Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1305-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1305-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changing sources and burial of organic carbon in the Chukchi Sea sediments with retreating sea ice over recent centuries
Liang Su
Ocean College, Zhejiang University, Zhoushan 316021, China
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Marie-Alexandrine Sicre
LOCEAN, CNRS, Sorbonne Université, Campus Pierre et Marie Curie, Case 100, 4 Place Jussieu, 75032, Paris, France
Youcheng Bai
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Ruoshi Zhao
Ocean College, Zhejiang University, Zhoushan 316021, China
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Xibing Han
Key Laboratory of Submarine Geosciences, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Zhongqiao Li
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Haiyan Jin
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
State Key Laboratory of Satellite Ocean Environment Dynamics,
Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Anatolii S. Astakhov
V. I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
Xuefa Shi
Key Laboratory of Marine Geology and Metallogeny, First Institute
of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
Jianfang Chen
CORRESPONDING AUTHOR
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
State Key Laboratory of Satellite Ocean Environment Dynamics,
Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Related authors
No articles found.
Youcheng Bai, Marie-Alexandrine Sicre, Jian Ren, Vincent Klein, Haiyan Jin, and Jianfang Chen
Biogeosciences, 21, 689–709, https://doi.org/10.5194/bg-21-689-2024, https://doi.org/10.5194/bg-21-689-2024, 2024
Short summary
Short summary
Algal biomarkers were used to assess sea ice and pelagic algal production across the western Arctic Ocean with changing sea-ice conditions. They show three distinct areas along with a marked latitudinal gradient of sea ice over pelagic algal production in surface sediments that are reflected by the H-Print index. Our data also show that efficient grazing consumption accounted for the dramatic decrease of diatom-derived biomarkers in sediments compared to that of particulate matter.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Aleix Cortina-Guerra, Juan José Gomez-Navarro, Belen Martrat, Juan Pedro Montávez, Alessandro Incarbona, Joan O. Grimalt, Marie-Alexandrine Sicre, and P. Graham Mortyn
Clim. Past, 17, 1523–1532, https://doi.org/10.5194/cp-17-1523-2021, https://doi.org/10.5194/cp-17-1523-2021, 2021
Short summary
Short summary
During late 20th century a singular Mediterranean circulation episode called the Eastern Mediterranean Transient (EMT) event occurred. It involved changes on the seawater physical and biogeochemical properties, which can impact areas broadly. Here, using paleosimulations for the last 1000 years we found that the East Atlantic/Western Russian atmospheric mode was the main driver of the EMT-type events in the past, and enhancement of this mode was coetaneous with low solar insolation.
Chen Jinxia, Shi Xuefa, Liu Yanguang, Qiao Shuqing, Yang Shixiong, Yan Shijuan, Lv Huahua, Li Jianyong, Li Xiaoyan, and Li Chaoxin
Clim. Past, 16, 2509–2531, https://doi.org/10.5194/cp-16-2509-2020, https://doi.org/10.5194/cp-16-2509-2020, 2020
Short summary
Short summary
In this study, we present pollen and grain size data obtained from the Bohai Sea. The results reveal that soil development and salinity gradients are the main factors determining the vegetation dynamics of coastal wetland. Moreover, our pollen-based temperature index revealed a warm Early Holocene, a cool Middle Holocene and then a relatively warm Late Holocene. The main driving factors of temperature variation in this region are insolation, greenhouse gases and ENSO.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Sergey A. Gorbarenko, Xuefa Shi, Galina Yu. Malakhova, Aleksandr A. Bosin, Jianjun Zou, Yanguang Liu, and Min-Te Chen
Clim. Past, 13, 1063–1080, https://doi.org/10.5194/cp-13-1063-2017, https://doi.org/10.5194/cp-13-1063-2017, 2017
Linsen Dong, Yanguang Liu, Xuefa Shi, Leonid Polyak, Yuanhui Huang, Xisheng Fang, Jianxing Liu, Jianjun Zou, Kunshan Wang, Fuqiang Sun, and Xuchen Wang
Clim. Past, 13, 511–531, https://doi.org/10.5194/cp-13-511-2017, https://doi.org/10.5194/cp-13-511-2017, 2017
Short summary
Short summary
In this manuscript, we present the results of our study conducted for a sediment core (ARC4-BN05) collected in the Arctic Ocean. Detailed examination of clay and bulk mineralogy along with grain size, content of Ca and Mn, and planktonic foraminiferal numbers in core ARC4–BN05 provides important new information about sedimentary environments and provenance. Based on these proxies, we try to reveal late to middle Pleistocene glacial history.
Maria-Angela Bassetti, Serge Berné, Marie-Alexandrine Sicre, Bernard Dennielou, Yoann Alonso, Roselyne Buscail, Bassem Jalali, Bertil Hebert, and Christophe Menniti
Clim. Past, 12, 1539–1553, https://doi.org/10.5194/cp-12-1539-2016, https://doi.org/10.5194/cp-12-1539-2016, 2016
Short summary
Short summary
This work represents the first attempt to decipher the linkages between rapid climate changes and continental Holocene paleohydrology in the NW Mediterranean shallow marine setting. Between 11 and 4 ka cal BP, terrigenous input increased and reached a maximum at 7 ka cal BP, probably as a result of a humid phase. From ca. 4 ka cal BP to the present, enhanced variability in the land-derived material is possibly due to large-scale atmospheric circulation and rainfall patterns in western Europe.
B. Jalali, M.-A. Sicre, M.-A. Bassetti, and N. Kallel
Clim. Past, 12, 91–101, https://doi.org/10.5194/cp-12-91-2016, https://doi.org/10.5194/cp-12-91-2016, 2016
X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han
Clim. Past, 10, 1735–1750, https://doi.org/10.5194/cp-10-1735-2014, https://doi.org/10.5194/cp-10-1735-2014, 2014
J. Sun, X. Y. Gu, Y. Y. Feng, S. F. Jin, W. S. Jiang, H. Y. Jin, and J. F. Chen
Biogeosciences, 11, 779–806, https://doi.org/10.5194/bg-11-779-2014, https://doi.org/10.5194/bg-11-779-2014, 2014
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
X. Y. Zhang, X. Chen, H. Deng, Y. Du, and H. Y. Jin
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-12217-2013, https://doi.org/10.5194/bgd-10-12217-2013, 2013
Preprint withdrawn
M.-A. Sicre, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim. Past, 9, 1375–1383, https://doi.org/10.5194/cp-9-1375-2013, https://doi.org/10.5194/cp-9-1375-2013, 2013
S. Desprat, N. Combourieu-Nebout, L. Essallami, M. A. Sicre, I. Dormoy, O. Peyron, G. Siani, V. Bout Roumazeilles, and J. L. Turon
Clim. Past, 9, 767–787, https://doi.org/10.5194/cp-9-767-2013, https://doi.org/10.5194/cp-9-767-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Centennial-Decadal
Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum
A. Tagliabue, L. Bopp, D. M. Roche, N. Bouttes, J.-C. Dutay, R. Alkama, M. Kageyama, E. Michel, and D. Paillard
Clim. Past, 5, 695–706, https://doi.org/10.5194/cp-5-695-2009, https://doi.org/10.5194/cp-5-695-2009, 2009
Cited articles
Ardyna, M. and Arrigo, K. R.: Phytoplankton dynamics in a changing Arctic
Ocean, Nat. Clim. Change, 10, 892–903, https://doi.org/10.1038/s41558-020-0905-y, 2020.
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean
primary production, Prog. Oceanogr., 136, 60–70, https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice
cover on marine primary production, Geophys. Res. Lett., 35, L19603, https://doi.org/10.1029/2008gl035028, 2008.
Astakhov, A. S., Bosin, A. A., Liu, Y. G., Darin, A. V., Kalugin, I. A., Artemova, A. V., Babich, V. V., Melgunov, M. S., Vasilenko, Y. P., and Vologina, E. G.: Reconstruction of ice conditions in the northern Chukchi Sea during recent centuries: Geochemical proxy compared with observed data, Quatern. Int., 522, 23–37, https://doi.org/10.1016/j.quaint.2019.05.009, 2019.
Bai, Y., Sicre, M.-A., Chen, J., Klein, V., Jin, H., Ren, J., Li, H., Xue,
B., Ji, Z., Zhuang, Y., and Zhao, M.: Seasonal and spatial variability of sea
ice and phytoplankton biomarker flux in the Chukchi sea (western Arctic
Ocean), Prog. Oceanogr., 171, 22–37, https://doi.org/10.1016/j.pocean.2018.12.002, 2019.
Bai, Y., Sicre, M.-A., Ren, J., Jalali, B., Klein, V., Li, H., Lin, L., Ji,
Z., Su, L., Zhu, Q., Jin, H., and Chen, J.: Centennial-scale variability of
sea-ice cover in the Chukchi Sea since AD 1850 based on biomarker reconstruction, Environ. Res. Lett., 17, 044058, https://doi.org/10.1088/1748-9326/ac5f92, 2022.
Baskaran, M. and Naidu, A. S.: 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic, Geochim. Cosmochim. Ac., 59, 4435–4448,
https://doi.org/10.1016/0016-7037(95)00248-x, 1995.
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009.
Belt, S. T.: Source-specific biomarkers as proxies for Arctic and Antarctic
sea ice, Org. Geochem., 125, 277–298, https://doi.org/10.1016/j.orggeochem.2018.10.002, 2018.
Belt, S. T.: What do IP25 and related biomarkers really reveal about sea
ice change?, Quat.ernarySci. Rev., 204, 216–219,
https://doi.org/10.1016/j.quascirev.2018.11.025, 2019.
Belt, S. T., Massé, G., Rowland, S. J., Poulin, M., Michel, C., and
LeBlanc, B.: A novel chemical fossil of palaeo sea ice: IP25, Org.
Geochem., 38, 16–27, https://doi.org/10.1016/j.orggeochem.2006.09.013, 2007.
Belt, S. T., Massé, G., Vare, L. L., Rowland, S. J., Poulin, M., Sicre,
M.-A., Sampei, M., and Fortier, L.: Distinctive 13C isotopic signature
distinguishes a novel sea ice biomarker in Arctic sediments and sediment
traps, Mar. Chem., 112, 158–167, https://doi.org/10.1016/j.marchem.2008.09.002, 2008.
Belt, S. T., Brown, T. A., Rodriguez, A. N., Sanz, P. C., Tonkin, A., and Ingle, R.: A reproducible method for the extraction, identification and
quantification of the Arctic sea ice proxy IP25 from marine sediments,
Anal. Meth., 4, 705–713, https://doi.org/10.1039/c2ay05728j, 2012.
Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C. S., Gal, J. K., Shin, K. H., Lee, J. I., and Taylor, K. W.: Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 12655, https://doi.org/10.1038/ncomms12655, 2016.
Bröder, L., Tesi, T., Andersson, A., Eglinton, T. I., Semiletov, I. P.,
Dudarev, O. V., Roos, P., and Gustafsson, Ö.: Historical records of
organic matter supply and degradation status in the East Siberian Sea, Org.
Geochem., 91, 16–30, https://doi.org/10.1016/j.orggeochem.2015.10.008, 2016.
Bröder, L., Andersson, A., Tesi, T., Semiletov, I., and Gustafsson, Ö.: Quantifying Degradative Loss of Terrigenous Organic Carbon in
Surface Sediments Across the Laptev and East Siberian Sea, Global Biogeochem. Cy., 33, 85–99, https://doi.org/10.1029/2018GB005967, 2019.
Brown, T. A. and Belt, S. T.: Biomarker-based H-Print quantifies the composition of mixed sympagic and pelagic algae consumed by Artemia sp, J.
Exp. Mar. Biol. Ecol., 488, 32–37, https://doi.org/10.1016/j.jembe.2016.12.007, 2017.
Brown, T. A., Belt, S. T., Tatarek, A., and Mundy, C. J.: Source identification of the Arctic sea ice proxy IP25. Nat. Commun., 5, 4197,
https://doi.org/10.1038/ncomms5197, 2014a.
Brown, T. A., Yurkowski, D. J., Ferguson, S. H., Alexander, C., and Belt, S. T.: H-Print: a new chemical fingerprinting approach for distinguishing primary production sources in Arctic ecosystems. Environ. Chem. Lett., 12,
387–392, https://doi.org/10.1007/s10311-014-0459-1, 2014b.
Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D.,
Sullivan, K., Wang, Y., and Hu, X.: Decrease in the CO2 uptake capacity
in an ice-free Arctic Ocean basin, Science, 329, 556–559,
https://doi.org/10.1126/science.1189338, 2010.
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends,
1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP 20 SSM/ISSMIS Passive Microwave Data, Version 1 (Digital media, updated yearly), NASA National Snow and Ice Data Center Distributed Active Archive Center Boulder, Colorado, USA [data set], https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.
Cavalieri, D. J., Gloersen, P., Parkinson, C. L., Comiso, J. C., and Zwally,
H. J.: Observed hemispheric asymmetry in global sea ice changes, Science,
278, 1104–1106, https://doi.org/10.1126/science.278.5340.1104, 1997.
Coachman, L. K. and Aagaard, K.: On the water exchange through Bering Strait,
Limnol. Oceanogr., 11, 44–59, https://doi.org/10.4319/lo.1966.11.1.0044, 1966.
Cooper, L. W. and Grebmeier, J. M.: Deposition patterns on the Chukchi shelf
using radionuclide inventories in relation to surface sediment characteristics, Deep-Sea Res. Pt. II, 152, 48–66, https://doi.org/10.1016/j.dsr2.2018.01.009, 2018.
Coupel, P., Ruiz-Pino, D., Sicre, M. A., Chen, J. F., Lee, S. H., Schiffrine,
N., Li, H. L., and Gascard, J. C.: The impact of freshening on phytoplankton
production in the Pacific Arctic Ocean, Prog. Oceanogr., 131, 113–125,
https://doi.org/10.1016/j.pocean.2014.12.003, 2015.
Cronin, T. M., Polyak, L., Reed, D., Kandiano, E. S., Marzen, R., and Council, E.: A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes, Quaternary Sci. Rev., 79, 157–167, https://doi.org/10.1016/j.quascirev.2012.12.010, 2013.
de Vernal, A., Gersonde, R., Goosse, H., Seidenkrantz, M.-S., and Wolff, E. W.: Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies – an introduction, Quaternary Sci. Rev., 79, 1–8,
https://doi.org/10.1016/j.quascirev.2013.08.009, 2013.
Fernandes, M.-B. and Sicre, M.-A.: The importance of terrestrial organic
carbon inputs on Kara Sea shelves as revealed by n-alkanes, OC and δ13C values, Org. Geochem., 31, 363–374,
https://doi.org/10.1016/S0146-6380(00)00006-1, 2000.
Fritz, M., Vonk, J. E., and Lantuit, H.: Collapsing Arctic coastlines, Nat.
Clim. Change, 7, 6–7, https://doi.org/10.1038/nclimate3188, 2017.
Gal, J. K., Ha, S. Y., Park, J., Shin, K. H., Kim, D., Kim, N. Y., Kang, S. H., and Yang, E. J.: Seasonal flux of ice-related organic matter during
under-ice blooms in the western Arctic Ocean revealed by algal lipid
biomarkers, J. Geophys. Res.-Oceans, 127, e2021JC017914, https://doi.org/10.1029/2021jc017914, 2022.
Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J., and Bacon, S.: Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre, Nat. Geosci., 5, 194–197, https://doi.org/10.1038/ngeo1379, 2012.
Goñi, M. A., O'Connor, A. E., Kuzyk, Z. Z., Yunker, M. B., Gobeil, C., and Macdonald, R. W.: Distribution and sources of organic matter in surface
marine sediments across the North American Arctic margin, J. Geophys. Res.-Oceans, 118, 4017–4035, https://doi.org/10.1002/jgrc.20286, 2013.
Grebmeier, J. M., Cooper, L. W., Feder, H. M., and Sirenko, B. I.: Ecosystem
dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the
Amerasian Arctic, Prog. Oceanogr., 71, 331–361, https://doi.org/10.1016/j.pocean.2006.10.001, 2006.
Grotheer, H., Meyer, V., Riedel, T., Pfalz, G., Mathieu, L., Hefter, J.,
Gentz, T., Lantuit, H., Mollenhauer, G., and Fritz, M.: Burial and Origin of
Permafrost-Derived Carbon in the Nearshore Zone of the Southern Canadian
Beaufort Sea, Geophys. Res. Lett., 47, e2019GL085897, https://doi.org/10.1029/2019gl085897, 2020.
He, J., Zhang, F., Lin, L., Ma, Y., and Chen, J.: Bacterioplankton and
picophytoplankton abundance, biomass, and distribution in the Western Canada
Basin during summer 2008, Deep-Sea Res. Pt. II, 81–84, 36–45,
https://doi.org/10.1016/j.dsr2.2012.08.018, 2012.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S. A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coasts, 35, 369–382, https://doi.org/10.1007/s12237-011-9386-6, 2011.
Hu, L., Liu, Y., Xiao, X., Gong, X., Zou, J., Bai, Y., Gorbarenko, S., Fahl,
K., Stein, R., and Shi, X.: Sedimentary records of bulk organic matter and
lipid biomarkers in the Bering Sea: A centennial perspective of sea-ice
variability and phytoplankton community, Mar. Geol., 429,
106308, https://doi.org/10.1016/j.margeo.2020.106308, 2020.
Hunt, G. L., Blanchard, A. L., Boveng, P., Dalpadado, P., Drinkwater, K. F.,
Eisner, L., Hopcroft, R. R., Kovacs, K. M., Norcross, B. L., Renaud, P.,
Reigstad, M., Renner, M., Skjoldal, H. R., Whitehouse, A., and Woodgate, R.
A.: The Barents and Chukchi Seas: Comparison of two Arctic shelf ecosystems,
J. Mar. Syst., 109–110, 43–68, https://doi.org/10.1016/j.jmarsys.2012.08.003, 2013.
Jakobsson, M.: Hypsometry and volume of the Arctic Ocean and its constituent
seas, Geochem. Geophy. Geosy., 3, 1–18, https://doi.org/10.1029/2001GC000302, 2002.
Ji, Z., Jin, H., Stein, R., Li, Z., Bai, Y., Li, H., Zhang, Y., and Chen, J.:
Distribution and Sources of Organic Matter in Surface Sediments of the
Northern Bering and Chukchi Seas by Using Bulk and Tetraether Proxies, J.
Ocean Univ. China, 18, 563–572, https://doi.org/10.1007/s11802-019-3869-7, 2019.
Jia, R., Mu, X., Chen, M., Zhu, J., Wang, B., Li, X., Astakhov, A. S., Zheng, M., and Qiu, Y.: Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes, Acta Oceanol. Sin., 39, 96–108, https://doi.org/10.1007/s13131-020-1650-9, 2020.
Kim, J.-H., Gal, J.-K., Jun, S.-Y., Smik, L., Kim, D., Belt, S. T., Park, K., Shin, K.-H., and Nam, S.-I.: Reconstructing spring sea ice concentration in the Chukchi Sea over recent centuries: insights into the application of the PIP25 index, Environ. Res. Lett., 14, 125004, https://doi.org/10.1088/1748-9326/ab4b6e, 2019.
Koch, C. W., Cooper, L. W., Grebmeier, J. M., Lalande, C., and Brown, T. A.:
Seasonal and latitudinal variations in sea ice algae deposition in the
Northern Bering and Chukchi Seas determined by algal biomarkers, PLoS One,
15, e0231178, https://doi.org/10.1371/journal.pone.0231178, 2020.
Kolling, H. M., Stein, R., Fahl, K., Sadatzki, H., Vernal, A., and Xiao, X.:
Biomarker Distributions in (Sub)-Arctic Surface Sediments and Their Potential for Sea Ice Reconstructions, Geochem. Geophy. Geosy., 21, 2019GC008629, https://doi.org/10.1029/2019gc008629, 2020.
Lannuzel, D., Tedesco, L., van Leeuwe, M., Campbell, K., Flores, H., Delille, B., Miller, L., Stefels, J., Assmy, P., Bowman, J., Brown, K., Castellani, G., Chierici, M., Crabeck, O., Damm, E., Else, B., Fransson, A., Fripiat, F., Geilfus, N.-X., Jacques, C., Jones, E., Kaartokallio, H., Kotovitch, M., Meiners, K., Moreau, S., Nomura, D., Peeken, I., Rintala, J.-M., Steiner, N., Tison, J.-L., Vancoppenolle, M., Van der Linden, F., Vichi, M., and Wongpan, P.: The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems, Nat. Clim. Change, 10, 983–992, https://doi.org/10.1038/s41558-020-00940-4, 2020.
Li, L., Liu, Y., Wang, X., Hu, L., Yang, G., Wang, H., Bosin, A. A., Astakhov, A. S., and Shi, X.: Early diagenesis and accumulation of redox-sensitive elements in East Siberian Arctic Shelves, Mar. Geol., 429,
106309, https://doi.org/10.1016/j.margeo.2020.106309, 2020.
Massé, G., Rowland, S. J., Sicre, M. -A., Jacob, J., Jansen, E., and
Belt, S. T.: Abrupt climate changes for Iceland during the last millennium:
evidence from high resolution sea ice reconstructions, Earth Planet. Sc. Lett., 269, 565–569, https://doi.org/10.1016/j.epsl.2008.03.017, 2008.
Müller, J., Massé, G., Stein, R., and Belt, S. T.: Variability of
sea-ice conditions in the Fram Strait over the past 30,000 years, Nat. Geosci., 2, 772–776, https://doi.org/10.1038/ngeo665, 2009.
Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and Lohmann, G.:
Towards quantitative sea ice reconstructions in the northern North Atlantic:
A combined biomarker and numerical modelling approach, Earth Planet. Sc. Lett., 306, 137–148, https://doi.org/10.1016/j.epsl.2011.04.011, 2011.
Nittrouer, C. A., DeMaster, D. J., McKee, B. A., Cutshall, N. H., and Larsen, I. L.: The effect of sediment mixing on Pb-210 accumulation rates for the
Washington continental shelf, Mar. Geol., 54, 201–221,
https://doi.org/10.1016/0025-3227(84)90038-0, 1984.
Onodera, J., Watanabe, E., Itoh, M., Harada, N., Honda, M. C., Tengberg, A.,
Tanaka, Y., and Kikuchi, T.: Interannual Variation of Settling Particles
Reflects Upper-Ocean Circulation in the Southern Chukchi Borderland, 2010–2014, J. Geophys. Res.-Oceans, 126, e2021JC017431, https://doi.org/10.1029/2021jc017431, 2021.
Ouyang, Z., Li, Y., Qi, D., Zhong, W., Murata, A., Nishino, S., Wu, Y., Jin,
M., Kirchman, D., Chen, L., and Cai, W. J.: The Changing CO2 Sink in the
Western Arctic Ocean From 1994 to 2019, Global Biogeochem. Cy., 36,
e2021GB007032, https://doi.org/10.1029/2021gb007032, 2022.
Ovall, B., Pickart, R. S., Lin, P., Stabeno, P., Weingartner, T., Itoh, M.,
Kikuchi, T., Dobbins, E., and Bell, S.: Ice, wind, and water: Synoptic-scale
controls of circulation in the Chukchi Sea, Prog. Oceanogr., 199,
102707, https://doi.org/10.1016/j.pocean.2021.102707, 2021.
Overeem, I., Anderson, R. S., Wobus, C. W., Clow, G. D., Urban, F. E., and
Matell, N.: Sea ice loss enhances wave action at the Arctic coast, Geophys.
Res. Lett., 38, L17503, https://doi.org/10.1029/2011GL048681, 2011.
Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J., and Comiso,
J. C.: Arctic sea ice extents, areas, and trends, 1978–1996, J. Geophys.
Res., 104, 20837–20856, https://doi.org/10.1029/1999JC900082, 1999.
Parmentier, F. W., Christensen, T. R., Rysgaard, S., Bendtsen, J., Glud, R.
N., Else, B., van Huissteden, J., Sachs, T., Vonk, J. E., and Sejr, M. K.: A
synthesis of the arctic terrestrial and marine carbon cycles under pressure
from a dwindling cryosphere, Ambio, 46, 53–69, https://doi.org/10.1007/s13280-016-0872-8, 2017.
Polyak, L., Belt, S. T., Cabedo-Sanz, P., Yamamoto, M., and Park, Y. -H.:
Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin,
Arctic Ocean, inferred from biomarker proxies, Holocene, 26, 1810–1821, https://doi.org/10.1177/0959683616645939, 2016.
Polyakov, I. V., Alekseev, G. V., Bekryaev, R. V., Bhatt, U. S., Colony, R.,
Johnson, M. A., Karklin, V. P., Walsh, D., and Yulin, A. V.: Long-term ice
variability in Arctic marginal seas, J. Climate, 16, 2078–2085,
https://doi.org/10.1175/1520-0442(2003)016<2078:LIVIAM>2.0.CO;2, 2003.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed
nearly four times faster than the globe since 1979, Commun. Earth. Environ.,
3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Rawlins, M. A., Connolly, C. T., and McClelland, J. W.: Modeling Terrestrial
Dissolved Organic Carbon Loading to Western Arctic Rivers, J. Geophys. Res.-Biogeo., 126, e2021JG006420, https://doi.org/10.1029/2021jg006420, 2021.
Ren, J., Chen, J., Bai, Y., Sicre, M.-A., Yao, Z., Lin, L., Zhang, J., Li,
H., Wu, B., Jin, H., Ji, Z., Zhuang, Y., and Li, Y.: Diatom composition and
fluxes over the Northwind Ridge, western Arctic Ocean: Impacts of marine
surface circulation and sea ice distribution, Prog. Oceanogr., 186, 102377,
https://doi.org/10.1016/j.pocean.2020.102377, 2020.
Schubert, C. J. and Calvert, S. E.: Nitrogen and carbon isotopic composition
of marine and terrestrial organic matter in Arctic Ocean sediments:
implications for nutrient utilization and organic matter composition, Deep-Sea Res. Pt. I, 48, 789–810, https://doi.org/10.1016/s0967-0637(00)00069-8, 2001.
Serreze, M. C. and Francis, J. A.: The Arctic Amplification Debate, Climatic
Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y, 2006.
Serreze, M. C. and Stroeve, J.: Arctic sea ice trends, variability and
implications for seasonal ice forecasting, Philos. T. Roy. Soc. A, 373,
20140159, https://doi.org/10.1098/rsta.2014.0159, 2015.
Shindell, D. and Faluvegi, G.: Climate response to regional radiative forcing during the twentieth century, Nat. Geosci., 2, 294–300, https://doi.org/10.1038/ngeo473, 2009.
Smik, L., Cabedo-Sanz, P., and Belt, S. T.: Semi-quantitative estimates of
paleo Arctic sea ice concentration based on source-specific highly branched
isoprenoid alkenes: a further development of the PIP25 index, Org.
Geochem., 92, 63–69, https://doi.org/10.1016/j.orggeochem.2015.12.007, 2016.
Sparkes, R. B., Doğrul Selver, A., Bischoff, J., Talbot, H. M., Gustafsson, Ö., Semiletov, I. P., Dudarev, O. V., and van Dongen, B. E.:
GDGT distributions on the East Siberian Arctic Shelf: implications for
organic carbon export, burial and degradation, Biogeosciences, 12, 3753–3768, https://doi.org/10.5194/bg-12-3753-2015, 2015.
Stein, R., Macdonald, R. W., Naidu, A. S., Yunker, M. B., Gobeil, C., Cooper, L. W., Grebmeier, J. M., Whitledge, T. E., Hameedi, M. J., Petrova, V. I., Batova, G. I., Zinchenko, A. G., Kursheva, A. V., Narkevskiy, E. V., Fahl, K., Vetrov, A., Romankevich, E. A., Birgel, D., Schubert, C., Harvey, H. R., and Weiel, D.: The Organic Carbon Cycle in the Arctic Ocean, edited by: Stein, R. and MacDonald, R. W., Springer, Berlin, Heidelberg, 169–314, ISBN 978-3-642-62351-6, 2004.
Stein, R., Fahl, K., Schade, I., Manerung, A., Wassmuth, S., Niessen, F., and
Nam, S.-I.: Holocene variability in sea ice cover, primary production, and
Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean), J. Quaternary Sci., 32, 362–379, https://doi.org/10.1002/jqs.2929, 2017.
Stoynova, V., Shanahan, T. M., Hughen, K. A., and de Vernal, A.: Insights
into circum-Arctic sea ice variability from molecular geochemistry, Quaternary Sci. Rev., 79, 63–73, https://doi.org/10.1016/j.quascirev.2012.10.006, 2013.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic
sea ice decline: faster than forecast, Geophys. Res. Lett., 34,
L09501, https://doi.org/10.1029/2007gl029703, 2007.
Su, L., Ren, J., Sicre, M. A., Bai, Y., Jalali, B., Li, Z., Jin, H., Astakhov, A. S., Shi, X., and Chen, J.: HBIs and Sterols in Surface Sediments
Across the East Siberian Sea: Implications for Palaeo Sea-Ice Reconstructions, Geochem. Geophy. Geosy., 23, e2021GC009940, https://doi.org/10.1029/2021gc009940, 2022.
Tanski, G., Wagner, D., Knoblauch, C., Fritz, M., Sachs, T., and Lantuit, H.:
Rapid CO2 release from eroding permafrost in seawater, Geophys. Res.
Lett., 46, 11244–11252, https://doi.org/10.1029/2019gl084303, 2019.
Tesi, T., Semiletov, I., Hugelius, G., Dudarev, O., Kuhry, P., and Gustafsson, Ö.: Composition and fate of terrigenous organic matter along
the Arctic land-ocean continuum in East Siberia: Insights from biomarkers
and carbon isotopes, Geochim. Cosmochim. Ac., 133, 235–256,
https://doi.org/10.1016/j.gca.2014.02.045, 2014.
Tian, F., Pickart, R. S., Lin, P., Pacini, A., Moore, G. W. K., Stabeno, P.,
Weingartner, T., Itoh, M., Kikuchi, T., Dobbins, E., Bell, S., Woodgate, R.
A., Danielson, S. L., and Wang, Z.: Mean and seasonal circulation of the
eastern Chukchi Sea from moored timeseries in 2013–2014, J. Geophys. Res.-Oceans, 126, e2020JC016863, https://doi.org/10.1029/2020jc016863, 2021.
Timmermans, M. L. and Toole, J. M.: The Arctic Ocean's Beaufort Gyre, Annu.
Rev. Mar. Sci., 15, 223–248, https://doi.org/10.1146/annurev-marine-032122-012034, 2023.
Tortell, P. D., Mills, M. M., Payne, C. D., Maldonado, M. T., Chierici, M.,
Fransson, A., Alderkamp, A. C., and Arrigo, K. R.: Inorganic C utilization
and C isotope fractionation by pelagic and sea ice algal assemblages along
the Antarctic continental shelf, Mar. Ecol.: Prog. Ser., 483, 47–66,
https://doi.org/10.3354/meps10279, 2013.
Volkman, J. K.: A review of sterol markers for marine and terrigenous organic matter, Org. Geochem., 9, 83–99, https://doi.org/10.1016/0146-6380(86)90089-6, 1986.
Vonk, J. E., Sánchez-García, L., Van Dongen, B., Alling, V., Kosmach, D., Charkin, A., Semiletov, I. P., Dudarev, O. V., Shakhova, N., and Roos, P.: Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia, Nature, 489, 137–140, https://doi.org/10.1038/nature11392, 2012.
Walsh, J. E., Fetterer, F., Scott stewart, J., and Chapman, W. L.: A database
for depicting Arctic sea ice variations back to 1850, Geogr. Rev., 107,
89–107, https://doi.org/10.1111/j.1931-0846.2016.12195.x, 2017.
Wang, K., Zhang, H., Han, X., and Qiu, W.: Sources and burial fluxes of
sedimentary organic carbon in the northern Bering Sea and the northern Chukchi Sea in response to global warming, Sci. Total Environ., 679, 97–105,
https://doi.org/10.1016/j.scitotenv.2019.04.374, 2019.
Wang, X., Li, Z., Jin, H., Zheng, H., and Chen, J.: Sources and degradation
of organic carbon in the surface sediments across the Chukchi Sea, insights
from lignin phenols, Haiyang xuebao, 39, 19-31, https://doi.org/10.3969/j.issn.0253-4193.2017.10.002, 2017.
Wang, Y., Bi, H., Huang, H., Liu, Y., Liu, Y., Liang, X., Fu, M., and Zhang,
Z.: Satellite-observed trends in the Arctic sea ice concentration for the
period 1979–2016, J. Oceanol. Limnol., 37, 18–37, 2019.
Watanabe, E., Onodera, J., Harada, N., Honda, M. C., Kimoto, K., Kikuchi, T., Nishino, S., Matsuno, K., Yamaguchi, A., Ishida, A., and Kishi, M. J.: Enhanced role of eddies in the Arctic marine biological pump, Nat. Commun.,
5, 3950, https://doi.org/10.1038/ncomms4950, 2014.
Watanabe, E., Onodera, J., Itoh, M., and Mizobata, K.: Transport Processes of
Seafloor Sediment From the Chukchi Shelf to the Western Arctic Basin, J.
Geophys. Res.-Oceans, 127, e2021JC017958, https://doi.org/10.1029/2021jc017958, 2022.
Weingartner, T. J., Danielson, S., Sasaki, Y., Pavlov, V., and Kulakov, M.:
The Siberian Coastal Current: A wind- and buoyancy-forced Arctic coastal
current, J. Geophys. Res.-Oceans, 104, 29697–29713, https://doi.org/10.1029/1999jc900161, 1999.
Wheeler, P. A., Gosselin, M., Sherr, E., Thibault, D., Kirchman, D. L., Benner, R., and Whitledge, T. E.: Active cycling of organic carbon in the
central Arctic Ocean, Nature, 380, 697–699, https://doi.org/10.1038/380697a0, 1996.
Wild, B., Shakhova, N., Dudarev, O., Ruban, A., Kosmach, D., Tumskoy, V.,
Tesi, T., Grimm, H., Nybom, I., Matsubara, F., Alexanderson, H., Jakobsson, M., Mazurov, A., Semiletov, I., and Gustafsson, O.: Organic matter composition and greenhouse gas production of thawing subsea permafrost in
the Laptev Sea, Nat. Commun., 13, 5057, https://doi.org/10.1038/s41467-022-32696-0, 2022.
Williford, K. H., Ward, P. D., Garrison, G. H., and Buick, R.: An extended
organic carbon-isotope record across the Triassic–Jurassic boundary in the
Queen Charlotte Islands, British Columbia, Canada, Palaeogeogr. Palaeoclimatol. Palaeoecol., 244, 290–296, https://doi.org/10.1016/j.palaeo.2006.06.032, 2007.
Woodgate, R., and Peralta-Ferriz, C.: Warming and freshening of the Pacific
inflow to the Arctic from 1990–2019 implying dramatic shoaling in Pacific
Winter Water ventilation of the Arctic water column, Geophys. Res. Lett.,
48, e2021GL092528, https://doi.org/10.1029/2021gl092528, 2021.
Woodgate, R. A.: Increases in the Pacific inflow to the Arctic from 1990 to
2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data, Prog. Oceanogr., 160, 124–154,
https://doi.org/10.1016/j.pocean.2017.12.007, 2018.
Woodgate, R. A., Aagaard, K., and Weingartner, T. J.: Monthly temperature,
salinity, and transport variability of the Bering Strait through flow,
Geophys. Res. Lett.,32, L04601, https://doi.org/10.1029/2004gl021880, 2005.
Xiao, X., Fahl, K., and Stein, R.: Biomarker distributions in surface
sediments from the Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and sea-ice coverage, Quaternary Sci. Rev., 79, 40–52, https://doi.org/10.1016/j.quascirev.2012.11.028, 2013.
Xiao, X., Fahl, K., Müller, J., and Stein, R.: Sea-ice distribution in
the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface
sediments, Geochim. Cosmochim. Ac., 155, 16–29, https://doi.org/10.1016/j.gca.2015.01.029, 2015a.
Xiao, X., Stein, R., and Fahl, K.: MIS 3 to MIS 1 temporal and LGM spatial
variability in Arctic Ocean sea ice cover: reconstruction from biomarkers,
Paleoceanography, 30, 969–983, https://doi.org/10.1002/2015PA002814, 2015b.
Zhang, R., Wang, H., Fu, Q., Rasch, P. J., Wu, M., and Maslowski, W.:
Understanding the cold season Arctic surface warming trend in recent decades, Geophys. Res. Lett., 48, e2021GL094878, https://doi.org/10.1029/2021gl094878, 2021.
Zhuang, Y., Jin, H., Cai, W. J., Li, H., Qi, D., and Chen, J.: Extreme nitrate deficits in the western Arctic Ocean: Origin, decadal changes, and implications for denitrification on a polar marginal shelf, Global Biogeochem. Cy., 36, e2022GB007304, https://doi.org/10.1029/2022gb007304, 2022.
Short summary
We reconstructed sea ice and organic carbon composition variabilities based on biomarkers and carbon stable isotopes in the northern Chukchi Sea, western Arctic Ocean, over the past 200 years. Under permanent ice cover, organic carbon was dominated by land sources transported by sea ice and ocean currents, while local primary productivity was suppressed by light limitation. Since ice retreated in 20th century, organic carbon from primary production gradually overtook the terrestrial component.
We reconstructed sea ice and organic carbon composition variabilities based on biomarkers and...