Articles | Volume 18, issue 10
https://doi.org/10.5194/cp-18-2255-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2255-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Millennial variability of terrigenous transport to the central–southern Peruvian margin during the last deglaciation (18–13 kyr BP)
IRD, LOCEAN-IPSL, Laboratoire d'Océanographie et du Climat:
Expérimentation et Approches Numériques, Sorbonne Université,
CNRS, IRD, MNHN, Paris, France
Bruno Turcq
IRD, LOCEAN-IPSL, Laboratoire d'Océanographie et du Climat:
Expérimentation et Approches Numériques, Sorbonne Université,
CNRS, IRD, MNHN, Paris, France
Sandrine Caquineau
IRD, LOCEAN-IPSL, Laboratoire d'Océanographie et du Climat:
Expérimentation et Approches Numériques, Sorbonne Université,
CNRS, IRD, MNHN, Paris, France
Renato Salvatteci
Center for Ocean and Society, Kiel University, 24105 Kiel, Germany
José Solis
Laboratorio de Ciencias del Mar, Facultad de Ciencias y
Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
C. Gregory Skilbeck
Faculty of Science, University of Technology Sydney, P.O. Box 123
Broadway, Sydney, NSW, 2007, Australia
Federico Velazco
Dirección General de Investigaciones Oceanográficas y de
Cambio Climático, Instituto del Mar del Perú, Callao, Peru
Dimitri Gutiérrez
Laboratorio de Ciencias del Mar, Facultad de Ciencias y
Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
Dirección General de Investigaciones Oceanográficas y de
Cambio Climático, Instituto del Mar del Perú, Callao, Peru
Related authors
No articles found.
David Noncent, Abdelfettah Sifeddine, Evens Emmanuel, Marie-Helene Cormier, Francisco J. Briceño-Zuluaga, Mercedes Mendez-Milan, Bruno Turcq, Sandrine Caquineau, Jorge Valdés, Juan Pablo Bernal, John W. King, Irina Djouraev, Fethiye Cetin, and Heather Sloan
EGUsphere, https://doi.org/10.5194/egusphere-2022-537, https://doi.org/10.5194/egusphere-2022-537, 2022
Preprint archived
Short summary
Short summary
The objective of this study is to reconstruct the climatic variability in Haiti during the last millennium using mineralogical and geochemical composition. We also seek to understand climate mechanisms and modes that could explain this variability. The results showed that Haiti has experienced long progressively drier periods over the past millennium. The rainy or dry periods in Haiti are linked to the average changes in the temperature of the oceans: Atlantic and Pacific, through oscillations.
Romina Llanos, Patricia Moreira-Turcq, Bruno Turcq, Raúl Espinoza Villar, Yizet Huaman, Thomas Condom, and Bram Willems
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-47, https://doi.org/10.5194/bg-2022-47, 2022
Manuscript not accepted for further review
Short summary
Short summary
Our results highlight a marked decrease of high carbon accumulation rates in Andean peatlands over the last decades due to the diminution in melt water inflow generated by the retreat of glaciers as a consequence of regional warming. These marked changes stress the high ecological sensitivity of these peatlands, endangering their outstanding role in the regional (and even global) C cycle as large C sinks that contribute to the mitigation of global climate change.
Vincent Echevin, Manon Gévaudan, Dante Espinoza-Morriberón, Jorge Tam, Olivier Aumont, Dimitri Gutierrez, and François Colas
Biogeosciences, 17, 3317–3341, https://doi.org/10.5194/bg-17-3317-2020, https://doi.org/10.5194/bg-17-3317-2020, 2020
Short summary
Short summary
The coasts of Peru encompass the richest fisheries in the entire ocean. It is therefore very important for this country to understand how the nearshore marine ecosystem may evolve under climate change. Fine-scale numerical models are very useful because they can represent precisely the evolution of key parameters such as temperature, water oxygenation, and plankton biomass. Here we study the evolution of the Peruvian marine ecosystem in the 21st century under the worst-case climate scenario.
Claudia Di Biagio, Paola Formenti, Yves Balkanski, Lorenzo Caponi, Mathieu Cazaunau, Edouard Pangui, Emilie Journet, Sophie Nowak, Sandrine Caquineau, Meinrat O. Andreae, Konrad Kandler, Thuraya Saeed, Stuart Piketh, David Seibert, Earle Williams, and Jean-François Doussin
Atmos. Chem. Phys., 17, 1901–1929, https://doi.org/10.5194/acp-17-1901-2017, https://doi.org/10.5194/acp-17-1901-2017, 2017
Short summary
Short summary
Modeling the interaction of dust with long-wave (LW) radiation is still a challenge due to the scarcity of information on their refractive index. In this paper, we present a unique dataset of dust refractive indices obtained from in situ measurements in a large smog chamber. Our results show that the dust LW refractive index varies strongly from source to source due to particle composition changes. We recommend taking this variability into account in climate and remote sensing applications.
Heitor Evangelista, Ilana Wainer, Abdelfettah Sifeddine, Thierry Corrège, Renato C. Cordeiro, Saulo Lamounier, Daniely Godiva, Chuan-Chou Shen, Florence Le Cornec, Bruno Turcq, Claire E. Lazareth, and Ching-Yi Hu
Biogeosciences, 13, 2379–2386, https://doi.org/10.5194/bg-13-2379-2016, https://doi.org/10.5194/bg-13-2379-2016, 2016
Short summary
Short summary
Recent Southern Hemisphere (SH) atmospheric circulation, predominantly driven by stratospheric ozone depletion over Antarctica, has caused changes in climate across the extratropics. We present evidence that the Brazilian coast may have been impacted from both wind and sea surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air–sea interactions and seem to record this process.
Francisco Javier Briceño-Zuluaga, Abdelfettah Sifeddine, Sandrine Caquineau, Jorge Cardich, Renato Salvatteci, Dimitri Gutierrez, Luc Ortlieb, Federico Velazco, Hugues Boucher, and Carine Machado
Clim. Past, 12, 787–798, https://doi.org/10.5194/cp-12-787-2016, https://doi.org/10.5194/cp-12-787-2016, 2016
Short summary
Short summary
Comparison between records reveals a coherent match between the meridional displacement of the ITCZ-SPSH system and the regional fluvial and aeolian terrigenous input variability. The aeolian input intensity and the anoxic conditions recorded by marine sediments showed a close link that suggests a common mechanism associated with SPSH displacement. Changes in sediment discharge to the continental shelf are linked to the southward displacement of the ITCZ-SPSH and Walker circulation.
C. Ehlert, P. Grasse, D. Gutiérrez, R. Salvatteci, and M. Frank
Clim. Past, 11, 187–202, https://doi.org/10.5194/cp-11-187-2015, https://doi.org/10.5194/cp-11-187-2015, 2015
C. Di Biagio, H. Boucher, S. Caquineau, S. Chevaillier, J. Cuesta, and P. Formenti
Atmos. Chem. Phys., 14, 11093–11116, https://doi.org/10.5194/acp-14-11093-2014, https://doi.org/10.5194/acp-14-11093-2014, 2014
P. Formenti, S. Caquineau, K. Desboeufs, A. Klaver, S. Chevaillier, E. Journet, and J. L. Rajot
Atmos. Chem. Phys., 14, 10663–10686, https://doi.org/10.5194/acp-14-10663-2014, https://doi.org/10.5194/acp-14-10663-2014, 2014
R. Salvatteci, D. Gutiérrez, D. Field, A. Sifeddine, L. Ortlieb, I. Bouloubassi, M. Boussafir, H. Boucher, and F. Cetin
Clim. Past, 10, 715–731, https://doi.org/10.5194/cp-10-715-2014, https://doi.org/10.5194/cp-10-715-2014, 2014
L. F. Prado, I. Wainer, C. M. Chiessi, M.-P. Ledru, and B. Turcq
Clim. Past, 9, 2117–2133, https://doi.org/10.5194/cp-9-2117-2013, https://doi.org/10.5194/cp-9-2117-2013, 2013
Related subject area
Subject: Atmospheric Dynamics | Archive: Marine Archives | Timescale: Millenial/D-O
Evolution of winter precipitation in the Nile river watershed since the last glacial
Vera Dorothee Meyer, Jürgen Pätzold, Gesine Mollenhauer, Isla S. Castañeda, Stefan Schouten, and Enno Schefuß
Clim. Past, 20, 523–546, https://doi.org/10.5194/cp-20-523-2024, https://doi.org/10.5194/cp-20-523-2024, 2024
Short summary
Short summary
The climatic factors sustaining vegetation in the Sahara during the African humid period (AHP) are still not fully understood. Using biomarkers in a marine sediment core from the eastern Mediterranean, we infer variations in Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed around the AHP. We find that winter and summer rain enhanced during the AHP, suggesting that Mediterranean moisture supported the monsoon in sustaining the “green Sahara”.
Cited articles
Bahr, A., Hoffmann, J., Schönfeld, J., Schmidt, M., Nürnberg, D.,
Batenburg, S., and Voigt, S.: Low-latitude expressions of high-latitude
forcing during Heinrich Stadial 1 and the Younger Dryas in northern South
America, Global Planet. Change, 160, 1–9,
https://doi.org/10.1016/j.gloplacha.2017.11.008, 2018.
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J.,
Tapia, P. M., Cross, S. L., Rowe, H. D., and Broda, J. P.: The History of
South American Tropical Precipitation for the Past 25 000 Years, Science,
291, 640–643, https://doi.org/10.1126/science.291.5504.640, 2001a.
Baker, P., Rigsby, C., Seltzer, G., Fritz, S., Lowenstein, T., Bacher, N.,
and Veliz, C.: Tropical climate changes at millennial and orbital timescales
on the Bolivian Altiplano, Nature, 409, 698–701, https://doi.org/10.1038/35055524,
2001b.
Bellomo, K., Angeloni, M., Corti, S., and von Hardenberg, J.: Future climate
change shaped by inter-model differences in Atlantic meridional overturning
circulation response, Nat. Commun., 12, 1–10,
https://doi.org/10.1038/s41467-021-24015-w, 2021.
Beuscher, S., Krüger, S., Ehrmann, W., Schmiedl, G., Milker, Y., Arz, H.,
and Schulz, H.: End-member modelling as a tool for climate
reconstruction – An Eastern Mediterranean case study, PLoS ONE, 12,
e0185136, https://doi.org/10.1371/journal.pone.0185136, 2017.
Blard, P., Sylvestre, F., Tripati, A., Claude, C., Causse, C., Coudrain, A.,
Condom, T., Seidel, J., Vimeux, F., Moreau, C., Dumoulin, J., and Lavé,
J.: Lake highstands on the Altiplano (Tropical Andes) contemporaneous with
Heinrich 1 and the Younger Dryas: new insights from 14C, U–Th dating and
δ18O of carbonates, Quaternary Sci. Rev., 30,
3973–3989, https://doi.org/10.1016/j.quascirev.2011.11.001, 2011.
Bourrel, L., Rau, P., Dewitte, B., Labat, D., Lavado, W., Coutaud, A., Vera,
A., Alvarado, A., and Ordoñez, J.: Low-frequency modulation and trend of
the relationship between ENSO and precipitation along the northern to centre
Peruvian Pacific coast, Hydrol. Process., 29, 1252–1266,
https://doi.org/10.1002/hyp.10247, 2015.
Briceño-Zuluaga, F. J., Sifeddine, A., Caquineau, S., Cardich, J.,
Salvatteci, R., Gutierrez, D., Ortlieb, L., Velazco, F., Boucher, H., and
Machado, C.: Terrigenous material supply to the Peruvian central continental
shelf (Pisco, 14∘ S) during the last 1000 years: paleoclimatic implications, Clim. Past, 12, 787–798, https://doi.org/10.5194/cp-12-787-2016, 2016.
Briceño-Zuluaga, F., Castagna, A., Rutllant, J. A., Flores-Aqueveque,
V., Caquineau, S., Sifeddine, A., Velazco, F., Gutierrez, D., and Cardich,
J.: Paracas dust storms: Sources, trajectories and associated meteorological
conditions, Atmos. Environ., 165, 99–110,
https://doi.org/10.1016/j.atmosenv.2017.06.019, 2017.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed
fingerprint of a weakening Atlantic Ocean overturning circulation, Nature,
556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018.
Cardich, J., Sifeddine, A., Salvatteci, R., Romero, D., Briceño-Zuluaga, F., Graco, M., Anculle, T., Almeida, C., and Gutiérrez, D.: Multidecadal Changes in Marine Subsurface Oxygenation Off Central Peru During the Last ca. 170 Years, Front. Mar. Sci., 6, 270, https://doi.org/10.3389/fmars.2019.00270, 2019.
Chamorro, A., Echevin, V., Colas, F., Oerder, V., Tam, J., and
Quispe-Ccalluari, C.: Mechanisms of the intensification of the
upwelling-favorable winds during El Niño 1997–1998 in the Peruvian
upwelling system, Clim. Dynam., 51, 3717–3733,
https://doi.org/10.1007/s00382-018-4106-6, 2018.
Cheng, H., Sinha, A., Wang, X., Cruz, F. W., and Edwards, R. L.: The Global
Paleomonsoon as seen through speleothem records from Asia and the Americas,
Clim. Dynam., 39, 1045–1062, https://doi.org/10.1007/s00382-012-1363-7, 2012.
Cheng, H., Sinha, A., Cruz, F., Wang, X., Edwards, R., d'Horta, F., Ribas,
C., Vuille, M., Stott, L., and Auler, A.: Climate change patterns in Amazonia
and biodiversity, Nat. Commun., 4, 1–6, https://doi.org/10.1038/ncomms2415, 2013.
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S.,
Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., and Liu, Z.: Global
climate evolution during the last deglaciation, P. Natl. Acad. Sci. USA, 109, E1134–E1142, https://doi.org/10.1073/pnas.1116619109,
2012.
Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso,
A. O., Ferrari, J. A., Silva Dias, P. L., and Viana, O.: Insolation-driven
changes in atmospheric circulation over the past 116 000 years in
subtropical Brazil, Nature, 434, 63–66, https://doi.org/10.1038/nature03365,
2005.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y.,
Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., and Sigman, D. M.: Links
between tropical rainfall and North Atlantic climate during the last glacial
period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/ngeo1712, 2013.
Dewitte, B., Illig, S., Renault, L., Goubanova, K., Takahashi, K.,
Gushchina, D., Mosquera, K., and Purca, S.: Modes of covariability between
sea surface temperature and wind stress intraseasonal anomalies along the
coast of Peru from satellite observations (2000–2008), J. Geophys. Res.-Oceans, 116, C4, https://doi.org/10.1029/2010jc006495, 2011.
Dypvik, H. and Harris, N.: Geochemical facies analysis of fine-grained
siliciclastics using Th U, Zr Rb and (Zr + Rb) Sr ratios, Chem. Geol.,
181, 131–146, https://doi.org/10.1016/s0009-2541(01)00278-9, 2001.
Echevin, V., Colas, F., Espinoza-Morriberon, D., Vasquez, L., Anculle, T.,
and Gutierrez, D.: Forcings and Evolution of the 2017 Coastal El Niño
Off Northern Peru and Ecuador, Front. Mar. Sci., 5, 367,
https://doi.org/10.3389/fmars.2018.00367, 2018.
Fleury, S., Martinez, P., Crosta, X., Charlier, K., Billy, I., Hanquiez, V.,
Blanz, T., and Schneider, R. R.: Pervasive multidecadal variations in
productivity within the Peruvian Upwelling System over the last millennium,
Quat. Sci. Rev., 125, 78–90, https://doi.org/10.1016/j.quascirev.2015.08.006, 2015.
Flores-Aqueveque, V., Caquineau, S., Alfaro, S., Valdes, J., and Vargas, G.:
Using Image-Based Size Analysis For Determining the Size Distribution and
Flux of Eolian Particles Sampled In Coastal Northern Chile (23 S), J. Sediment. Res., 84, 238–244, https://doi.org/10.2110/jsr.2014.23, 2014.
Flores-Aqueveque, V., Alfaro, S., Vargas, G., Rutllant, J. A., and Caquineau,
S.: Aeolian particles in marine cores as a tool for quantitative
high-resolution reconstruction of upwelling favorable winds along coastal
Atacama Desert, Northern Chile, Prog. Oceanogr., 134, 244–255,
https://doi.org/10.1016/j.pocean.2015.02.003, 2015.
Garreaud, R., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South
American climate, Palaeogeogr. Palaeocl.,
281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
González-Pinilla, F., Latorre, C., Rojas, M., Houston, J., Rocuant, M.,
Maldonado, A., Santoro, C., Quade, J., and Betancourt, J.: High- and
low-latitude forcings drive Atacama Desert rainfall variations over the past
16,000 years, Sci. Adv., 7, 38, https://doi.org/10.1126/sciadv.abg1333, 2021.
Gutiérrez, D., Sifeddine, A., Reyss, J. L., Vargas, G., Velazco, F.,
Salvatteci, R., Ferreira, V., Ortlieb, L., Field, D., Baumgartner, T.,
Boussafir, M., Boucher, H., Valdés, J., Marinovic, L., Soler, P., and
Tapia, P.: Anoxic sediments off Central Peru record interannual to
multidecadal changes of climate and upwelling ecosystem during the last two
centuries, Adv. Geosci., 6, 119–125, https://doi.org/10.5194/adgeo-6-119-2006, 2006.
Gutiérrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chávez, F. P., Velazco, F., Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M. C., Valdés, J., Reyss, J.-L., Campusano, A., Boussafir, M., Mandeng-Yogo, M., García, M., and Baumgartner, T.: Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age, Biogeosciences, 6, 835–848, https://doi.org/10.5194/bg-6-835-2009, 2009.
Gutiérrez, D., Bouloubassi, I., Sifeddine, A., Purca, S., Goubanova, K.,
Graco, M., Field, D., Méjanelle, L., Velazco, F., Lorre, A., Salvatteci,
R., Quispe, D., Vargas, G., Dewitte, B., and Ortlieb, L.: Coastal cooling and
increased productivity in the main upwelling zone off Peru since the
mid-twentieth century, Geophys. Res. Lett., 38, 7, https://doi.org/10.1029/2010GL046324,
2011.
Guzman, E., Ramos, C., and Dastgheib, A.: Influence of the El Niño
Phenomenon on Shoreline Evolution. Case Study: Callao Bay, Perú, J. Mar. Sci. Eng., 8, 90, https://doi.org/10.3390/jmse8020090, 2020.
Holz, C., Stuut, J. B. W., Henrich, R., and Meggers, H.: Variability in
terrigenous sedimentation processes off northwest Africa and its relation to
climate changes: Inferences from grain-size distributions of a Holocene
marine sediment record, Sediment. Geol., 202, 499–508,
https://doi.org/10.1016/j.sedgeo.2007.03.015, 2007.
Humphries, M. S., Benitez-Nelson, C. R., Bizimis, M., and Finch, J. M.: An
aeolian sediment reconstruction of regional wind intensity and links to
larger scale climate variability since the last deglaciation from the east
coast of southern Africa, Global Planet. Change, 156, 59–67,
https://doi.org/10.1016/j.gloplacha.2017.08.002, 2017.
Jansen, J., Van der Gaast, S., Koster, B., and Vaars, A.: CORTEX, a shipboard
XRF-scanner for element analyses in split sediment cores, Mar. Geol.,
151, 143–153, https://doi.org/10.1016/s0025-3227(98)00074-7, 1998.
Jarvis, K. E., Gray, A. L., and Houk, R. S.: Handbook of Inductively Coupled Plasma Mass Spectrometry, 1st edn., Springer, Netherlands, ISBN: 978-94-010-5355-6, 1992.
Jiang, H., Zhong, N., Li, Y., Ma, X., Xu, H., Shi, W., Zhang, S., and Nie,
G.: A continuous 13.3-ka record of seismogenic dust events in lacustrine
sediments in the eastern Tibetan Plateau, Sci. Rep., 7, 1–10,
https://doi.org/10.1038/s41598-017-16027-8, 2017.
Just, J., Heslop, D., von Dobeneck, T., Bickert, T., Dekkers, M. J.,
Frederichs, T., Meyer, I., and Zabel, M.: Multiproxy characterization and
budgeting of terrigenous end-members at the NW African continental margin,
Geochem. Geophys. Geosyst., 13, 9, https://doi.org/10.1029/2012GC004148, 2012.
Koutavas, A. and Joanides, S.: El Niño-Southern Oscillation extrema in
the Holocene and Last Glacial Maximum, Paleoceanography, 27, 4,
https://doi.org/10.1029/2012pa002378, 2012.
Lagos, P., Silva, Y., Nickl, E., and Mosquera, K.: El Niño – related precipitation variability in Perú, Adv. Geosci., 14, 231–237, https://doi.org/10.5194/adgeo-14-231-2008, 2008.
Mamalakis, A., Randerson, J., Yu, J., Pritchard, M., Magnusdottir, G.,
Smyth, P., Levine, P., Yu, S., and Foufoula-Georgiou, E.: Zonally contrasting
shifts of the tropical rain belt in response to climate change, Nat.
Clim. Change, 11, 143–151, https://doi.org/10.1038/s41558-020-00963-x, 2021.
Martin, L. C. P., Blard, P. H., Lavé, J., Condom, T., Prémaillon,
M., Jomelli, V., Brunstein, D., Lupker, M., Charreau, J., Mariotti, V.,
Tibari, B., Team, A., and Davy, E.: Lake Tauca highstand (Heinrich Stadial
1a) driven by a southward shift of the Bolivian High, Sci. Adv., 4, 8,
https://doi.org/10.1126/sciadv.aar2514, 2018.
McGee, D., Donohoe, A., Marshall, J., and Ferreira, D.: Changes in ITCZ
location and cross-equatorial heat transport at the Last Glacial Maximum,
Heinrich Stadial 1, and the mid-Holocene, Earth Planet. Sci. Lett., 390,
69–79, https://doi.org/10.1016/j.epsl.2013.12.043, 2014.
McManus, J. F., Francois, R., Gherardl, J. M., Kelgwin, L., and Drown-Leger,
S.: Collapse and rapid resumption of Atlantic meridional circulation linked
to deglacial climate changes, Nature, 428, 834–837,
https://doi.org/10.1038/nature02494, 2004.
Mollier-Vogel, E., Leduc, G., Böschen, T., Martinez, P., and Schneider,
R. R.: Rainfall response to orbital and millennial forcing in northern Peru
over the last 18 ka, Quat. Sci. Rev., 76, 29–38,
https://doi.org/10.1016/j.quascirev.2013.06.021, 2013.
Montade, V., Kageyama, M., Combourieu-Nebout, N., Ledru, M. P., Michel, E.,
Siani, G., and Kissel, C.: Teleconnection between the intertropical
convergence zone and southern westerly winds throughout the last
deglaciation, Geology, 43, 735–738, https://doi.org/10.1130/G36745.1, 2015.
Morera, S., Condom, T., Crave, A., Steer, P., and Guyot, J.: The impact of
extreme El Niño events on modern sediment transport along the western
Peruvian Andes (1968–2012), Sci. Rep., 7, 1–14,
https://doi.org/10.1038/s41598-017-12220-x, 2017.
Mulitza, S., Chiessi, C. M., Schefuß, E., Lippold, J., Wichmann, D.,
Antz, B., Mackensen, A., Paul, A., Prange, M., Rehfeld, K., Werner, M.,
Bickert, T., Frank, N., Kuhnert, H., Lynch-Stieglitz, J., Portilho-Ramos, R.
C., Sawakuchi, A. O., Schulz, M., Schwenk, T., Tiedemann, R., Vahlenkamp, M.,
and Zhang, Y.: Synchronous and proportional deglacial changes in Atlantic
meridional overturning and northeast Brazilian precipitation,
Paleoceanography, 32, 622–633, https://doi.org/10.1002/2017PA003084, 2017.
Ng, H. C., Robinson, L. F., McManus, J. F., Mohamed, K. J., Jacobel, A. W.,
Ivanovic, R. F., Gregoire, L. J., and Chen, T.: Coherent deglacial changes in
western Atlantic Ocean circulation, Nat. Commun., 9, 1–10,
https://doi.org/10.1038/s41467-018-05312-3, 2018.
Novello, V. F., Cruz, F. W., Vuille, M., Stríkis, N. M., Edwards, R.
L., Cheng, H., Emerick, S., de Paula, M. S., Li, X., Barreto, E. de S.,
Karmann, I., and Santos, R. V.: A high-resolution history of the South
American Monsoon from Last Glacial Maximum to the Holocene, Sci. Rep.,
7, 44267, https://doi.org/10.1038/srep44267, 2017.
Ortlieb, L., Vargas, G., and Saliège, J. F.: Marine radiocarbon reservoir
effect along the northern Chile-southern Peru coast (14–24∘ S) throughout
the Holocene, Quat. Res., 75, 91–103, https://doi.org/10.1016/j.yqres.2010.07.018,
2011.
Paterson, G. A. and Heslop, D.: New methods for unmixing sediment grain size
data, Geochem. Geophys. Geosyst., 16, 4494–4506,
https://doi.org/10.1002/2015GC006070, 2015.
Peterson, L., Haug, G., Hughen, K., and Röhl, U.: Rapid
Changes in the Hydrologic Cycle of the Tropical Atlantic During the Last
Glacial, Science, 290, 1947–1951, https://doi.org/10.1126/science.290.5498.1947,
2000.
Pettijohn, F.: Persistence of Heavy Minerals and Geologic Age, J. Geol., 49, 610–625, https://doi.org/10.1086/624992, 1941.
Pichevin, L., Cremer, M., Giraudeau, J., and Bertrand, P.: A 190 ky record of
lithogenic grain-size on the Namibian slope: Forging a tight link between
past wind-strength and coastal upwelling dynamics, Mar. Geol., 218,
81–96, https://doi.org/10.1016/j.margeo.2005.04.003, 2005.
Rahmstorf, S., Box, J., Feulner, G., Mann, M., Robinson, A., Rutherford, S.,
and Schaffernicht, E.: Exceptional twentieth-century slowdown in Atlantic
Ocean overturning circulation, Nat. Clim. Change, 5, 475–480,
https://doi.org/10.1038/nclimate2554, 2015.
Rahn, D. and Garreaud, R.: A synoptic climatology of the near-surface wind
along the west coast of South America, Int. J. Climatol.,
34, 780–792, https://doi.org/10.1002/joc.3724, 2013.
Rau, P., Bourrel, L., Labat, D., Melo, P., Dewitte, B., Frappart, F.,
Lavado, W., and Felipe, O.: Regionalization of rainfall over the Peruvian
Pacific slope and coast, Int. J. Climatol., 37,
143–158, https://doi.org/10.1002/joc.4693, 2016.
Rein, B., Lückge, A., and Sirocko, F.: A major Holocene ENSO anomaly
during the Medieval period, Geophys. Res. Lett., 31, 7,
https://doi.org/10.1029/2004gl020161, 2004.
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., and Dullo, W.
C.: El Niño variability off Peru during the last 20 000 years,
Paleoceanography, 20, 4, https://doi.org/10.1029/2004PA001099, 2005.
Reinhardt, L., Kudrass, H. R., Lückge, A., Wiedicke, M., Wunderlich, J.,
and Wendt, G.: High-resolution sediment echosounding off Peru: Late
Quaternary depositional sequences and sedimentary structures of a
current-dominated shelf, Mar. Geophys. Res., 23, 335–351, 2002.
Salvatteci, R., Gutiérrez, D., Field, D., Sifeddine, A., Ortlieb, L., Bouloubassi, I., Boussafir, M., Boucher, H., and Cetin, F.: The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia, Clim. Past, 10, 715–731, https://doi.org/10.5194/cp-10-715-2014, 2014a.
Salvatteci, R., Field, D., Sifeddine, A., Ortlieb, L., Ferreira, V.,
Baumgartner, T., Caquineau, S., Velazco, F., Reyss, J., Sanchez-Cabeza, J.,
and Gutierrez, D.: Cross-stratigraphies from a seismically active mud lens
off Peru indicate horizontal extensions of laminae, missing sequences, and a
need for multiple cores for high resolution records, Mar. Geol., 357,
72–89, https://doi.org/10.1016/j.margeo.2014.07.008, 2014b.
Salvatteci, R., Gutierrez, D., Sifeddine, A., Ortlieb, L., Druffel, E.,
Boussafir, M., and Schneider, R.: Centennial to millennial-scale changes in
oxygenation and productivity in the Eastern Tropical South Pacific during
the last 25 000 years, Quat. Sci. Rev., 131, 102–117,
https://doi.org/10.1016/j.quascirev.2015.10.044, 2016.
Salvatteci, R., Schneider, R. R., Blanz, T., and Mollier-Vogel, E.: Deglacial
to Holocene Ocean Temperatures in the Humboldt Current System as Indicated
by Alkenone Paleothermometry, Geophys. Res. Lett., 46, 281–292,
https://doi.org/10.1029/2018GL080634, 2019.
Saukel, C., Lamy, F., Stuut, J. B. W., Tiedemann, R., and Vogt, C.:
Distribution and provenance of wind-blown SE Pacific surface sediments, Mar.
Geol., 280, 130–142, https://doi.org/10.1016/j.margeo.2010.12.006, 2011.
Scheidegger, K. F. and Krissek, L. A.: Dispersal and deposition of eolian
and fluvial sediments off Peru and northern Chile., Geol. Soc. Am. Bull.,
93, 150–162, https://doi.org/10.1130/0016-7606(1982)93<150:DADOEA>2.0.CO;2, 1982.
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation,
Nature, 484, 49–54, https://doi.org/10.1038/nature10915, 2012.
Sifeddine, A., Gutierrez, D., Ortlieb, L., Boucher, H., Velazco, F., Field,
D., Vargas, G., Boussafir, M., Salvatteci, R., Ferreira, V., García,
M., Valdés, J., Caquineau, S., Mandeng Yogo, M., Cetin, F., Solis, J.,
Soler, P., and Baumgartner, T.: Laminated sediments from the central Peruvian
continental slope: A 500 year record of upwelling system productivity,
terrestrial runoff and redox conditions, Prog. Oceanogr., 79,
190–197, https://doi.org/10.1016/j.pocean.2008.10.024, 2008.
Stríkis, N., Cruz, F., Barreto, E., Naughton, F., Vuille, M., Cheng,
H., Voelker, A., Zhang, H., Karmann, I., Edwards, R., Auler, A., Santos, R.,
and Sales, H.: South American monsoon response to iceberg discharge in the
North Atlantic, P. Natl. Acad. Sci. USA, 115,
3788–3793, https://doi.org/10.1073/pnas.1717784115, 2018.
Stríkis, N. M., Chiessi, C. M., Cruz, F. W., Vuille, M., Cheng, H., De
Souza Barreto, E. A., Mollenhauer, G., Kasten, S., Karmann, I., Edwards, R.
L., Bernal, J. P., and Sales, H. D. R.: Timing and structure of Mega-SACZ
events during Heinrich Stadial 1, Geophys. Res. Lett., 42, 5477–5484,
https://doi.org/10.1002/2015GL064048, 2015.
Strub, P. T., Mesias, J. M., Montecino, V., Rutllant, J., and Salinas, S.:
Coastal ocean circulation off western South America, in: The Sea, Vol. 11,
edited by: Robinson, A. and Brink, K., John Wiley & Sons, New York,
USA, 273–313, ISBN: 0-471-1154-2, 1998.
Stuut, J. B. W. and Lamy, F.: Climate variability at the southern boundaries
of the Namib (southwestern Africa) and Atacama (northern Chile) coastal
deserts during the last 120 000 yr, Quat. Res., 62, 301–309,
https://doi.org/10.1016/j.yqres.2004.08.001, 2004.
Stuut, J. B. W., Prins, M. A., Schneider, R. R., Weltje, G. J., Fred Jansen,
J. H., and Postma, G.: A 300-kyr record of aridity and wind strength in
southwestern Africa: Inferences from grain-size distributions of sediments
on Walvis Ridge, SE Atlantic, Mar. Geol., 180, 221–233,
https://doi.org/10.1016/S0025-3227(01)00215-8, 2002.
Stuut, J. B. W., Kasten, S., Lamy, F., and Hebbeln, D.: Sources and modes of
terrigenous sediment input to the Chilean continental slope, Quat. Int.,
161, 67–76, https://doi.org/10.1016/j.quaint.2006.10.041, 2007.
Stuut, J. B. W., Temmesfeld, F. and De Deckker, P.: A 550 ka record of
aeolian activity near north west cape, australia: Inferences from grain-size
distributions and bulk chemistry of SE indian ocean deep-sea sediments,
Quat. Sci. Rev., 83, 83–94, https://doi.org/10.1016/j.quascirev.2013.11.003, 2014.
Sublette Mosblech, N., Chepstow-Lusty, A., Valencia, B., and Bush, M.:
Anthropogenic control of late-Holocene landscapes in the Cuzco region, Peru,
The Holocene, 22, 1361–1372, https://doi.org/10.1177/0959683612449760, 2012.
Suess, E., Kulm, L. D., and Killingley, J. S.: Coastal upwelling and a
history of organic-rich mudstone deposition off Peru, Geol. Soc. Spec. Publ., 26, 181–197,
https://doi.org/10.1144/GSL.SP.1987.026.01.11, 1987.
Vuille, M., Burns, S. J., Taylor, B. L., Cruz, F. W., Bird, B. W., Abbott, M. B., Kanner, L. C., Cheng, H., and Novello, V. F.: A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia, Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012, 2012.
Weltje, G. J. and Prins, M. A.: Muddled or mixed? Inferring palaeoclimate
from size distributions of deep-sea clastics, Sediment. Geol.,
162, 39–62, https://doi.org/10.1016/s0037-0738(03)00235-5, 2003.
Weltje, G. J. and Prins, M. A.: Genetically meaningful decomposition of
grain-size distributions, Sediment. Geol., 202, 409–424,
https://doi.org/10.1016/j.sedgeo.2007.03.007, 2007.
Wu, L., Wilson, D., Wang, R., Yin, X., Chen, Z., Xiao, W., and Huang, M.:
Evaluating Ratio From XRF Scanning as an Indicator of Grain-Size
Variations of Glaciomarine Sediments in the Southern Ocean, Geochem.
Geophy. Geosy., 21, 11, https://doi.org/10.1029/2020gc009350, 2020.
Yarincik, K., Murray, R., and Peterson, L.: Climatically sensitive
eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the
past 578 000 years: Results from and , Paleoceanography, 15,
210–228, https://doi.org/10.1029/1999pa900048, 2000.
Zhang, Y., Chiessi, C. M., Mulitza, S., Zabel, M., Trindade, R. I. F.,
Helena, M., Hollanda, B. M., Dantas, E. L., Govin, A., Tiedemann, R., and
Wefer, G.: Origin of increased terrigenous supply to the NE South American
continental margin during Heinrich Stadial 1 and the Younger Dryas, Earth
Planet. Sci. Lett., 432, 493–500, https://doi.org/10.1016/j.epsl.2015.09.054, 2015.
Zhou, W., Leung, L., Lu, J., Yang, D., and Song, F.: Contrasting Recent and
Future ITCZ Changes From Distinct Tropical Warming Patterns, Geophys. Res. Lett., 47, 22, https://doi.org/10.1029/2020gl089846, 2020.
Short summary
In the present work we reconstruct changes in river discharge and wind in Peru during the last deglaciation to understand the mechanisms that modulate changes in precipitation and winds during a period of global warming. We found that changes in river discharge and wind intensity in Peru were sensitive to high-latitude forcing (changes in the intensity of the Atlantic Meridional Overturning Circulation) and Walker circulation variations on a millennial timescale, respectively.
In the present work we reconstruct changes in river discharge and wind in Peru during the last...