.x, 2001.
Bennike, O., Sørensen, M., Fredskild, B., Jacobsen, B. H., BöCher,
J., Amsinck, S. L., Jeppesen, E., Andreasen, C., Christiansen, H. H., and
Humlum, O.: Late Quaternary Environmental and Cultural Changes in the
Wollaston Forland Region, Northeast Greenland, Adv. Ecol. Res., 40, 45–79,
https://doi.org/10.1016/S0065-2504(07)00003-7, 2008.
Bentley, C. R.: Antarctic ice streams: a review, Geophys. Res., 92,
8843–8858, 1987.
Biette, M., Jomelli, V., Chenet, M., Braucher, R., Rinterknecht, V., and
Lane, T.: Mountain glacier fluctuations during the Lateglacial and Holocene
on Clavering Island (northeastern Greenland) from 10Be moraine dating,
Boreas, 49, 873–885, https://doi.org/10.1111/bor.12460, 2020.
Björck, S. and Persson, T.: Late Weichselian and Flandrian
biostratigraphy and chronology from hochstetter forland, northeast
Greenland, Medd. Om. Grønl. Geosci., 5, 1–19, 1981.
Björck, S., Wohlfarth, B., Bennike, O., Hjort, C., and Persson, T.:
Revision of the early Holocene lake sediment based chronology and event
stratigraphy on Hochstetter Forland, NE Greenland, Boreas, 23, 513–523,
https://doi.org/10.1111/j.1502-3885.1994.tb00619.x, 1994.
Boulton, G. S. and Deynoux, M.: Sedimentation in glacial environments and
the identification of tills and tillites in ancient sedimentary sequences,
Precambrian Res., 15, 397–422,
https://doi.org/10.1016/0301-9268(81)90059-0, 1981.
Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de
Vernal, A., Fisher, D., Francus, P., Fréchette, B., Gajewski, K.,
Jennings, A., Kaufman, D. S., Miller, G., Rouston, C., and Wagner, B.:
Holocene climate change in Arctic Canada and Greenland, Quaternary Sci. Rev.,
147, 340–364, https://doi.org/10.1016/j.quascirev.2016.02.010, 2016.
Cartigny, M. J. B., Postma, G., Berg, J. H., and Mastbergen, D. R.: A
comparative study of sediment waves and cyclic steps based on geometries,
internal structures and numerical modeling, Mar. Geol., 280, 40–56, 2011.
Christiansen, J. S.: The TUNU-Programme: Euro-Arctic Marine Fishes –
Diversity and Adaptation, in: Adaptation and Evolution in Marine
Environments, 1, 35–50, https://doi.org/10.1007/978-3-642-27352-0,
2012.
Clark, C. D. and Stokes, C. R.: Palaeo-ice stream landsystem, in: Glacial
Landscapes, edited by: Evans, D. J. A., Edward Arnold, London, 204–227, ISBN 0 340 80665 6,
2003.
Clark, C. D., Tulaczyk, S. M., Stokes, C. R., and Canals, M.: A
groove-ploughing theory for the production of mega-scale glacial lineations,
and implications for ice-stream mechanics, J. Glaciol., 49, 240–256,
https://doi.org/10.3189/172756503781830719, 2003.
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D.,
Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and
Jones, J.: Recent Arctic amplification and extreme mid-latitude weather,
Nat. Publ. Gr., 7, 627–637, https://doi.org/10.1038/ngeo2234, 2014.
Cremer, H., Bennike, O., and Wagner, B.: Lake sediment evidence for the last
deglaciation of eastern Greenland, Quaternary Sci. Rev., 27, 312–319,
https://doi.org/10.1016/j.quascirev.2007.09.004, 2008.
Davies, J., Mathiasen, A. M., Kristiansen, K., Hansen, K. E., Wacker, L.,
Alstrup, A. K. O., Munk, O. L., Pearce, C., and Seidenkrantz, M. S.:
Linkages between ocean circulation and the Northeast Greenland Ice Stream in
the Early Holocene, Quaternary Sci. Rev., 286, 107530,
https://doi.org/10.1016/j.quascirev.2022.107530, 2022.
Dowdeswell, J. A., Ottesen, D., Evans, J., Cofaigh, C. Ó., and Anderson,
J. B.: Submarine glacial landforms and rates of ice-stream collapse,
Geology, 36, 819–822, https://doi.org/10.1130/G24808A.1, 2008.
Dowdeswell, J. A., Hogan, K. A., Ó Cofaigh, C., Fugelli, E. M. G.,
Evans, J., and Noormets, R.: Late Quaternary ice flow in a West Greenland
fjord and cross-shelf trough system: submarine landforms from Rink Isbrae to
Uummannaq shelf and slope, Quaternary Sci. Rev., 92, 292–309, 2014.
Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E.
K., and Hogan, K. A.: The variety and distribution of submarine glacial
landforms and implications for ice-sheet reconstruction, Geol. Soc. Mem.,
46, 519–552, https://doi.org/10.1144/M46.183, 2016.
Evans, J., Dowdeswell, J. A., Grobe, H., Niessen, F., Stein, R., Hubberten,
H. W., and Whittington, R. J.: Late Quaternary sedimentation in Kejser Franz
Joseph Fjord and the continental margin of East Greenland, Geol. Soc. Spec.
Publ., 203, 149–179, https://doi.org/10.1144/GSL.SP.2002.203.01.09, 2002.
Evans, J., Ó Cofaigh, C., Dowdeswell, J. A., and Wadhams, P.: Marine
geophysical evidence for former expansion and flow of the Greenland Ice
Sheet across the north-east Greenland continental shelf, J. Quaternary Sci., 24,
279–293, 2009.
Eyles, N., Eyles, C. H., and Niall, An. D.: Lithofacies types and vertical
profile models; an alternative approach to the description and environmental
interpretation of glacial diamict and diamictite sequences, Sedimentology,
30, 393–410, 1983.
Folk, R. L.: The Distinction between Grain Size and Mineral Composition in
Sedimentary-Rock Nomenclature, J. Geol., 62, 344–359, 1954.
Folk, R. L. and Ward, W.: Brazos river bar, a study in the significance of
grain size parameters, J. Sediment. Petrol., 27, 34–59, 1957.
Forwick, M. and Vorren, T. O.: Deglaciation history and post-glacial mass
movements in Balsfjord, northern Norway, Polar Res., 21, 259–266, 1998.
Forwick, M., Vorren, T. O., Hald, M., Korsun, S., Roh, Y., Vogt, C., and
Yoo, K. C.: Spatial and temporal influence of glaciers and rivers on the
sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen,
Geol. Soc. London, Spec. Publ., 344, 163–193,
https://doi.org/10.1144/SP344.13, 2010.
Funder, S., Hjort, C., Landvik, J. Y., Nam, S. I., Reeh, N., and Stein, R.: History of a stable ice margin – East Greenland during the middle and upper pleistocene, Quaternary Sci. Rev., 17, 77–123, https://doi.org/10.1016/S0277-3791(97)00082-6, 1998.
Funder, S., Kjeldsen, K. K., Kjær, H. K., and Ó Cofaigh, C.: The
Greenland Ice Sheet During the Past 300,000 Years: A Review, Dev. Quat.
Sci., 15, 699–713, https://doi.org/10.1016/B978-0-444-53447-7.00050-7,
2011.
Funder, S., Sørensen, A. H. L., Larsen, N. K., Bjørk, A. A., Briner, J. P., Olsen, J., Schomacker, A., Levy, L. B., and Kjær, K. H.: Younger Dryas ice margin retreat in Greenland: new evidence from southwestern Greenland, Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, 2021.
Geirsdóttir, Á., Hardardóttir, J., and Andrews, J. T.:
Late-Holocene terrestrial glacial history of Miki and I.C. Jacobsen Fjords,
East Greenland, Holocene, 10, 123–134,
https://doi.org/10.1191/095968300666213169, 2000.
Håkansson, L., Graf, A., Strasky, S., Ivy-ochs, S., Kubik, P. W., Hjort,
C., Shlüchter, C., Geografiska, S., Series, A., Geography, P.,
Hakansson, L., Graf, A., Strasky, S., Ivy-ochs, S., Kubik, P. W., Hjort, C.,
and Schlichter, C.: Cosmogenic 10Be-Ages from the Store Koldewey Island, NE
Greenland, Geogr. Ann. A, 89, 195–202, 2007.
Hansen, K. E., Lorenzen, J., Davies, J., Wacker, L., Pearce, C., and
Seidenkrantz, M.-S.: Deglacial to Mid Holocene environmental conditions on
the northeastern Greenland shelf, Quanternary Sci. Rev., 293, 107704, https://doi.org/10.1016/j.quascirev.2022.107704, 2022.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer,
P. J., and Heaton, T. J.: Marine20 – The Marine Radiocarbon Age
Calibration Curve (0–55,000 cal BP), Radio, 62, 779–820,
https://doi.org/10.1017/RDC.2020.68, 2020.
Heaton, T. J., Bard, E., Ramsey, C. B., Butzin, M., Hatté, C., Hughen,
K. A., Köhler, P., and Reimer, P. J.: A Response to Community Questions
on the Marine20 Radiocarbon Age Calibration Curve: Marine Reservoir Ages and
The Calibration of 14C Samples from the Oceans, Radiocarbon, 65, 247–273,
https://doi.org/10.1017/RDC.2022.66, 2022.
Higgins, A. K.: North Greenland Glaeier Velocities and Calf lce Production,
Polarforschung, 60, 1–23, 1991.
Hill, P. R.: Changes in submarine channel morphology and strata development
from repeat multibeam surveys in the Fraser River delta, western Canada, in:
Sediments, Morphology and Sedimentary Processes on Continental Shelves,
edited by: Li, M. Z., Sherwood, C. R., and Hill, P. R., Blackwell Science,
International Association of Sedimentologists, 47–70, https://doi.org/10.1002/9781118311172.ch3, 2012.
Hjort, C.: Glaciation in northern East Greenland during the Late Weichselian
and Early Flandrian, Boreas, 8, 281–296,
https://doi.org/10.1111/j.1502-3885.1979.tb00812.x, 1979.
Hjort, C.: A glacial chronology for northern East Greenland, Boreas, 10,
259–274, 1981.
Hjort, C. and Björck, S.: A re-evaluated glacial chronology for Northern
East Greenland, Geol. Föreningen i Stock, Förhandlingar, 105,
235–243, https://doi.org/10.1080/11035898309452590, 1983.
Hogan, K. A., Dowdeswell, J. A., Noormets, R., Evans, J., and Ó Cofaigh,
C.: Evidence for full-glacial flow and retreat of the Late Weichselian Ice
Sheet from the waters around Kong Karls Land, eastern Svalbard, Quaternary Sci.
Rev., 29, 3563–3582, https://doi.org/10.1016/j.quascirev.2010.05.026, 2010.
Hogan, K. A., Ó Cofaigh, C., Jennings, A. E., Dowdeswell, J. A., and
Hiemstra, J. F.: Deglaciation of a major palaeo-ice stream in Disko Trough,
West Greenland, Quaternary Sci. Rev., 147, 5–26, 2016.
Huddart, D. and Lister, H.: The Origin of Ice Marginal Terraces and Contact
Ridges of East Kangerdluarssuk Glacier, SW Greenland, Geogr. Ann. A, 63,
31–39, 1981.
Jackson, R., Andreasen, N., Oksman, M., Andersen, T. J., Pearce, C.,
Seidenkrantz, M.-S., and Ribeiro, S.: Marine conditions and development of
the Sirius Water polynya on the North-East Greenland shelf during the
Younger Dryas-Holocene, Quaternary Sci. Rev., 291, 107647, https://doi.org/10.1016/j.quascirev.2022.107647, 2022.
Jakobsson, M., Hogan, K. A., Mayer, L. A., Mix, A., Jennings, A., Stoner,
J., Eriksson, B., Jerram, K., Mohammad, R., Pearce, C., Reilly, B., and
Stranne, C.: The Holocene retreat dynamics and stability of Petermann
Glacier in northwest Greenland, Nat. Commun., 9, 2104,
https://doi.org/10.1038/s41467-018-04573-2, 2018.
Jakobsson, M., Mayer, L. A., Bringensparr, C., Castro, C. F., Mohammad, R.,
Johnson, P., Ketter, T., Accettella, D., Amblas, D., An, L., Arndt, J. E.,
Canals, M., Casamor, J. L., Chauché, N., Coakley, B., Danielson, S.,
Demarte, M., Dickson, M. L., Dorschel, B., Dowdeswell, J. A., Dreutter, S.,
Fremand, A. C., Gallant, D., Hall, J. K., Hehemann, L., Hodnesdal, H., Hong,
J., Ivaldi, R., Kane, E., Klaucke, I., Krawczyk, D. W., Kristoffersen, Y.,
Kuipers, B. R., Millan, R., Masetti, G., Morlighem, M., Noormets, R.,
Prescott, M. M., Rebesco, M., Rignot, E., Semiletov, I., Tate, A. J.,
Travaglini, P., Velicogna, I., Weatherall, P., Weinrebe, W., Willis, J. K.,
Wood, M., Zarayskaya, Y., Zhang, T., Zimmermann, M., and Zinglersen, K. B.:
The International Bathymetric Chart of the Arctic Ocean Version 4.0, Sci.
Data, 7, 1–14, https://doi.org/10.1038/s41597-020-0520-9, 2020.
Joughin, I., Fahnestock, M., MacAyeal, D., Bamber, J. L., and Gogineni, P.:
Observation and analysis of ice flow in the largest Greenland ice stream, J.
Geophys. Res.-Atmos., 106, 34021–34034,
https://doi.org/10.1029/2001JD900087, 2001.
Kelly, M. A., Lowell, T. V., Hall, B. L., Schaefer, J. M., Finkel, R. C.,
Goehring, B. M., Alley, R. B., and Denton, G. H.: A 10Be chronology of
lateglacial and Holocene mountain glaciation in the Scoresby Sund region,
east Greenland: implications for seasonality during lateglacial time, Quaternary
Sci. Rev., 27, 2273–2282, 2008.
Kempf, P., Forwick, M., Laberg, J. S., and Vorren, T. O.: Late Weichselian
and Holocene sedimentary palaeoenvironment and glacial activity in the
high-arctic van Keulenfjorden, Spitsbergen, Holocene, 23,
1607–1618, https://doi.org/10.1177/0959683613499055, 2013.
Khan, S. A., Kjær, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen,
K. K., Bjørk, A. A., Korsgaard, N. J., Stearns, L. A., Van Den Broeke, M.
R., Liu, L., Larsen, N. K., and Muresan, I. S.: Sustained mass loss of the
northeast Greenland ice sheet triggered by regional warming, Nat. Clim.
Change, 4, 292–299, https://doi.org/10.1038/nclimate2161, 2014.
King, E. C., Hindmarsh, R. C. A., and Stokes, C. R.: Formation of mega-scale
glacial lineations observed beneath a West Antarctic ice stream, Nat.
Geosci., 2, 585–588, https://doi.org/10.1038/ngeo581, 2009.
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice
loss from the Greenland Ice Sheet driven by sustained glacier retreat,
Commun. Earth Environ., 1, 1–7, https://doi.org/10.1038/s43247-020-0001-2,
2020.
Klages, J. P., Kuhn, G., Hillenbrand, C.-D., Graham, A. G. C., Smith, J. A.,
Larter, R. D., and Gohl, K.: First geomorphological record and glacial
history of an inter-ice stream ridge on the West Antarctic continental
shelf, Quaternary Sci. Rev., 61, 47–61, 2013.
Klages, J. P., Kuhn, G., Graham, A. G. C., Hillenbrand, C.-D., Smith, J. A.,
Nitsche, F. O., Larter, R. D., and Gohl, K.: Palaeo-ice stream pathways and
retreat style in the easternmost Amundsen Sea Embayment, West Antarctica,
revealed by combined multibeam bathymetric and seismic data, Geomorphology,
245, 207–222, 2015.
Klug, M., Schmidt, S., Melles, M., Wagner, B., Bennike, O., and Heiri, O.:
Lake sediments from Store Koldewey, Northeast Greenland, as archive of Late
Pleistocene and Holocene climatic and environmental changes, Boreas, 38,
59–71, https://doi.org/10.1111/j.1502-3885.2008.00038.x, 2009a.
Klug, M., Bennike, O., and Wagner, B.: Repeated short-term bioproductivity
changes in a coastal lake on Store Koldewey, northeast Greenland: An
indicator of varying sea-ice coverage?, Holocene, 19, 653–663,
https://doi.org/10.1177/0959683609104040, 2009b.
Klug, M., Bennike, O., and Wagner, B.: Late Pleistocene to early Holocene
environmental changes on Store Koldewey, coastal north-east Greenland, Polar
Res., 35, 21912, https://doi.org/10.3402/polar.v35.21912, 2016.
Kobashi, T., Menviel, L., Jeltsch-Thömmes, A., Vinther, B. M., Box, J.
E., Muscheler, R., Nakaegawa, T., Pfister, P. L., Döring, M.,
Leuenberger, M., Wanner, H., and Ohmura, A.: Volcanic influence on
centennial to millennial Holocene Greenland temperature change, Sci. Rep.,
7, 1–10, https://doi.org/10.1038/s41598-017-01451-7, 2017.
Kolling, H. M., Stein, R., Fahl, K., Perner, K., and Moros, M.: Short-term
variability in late Holocene sea ice cover on the East Greenland Shelf and
its driving mechanisms, Palaeogeogr. Palaeocl., 485,
336–350, https://doi.org/10.1016/j.palaeo.2017.06.024, 2017.
Krieger, L., Floricioiu, D., and Neckel, N.: Drainage basin delineation for
outlet glaciers of Northeast Greenland based on Sentinel-1 ice velocities
and TanDEM-X elevations, Remote Sens. Environ., 237, 111483,
https://doi.org/10.1016/j.rse.2019.111483, 2020.
Laberg, J. S., Forwick, M., and Husum, K.: New geophysical evidence for a
revised maximum position of part of the NE sector of the Greenland ice sheet
during the last glacial maximum, Arktos, 3, 1–9,
https://doi.org/10.1007/s41063-017-0029-4, 2017.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P.
Natl. Acad. Sci. USA, 111, 15296–15303,
https://doi.org/10.1073/pnas.1411762111, 2014.
Landvik, J. Y.: The last glaciation of Germania Land and adjacent areas,
northeast Greenland, J. Quaternary Sci., 9, 81–92,
https://doi.org/10.1002/jqs.3390090108, 1994.
Lane, T. P., Roberts, D. H., Ó Cofaigh, C., Vieli, A., and Moreton, S.
G.: The glacial history of the southern Svartenhuk Halvø, West Greenland,
Arktos, 1, 1–28, https://doi.org/10.1007/s41063-015-0017-5, 2015.
Larsen, N. K., Funder, S., Linge, H., Möller, P., Schomacker, A., Fabel,
D., Xu, S., and Kjær, K. H.: A Younger Dryas re-advance of local
glaciers in north Greenland, Quaternary Sci. Rev., 147, 47–58,
https://doi.org/10.1016/j.quascirev.2015.10.036, 2016.
Larsen, N. K., Søndergaard, A. S., Levy, L. B., Olsen, J., Strunk, A.,
Bjørk, A. A., and Skov, D.: Contrasting modes of deglaciation between
fjords and inter-fjord areas in eastern North Greenland, Boreas, 49,
905–919, https://doi.org/10.1111/bor.12475, 2020.
Larsen, N. K., Søndergaard, A. S., Levy, L. B., Strunk, A., Skov, D. S.,
Bjørk, A., Khan, S. A., and Olsen, J.: Late glacial and Holocene
glaciation history of North and Northeast Greenland, Arct. Antarct. Alp.
Res., 54, 294–313, https://doi.org/10.1080/15230430.2022.2094607, 2022.
Lecavalier, B. S., Milne, G. A., Simpson, M. J. R., Wake, L., Huybrechts,
P., Tarasov, L., Kjeldsen, K. K., Funder, S., Long, A. J., Woodroffe, S.,
Dyke, A. S., and Larsen, N. K.: A model of Greenland Ice Sheet deglaciation
constrained by observations of relative sea level and ice extent, Quaternary Sci.
Rev., 102, 54–84, 2014.
Levy, L. B., Kelly, M. A., Lowell, T. V., Hall, B. L., Howley, J. A., and
Smith, C. A.: Coeval fluctuations of the Greenland ice sheet and a local
glacier, central East Greenland, during late glacial and early Holocene
time, Geophys. Res. Lett., 43, 1623–1631, 2016.
Lyså, A. and Vorren, T. O.: Seismic facies and architecture of
ice-contact submarine fans in high-relief fjords, Troms, Northern Norway,
Boreas, 26, 309–328, 1997.
Mouginot, J., Rignot, E., Scheuchl, B., Fenty, I., Khazendar, A., Morlighem,
M., Buzzi, A., and Paden, J.: Fast retreat of Zachariae Isstrom, Northeast
Greenland, Science, 350, 1357–1361, 2015.
Mouginot, J., Bjørk, A. A., Millan, R., Scheuchl, B., and Rignot, E.:
Insights on the Surge Behavior of Storstrømmen and L. Bistrup Bræ,
Northeast Greenland, Over the Last Century, Geophys. Res. Lett., 45,
11197–11205, https://doi.org/10.1029/2018GL079052, 2018.
Newton, A. M. W., Knutz, P. C., Huuse, M., Gannon, P., Brocklehurst, S. H.,
Clausen, O. R., and Gong, Y.: Ice stream reorganization and glacial retreat
on the northwest Greenland shelf, Geophys. Res. Lett., 44, 7826–7835,
https://doi.org/10.1002/2017GL073690, 2017.
Ó Cofaigh, C.: Flow Dynamics and till genesis associated with a
marin-based Antarctic palaeo-ice stream, Quaternary Sci. Rev., 24, 709–740,
2005.
Ó Cofaigh, C., Dowdeswell, J. A., and Grobe, H.: Holocene glacimarine
sedimentation, inner Scoresby Sund, East Greenland: The influence of
fast-flowing ice-sheet outlet glaciers, Mar. Geol., 175, 103–129,
https://doi.org/10.1016/S0025-3227(01)00117-7, 2001.
Ó Cofaigh, C., Dowdeswell, J. A., Jennings, A. E., Hogan, K. A.,
Kilfeather, A., Hiemstra, J. F., Noormets, R., Evans, J., McCarthy, D. J.,
Andrews, J. T., Lloyd, J. M., and Moros, M.: An extensive and dynamic ice
sheet on the west greenland shelf during the last glacial cycle, Geology,
41, 219–222, https://doi.org/10.1130/G33759.1, 2013.
Olsen, I. L., Rydningen, T. A., Forwick, M., Laberg, J. S., and Husum, K.: Last glacial ice sheet dynamics offshore NE Greenland – a case study from Store Koldewey Trough, The Cryosphere, 14, 4475–4494, https://doi.org/10.5194/tc-14-4475-2020, 2020.
Olsen, I. L., Laberg, J. S., Forwick, M., Rydningen, T. A., and Husum, K.: Late Weichselian and Holocene behavior of the Greenland Ice Sheet in the Kejser Franz Josef Fjord system, NE Greenland, Quaternary Sci. Rev., 284, 107504, https://doi.org/10.1016/j.quascirev.2022.107504, 2022.
ORAU (Oxford Radiocarbon Accelerator Unit): OxCal Online, Version 4.4, https://c14.arch.ox.ac.uk/oxcal.html#program (last access: 5 April 2023), 2022.
Ottesen, D., Dowdeswell, J. A., and Rise, L.: Submarine landforms and the
reconstruction of fast-flowing ice streams within a large Quaternary ice
sheet: The 2500-km-long Norwegian-Svalbard margin (57∘–80∘ N), Bull. Geol. Soc. Am., 117, 1033–1050,
https://doi.org/10.1130/B25577.1, 2005.
Ottesen, D., Dowdeswell, J. A., Benn, D. I., Kristensen, L., Christiansen,
H. H., Christensen, O., Hansen, L., Lebesbye, E., Forwick, M., and Vorren,
T. O.: Submarine landforms characteristic of glacier surges in two
spitsbergen fjords, Quaternary Sci. Rev., 27, 1583–1599, 2008.
Pados-Dibattista, T., Pearce, C., Detlef, H., Bendtsen, J., and Seidenkrantz, M.-S.: Holocene palaeoceanography of the Northeast Greenland shelf, Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, 2022.
Pedersen, J. B. T., Kroon, A., and Jakobsen, B. H.: Holocene sea-level
reconstruction in the Young Sound region, Northeast Greenland, J. Quaternary
Sci., 26, 219–226, 2011.
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A.,
Rutherford, S., and Schaffernicht, E. J.: Exceptional twentieth-century
slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Change, 5,
475–480, https://doi.org/10.1038/nclimate2554, 2015.
Rasmussen, T. L., Pearce, C., Andresen, K. J., Nielsen, T., and
Seidenkrantz, M.-S.: Northeast Greenland: ice-free shelf edge at
79.4∘ N around the Last Glacial Maximum 25.5–17.5 ka, Boreas, 51,
759–775, 2022.
Reeh, N., Bøggild, C. E., and Oerter, H.: Surge of Storstrømmen, a
large outlet glacier from the Inland Ice of North-East Greenland, Rapp.
Grønands Geol. Unders., 162, 201–209, 1994.
Reilly, B. T., Stoner, J. S., Mix, A. C., Walczak, M. H., Jennings, A.,
Jakobsson, M., Dyke, L., Glueder, A., Nicholls, K., Hogan, K. A., Mayer, L.
A., Hatfield, Robert, G., Albert, S., Marcott, S., Fallon, S., and Cheseby,
M.: Holocene break-up and reestablishment of the Petermann Ice Tongue,
Northwest Greenland, Quaternary Sci. Rev., 218, 322–342, 2019.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., Van Der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon
Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Rignot, E., Bjork, A., Chauche, N., and Klaucke, I.: Storstrømmen and L.
Bistrup Bræ, North Greenland, Protected From Warm Atlantic Ocean Waters,
Geophys. Res. Lett., 49, e2021GL097320, https://doi.org/10.1029/2021GL097320, 2022.
Sættem, J.: Glaciotectonic forms and structures on the Norwegian
continental shelf: observations, processes and implications, Nor. Geol.
Tidsskr., 70, 81–94, 1990.
Schaffer, J., von Appen, W.-J., Dodd, P. A., Hofstede, C., Mayer, C., de
Steur, L., and Kanzow, T.: Warm water pathways toward Nioghalvfjerdsfjorden
Glacier, Northeast Greenland, J. Geophys. Res.-Oceans, 122, 4004–4020,
https://doi.org/10.1002/2016JC012462, 2017.
Schmidt, S., Wagner, B., Heiri, O., Klug, M., Bennike, O., and Melles, M.:
Chironomids as indicators of the Holocene climatic and environmental history
of two lakes in Northeast Greenland, Boreas, 40, 116–130,
https://doi.org/10.1111/j.1502-3885.2010.00173.x, 2011.
Schoof, C. G. and Clarke, G. K. C.: A model for spiral flows in basal ice
and the formation of subglacial flutes based on a Reiner-Rivlin rheology for
glacial ice, J. Geophys. Res.-Sol. Ea., 113, B05204,
https://doi.org/10.1029/2007JB004957, 2008.
Shaw, J., Pugin, A., and Young, R. R.: A meltwater origin for Antarctic
shelf bedforms with special attention to megalineations, Geomorphology, 102,
364–375, https://doi.org/10.1016/j.geomorph.2008.04.005, 2008.
Shreve, R. L.: Esker characteristics in terms of glacier physics, Katahdin
esker system, Maine, Geol. Soc. Am. Bull., 96, 639–646,
https://doi.org/10.1130/0016-7606(1985)96<639:ECITOG>2.0.CO;2, 1985.
Skov, D. S., Andersen, J. L., Olsen, J., Jacobsen, B. H., Knudsen, M. F.,
Jansen, J. D., Larsen, N. K., and Egholm, D. L.: Constraints from cosmogenic
nuclides on the glaciation and erosion history of Dove Bugt, northeast
Greenland, GSA Bull., 132, 1–13, 2020.
Slabon, P., Dorschel, B., Jokat, W., Myklebust, R., Hebbeln, D., and
Gebhardt, C.: Greenland ice sheet retreat history in the northeast Baffin
Bay based on high-resolution bathymetry, Quaternary Sci. Rev., 154, 182–198,
https://doi.org/10.1016/j.quascirev.2016.10.022, 2016.
Smith, L. M. and Andrews, J. T.: Sediment characteristics in iceberg
dominated fjords, Kangerlussuaq region, East Greenland, Sediment. Geol.,
130, 11–25, https://doi.org/10.1016/S0037-0738(99)00088-3, 2000.
Stacey, C. D. and Hill, P. R.: Cyclic steps on a glacifluvial delta, Howe
Sound, British Columbia, in: Atlas of Submarine Glacial Landforms: Modern,
Quaternary and Ancient, edited by: Dowdeswell, J. A., Canals, M., Jakobsson,
M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Geological Society of
London, 93–94, ISBN 9781786202680, 2016.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
Change 2013: The Physical Science Basis, Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, Cambridge, https://doi.org/10.1017/CBO9781107415324, 2013.
Stokes, C. R. and Clark, C. D.: Geomorphological criteria for identifying
Pleistocene ice streams, Ann. Glaciol., 28, 67–74,
https://doi.org/10.3189/172756499781821625, 1999.
Stokes, C. R. and Clark, C. D.: Palaeo-ice streams, Quaternary Sci. Rev., 20,
1437–1457, 2001.
Storrar, R. D., Stokes, C. R., and Evans, D. J. A.: Morphometry and pattern
of a large sample (> 20,000) of Canadian eskers and implications
for subglacial drainage beneath ice sheets, Quaternary. Sci. Rev., 105, 1–25,
https://doi.org/10.1016/j.quascirev.2014.09.013, 2014.
Syring, N., Lloyd, J. M., Stein, R., Fahl, K., Roberts, D. H., Callard, L.,
and O'Cofaigh, C.: Holocene interactions between glacier retreat, sea ice
formation, and Atlantic water advection at the inner Northeast Greenland
continental shelf, Paleoceanogr. Paleoclimatology, 35, e2020PA004019, https://doi.org/10.1029/2020PA004019, 2020.
Vasskog, K., Langebroek, P. M., Andrews, J. T., Nilsen, J. E. Ø., and Nesje, A.: The Greenland Ice Sheet during the last glacial cycle: Current ice loss and contribution to sea-level rise from a palaeoclimatic perspective, Earth-Sci. Rev., 150, 45–67, https://doi.org/10.1016/j.earscirev.2015.07.006, 2015.
Wagner, B., Bennike, O., Bos, J. A. A., Cremer, H., Lotter, A. F., and
Melles, M.: A multidisciplinary study of Holocene sediment records from
Hjort Sø on Store Koldewey, Northeast Greenland, J. Paleolimnol., 39,
381–398, https://doi.org/10.1007/s10933-007-9120-3, 2008.
Weber, M. E., Niessen, F., Kuhn, G., and Wiedicke, M.: Calibration and
application of marine sedimentary physical properties using a mult-sensor
core logger, Mar. Geol., 136, 151–172, 1997.
Weidick, A., Andreasen, C., Oerter, H., and Reeh, N.: Neoglacial glacier
changes around Storstrommen, north-east Greenland, Polarforschung, 64,
95–108, 1994.
Wilson, N. J. and Straneo, F.: Water exchange between the continental shelf
and the cavity beneath Nioghalvfjerdsbræ (79 North Glacier), Geophys.
Res. Lett., 42, 7648–7654, https://doi.org/10.1002/2015GL064944, 2015.
Winkelmann, D., Jokat, W., Jensen, L., and Schenke, H. W.: Submarine end
moraines on the continental shelf off NE Greenland – Implications for
Lateglacial dynamics, Quaternary Sci. Rev., 29, 1069–1077,
https://doi.org/10.1016/j.quascirev.2010.02.002, 2010.
Zoller, K., Laberg, J. S., and Rydningen, T. A.: Supporting Data for: A high-Arctic inner shelf–fjord system from the Last Glacial Maximum to the Present: Bessel Fjord and SW Dove Bugt, NE Greenland, DataverseNO [data set],
https://doi.org/10.18710/IXW3VA, 2022.
Short summary
Marine geologic data from NE Greenland provide new information about the behavior of the Greenland Ice Sheet from the last glacial period to present. Seafloor landforms suggest that a large, fast-flowing ice stream moved south through southern Dove Bugt. This region is believed to have been deglaciated from at least 11.4 ka cal BP. Ice in an adjacent fjord, Bessel Fjord, may have retreated to its modern position by 7.1 ka cal BP, and the ice halted or readvanced multiple times upon deglaciation.
Marine geologic data from NE Greenland provide new information about the behavior of the...