Articles | Volume 18, issue 9
https://doi.org/10.5194/cp-18-1963-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1963-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Clumped-isotope-derived climate trends leading up to the end-Cretaceous mass extinction in northwestern Europe
Heidi E. O'Hora
Department of Earth and Environmental Sciences, University of
Michigan, Ann Arbor, MI 48104, USA
Department of Earth and Environmental Sciences, University of
Michigan, Ann Arbor, MI 48104, USA
Johan Vellekoop
Analytical, Environmental, and Geo-Chemistry, Vrije Universiteit
Brussel, 1050 Brussels, Belgium
Department of Earth and Environmental Sciences, KU Leuven, 3000
Leuven, Belgium
Matthew M. Jones
Department of Earth and Environmental Sciences, University of
Michigan, Ann Arbor, MI 48104, USA
Department of Paleobiology, MRC-121, National Museum of Natural History, Smithsonian Institute, Washington, DC 20013, USA
Serena R. Scholz
Department of Earth and Environmental Sciences, University of
Michigan, Ann Arbor, MI 48104, USA
Dept of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
Related authors
No articles found.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Pre-Cenozoic
Clumped isotope evidence for Early Jurassic extreme polar warmth and high climate sensitivity
Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation
Climate variability and ocean fertility during the Aptian Stage
Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean
Thomas Letulle, Guillaume Suan, Mathieu Daëron, Mikhail Rogov, Christophe Lécuyer, Arnauld Vinçon-Laugier, Bruno Reynard, Gilles Montagnac, Oleg Lutikov, and Jan Schlögl
Clim. Past, 18, 435–448, https://doi.org/10.5194/cp-18-435-2022, https://doi.org/10.5194/cp-18-435-2022, 2022
Short summary
Short summary
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine mollusc shells from polar and mid-latitude seas. These results indicate that polar shells grew at temperatures of 8–18°C, while mid-latitude shells grew at temperatures of 24–28°C. These results, together with previously published data, raise concerns about the ability of climate models to predict accurate polar temperatures under reasonably high atmospheric CO2 levels.
Holly L. Taylor, Isaac J. Kell Duivestein, Juraj Farkas, Martin Dietzel, and Anthony Dosseto
Clim. Past, 15, 635–646, https://doi.org/10.5194/cp-15-635-2019, https://doi.org/10.5194/cp-15-635-2019, 2019
Short summary
Short summary
Approximately 600 million years ago, major environmental changes set the course for the emergence of animal life. Lithium (Li) isotopes in calcium carbonates can be used as a proxy to understand changes in the palaeo-environment. We conducted experiments that allow us to use Li isotopes in dolostones to extend our understanding of palaeo-environmental changes deeper into the geological record, where other calcium carbonates archives are not present.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
H. C. Jenkyns, L. Schouten-Huibers, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 8, 215–226, https://doi.org/10.5194/cp-8-215-2012, https://doi.org/10.5194/cp-8-215-2012, 2012
Cited articles
Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita,
J., Mackey, T. J., John, C. M., Kluge, T., Petschnig, P., Jost, A. B., Huntington, K. W., Bernasconi, S. M., and Bergmann, K. D.: A unified clumped isotope thermometer calibration (0.5–1000 ∘C)
using carbonate-based standardization, Geophys. Res. Lett., 48, e2020GL092069,
https://doi.org/10.1029/2020GL092069, 2021.
Barnet, J. S. K., Littler, K., Westerhold, T., Kroon, D., Leng, M. J.,
Bailey, I., Röhl, U., and Zachos, J. C.: A High-fidelity benthic stable
isotope record of Late Cretaceous–Early Eocene climate change and
carbon-cycling, Paleoceanogr. Paleoclimatol., 34, 672–691,
https://doi.org/10.1029/2019PA003556, 2019.
Bernasconi, S. M., Mueller, I., Bergmann, K. D., Breitenbach, S. F. M.,
Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A.N., Millan, I., and Ziegler, M.,: Reducing uncertainties in carbonate
clumped isotope analysis through consistent carbonate-based standardization,
Geochem. Geophy. Geosy., 19, 2895–2914,
https://doi.org/10.1029/2017GC007385, 2018.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler,
A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E., and Blamart, D.: InterCarb: A community effort to improve
interlaboratory standardization of the carbonate clumped isotope thermometer
using carbonate standards, Geochem. Geophy. Geosy., 22, e2020GC009588,
https://doi.org/10.1029/2020GC009588, 2021.
Bless, M. J. M.: Possible causes for the change in ostracod assemblages at
the Maastrichtian-Palaeocene boundary in southern Limburg, The Netherlands,
Meded. Werkgr. Tert. Kwart. Geol., 25, 197–211, 1988.
Bowman, V. C., Riding, J. B., Francis, J. E., Crame, J. A., and Hannah, M.
J.: The taxonomy and palaeobiogeography of small chorate dinoflagellate
cysts from the Late Cretaceous to Quaternary of Antarctica, Palynology, 37,
151–169, https://doi.org/10.1080/01916122.2012.750898, 2013.
Brand, U. and Morrison, J. O.: Biogeochemistry of fossil marine
invertebrates, Geosci. Can., 14, 85–107, 1987.
Brand, W. A., Assonov, S. S., and Coplen, T. B.: Correction for the 17O
interference in d13C measurements when analyzing CO2 with stable isotope
mass spectrometry (IUPAC Technical Report), Pure Appl. Chem.,
82, 1719–1733, 2010.
Brinkhuis, H. and Schiøler, P.: Palynology of the Geulhemmerberg
Cretaceous/Tertiary boundary section (Limburg, SE Netherlands), Geol.
Mijnbouw, 75, 193–213, 1996.
Bush, A. B. G. and Philander, S. G. H.: The Late Cretaceous: Simulation with
a coupled atmosphere-ocean general circulation model, Paleoceanography, 12,
495–516, https://doi.org/10.1029/97PA00721, 1997.
Caldeira, K. and Rampino, M. R.: Carbon dioxide emissions from Deccan
volcanism and a K/T boundary greenhouse effect, Geophys. Res. Lett., 17,
1299–1302, https://doi.org/10.1029/GL017i009p01299, 1990.
Came, R. E., Brand, U., and Affek, H. P.: Clumped isotope signatures in
modern brachiopod carbonate, Chem. Geol., 377, 20–30,
https://doi.org/10.1016/j.chemgeo.2014.04.004, 2014.
Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A., and Jones, M.
M.: Direct high-precision U–Pb geochronology of the end-Cretaceous
extinction and calibration of Paleocene astronomical timescales, Earth Planet. Sc. Lett., 452, 272–280,
https://doi.org/10.1016/j.epsl.2016.07.041, 2016.
de Winter, N. J., Vellekoop, J., Vorsselmans, R., Golreihan, A., Soete, J., Petersen, S. V., Meyer, K. W., Casadio, S., Speijer, R. P., and Claeys, P.: An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation, Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, 2018.
Defliese, W. F., Hren, M. T., and Lohmann, K. C.: Compositional and
temperature effects of phosphoric acid fractionation on Δ47
analysis and implications for discrepant calibrations, Chem. Geol., 396,
51–60, https://doi.org/10.1016/j.chemgeo.2014.12.018, 2015.
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M.:
Defining an absolute reference frame for `clumped' isotope studies of
CO2, Geochim. Cosmochim. Ac., 75, 7117–7131,
https://doi.org/10.1016/j.gca.2011.09.025, 2011.
Dennis, K. J., Cochran, J. K., Landman, N. H., and Schrag, D. P.: The
climate of the Late Cretaceous: New insights from the application of the
carbonate clumped isotope thermometer to Western Interior Seaway
macrofossil, Earth Planet. Sc. Lett., 362, 51–65,
https://doi.org/10.1016/j.epsl.2012.11.036, 2013.
Dessert, C., Dupré, B., François, L. M., Schott, J., Gaillardet, J.,
Chakrapani, G., and Bajpai, S.: Erosion of Deccan Traps determined by river
geochemistry: impact on the global climate and the 87Sr Sr ratio
of seawater, Earth Planet. Sc. Lett., 188, 459–474,
https://doi.org/10.1016/S0012-821X(01)00317-X, 2001.
Dortangs, R. W., Schulp, A. S., Mulder, E. W., Jagt, J. W., Peeters, H. H.,
and De Graaf, D. T.: A large new mosasaur from the Upper Cretaceous of The
Netherlands, Neth. J. Geosci., 81, 1–8,
https://doi.org/10.1017/S0016774600020515, 2002.
Dusar, M. and Lagrou, D.: Cretaceous flooding of the Brabant Massif and the
lithostratigraphic characteristics of its chalk cover in northern Belgium,
Geol. Belg., 10, 27–38, 2007.
Eagle, R. A., Eiler, J. M., Tripati, A. K., Ries, J. B., Freitas, P. S., Hiebenthal, C., Wanamaker Jr., A. D., Taviani, M., Elliot, M., Marenssi, S., Nakamura, K., Ramirez, P., and Roy, K.: The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks, Biogeosciences, 10, 4591–4606, https://doi.org/10.5194/bg-10-4591-2013, 2013.
Eide, M., Olsen, A., Ninnemann, U. S., and Johannessen, T.: A global ocean
climatology of preindustrial and modern ocean δ13C, Global
Biogeochem. Cy., 31, 515–534, https://doi.org/10.1002/2016GB005472, 2017.
Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope
thermometry, Quaternary Sci. Rev., 30, 3575–3588,
https://doi.org/10.1016/j.quascirev.2011.09.001, 2011.
Engelke, J., Linnert, C., Mutterlose, J., and Wilmsen, M.: Early
Maastrichtian benthos of the chalk at Kronsmoor, northern Germany:
implications for Late Cretaceous environmental change, Palaeobio.
Palaeoenv., 97, 703–722, https://doi.org/10.1007/s12549-017-0283-2, 2017.
Felder, W. M.: Lithostratigrafie van het Boven-Krijt en het Dano- Montien in Zuid-Limburg en het aangrenzende gebied, in: Toelichting bij geologische overzichtskaarten van Nederland, edited by: Zafwijn, W. H. and van Staalduinen, C. J., 63–72, Haarlem (Rijks Geologische Dienst), 1975.
Felder, W. M. and Bosch, P. W.: Geologie van de St. Pietersberg bij Maastricht,
Grondboor & Hamer, 52, 53–63, 1998.
Fendley, I. M., Mittal, T., Sprain, C. J., Marvin-DiPasquale, M., Tobin, T.
S., and Renne, P. R.: Constraints on the volume and rate of Deccan Traps
flood basalt eruptions using a combination of high-resolution terrestrial
mercury records and geochemical box models, Earth Planet. Sc. Lett., 524, 115721,
https://doi.org/10.1016/j.epsl.2019.115721, 2019.
Font, E., Adatte, T., Sial, A. N., de Lacerda, L. D., Keller, G., and
Punekar, J.: Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass
extinction, Geology, 44, 171–174, https://doi.org/10.1130/G37451.1, 2016.
Gale, A. S. and Christensen, W. K.: Occurrence of the belemnite Actinocamax
plenus in the in the Cenomanian of SE France and its significance, B. Geol. Soc. Denmark, 43, 68–77, 1996.
Gao, Y., Ibarra, D. E., Rugenstein, J. K. C., Chen, J., Kukla, T., Methner,
K., Gao, Y., Huang, H., Lin, Z., and Zhang, L.: Terrestrial climate in
mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene:
A multiproxy record from the Songliao Basin in northeastern China,
Earth-Sci. Rev., 216, 103572, https://doi.org/10.1016/j.earscirev.2021.103572, 2021.
Golovneva, L. B.: The Maastrichtian (Late Cretaceous) climate in the
northern hemisphere, Geol. Soc. London Spec. Publ., 181, 43–54,
https://doi.org/10.1144/GSL.SP.2000.181.01.05, 2000.
Haq, B. U.: Cretaceous eustasy revisited, Global Planet. Change, 113,
44–58, https://doi.org/10.1016/j.gloplacha.2013.12.007, 2014.
Hart, M. B., FitzPatrick, M. E., and Smart, C. W.: The Cretaceous/Paleogene
boundary: Foraminifera, sea grasses, sea level change and sequence
stratigraphy, Palaeogeogr. Palaeocl., 441, 420–429,
https://doi.org/10.1016/j.palaeo.2015.06.046, 2016.
Henehan, M. J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt,
D. N., Rae, J. W., Witts, J. D., Landman, N. H., Greene, S. E., and Huber,
B. T.: Rapid ocean acidification and protracted Earth system recovery
followed the end-Cretaceous Chicxulub impact, P. Natl. Acad. Sci. USA, 116,
22500–22504, https://doi.org/10.1073/pnas.1905989116, 2019.
Henkes, G. A., Passey, B. H., Wanamaker Jr., A. D., Grossman, E. L., Ambrose
Jr., W. G., and Carroll, M. L.: Carbonate clumped isotope compositions of
modern marine mollusk and brachiopod shells, Geochim. Cosmochim. Ac., 106,
307–325, https://doi.org/10.1016/j.gca.2012.12.020, 2013.
Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J.,
Pérez-Huerta, A., and Yancey, T. E.: Temperature limits for preservation
of primary calcite clumped isotope paleotemperatures, Geochim. Cosmochim.
Ac., 139, 362–382, https://doi.org/10.1016/j.gca.2014.04.040, 2014.
Herngreen, G. F. W., Schuurman, H. A. H. M., Verbeek, J. W., Brinkhuis, H.,
Burnett, J. A., Felder, W. M., and Kedves, M.: Biostratigraphy of
Cretaceous/Tertiary boundary strata in the Curfs quarry, Netherlands
Institute of Applied Geoscience TNO, 61, 1–58, 1998.
Hoenisch, B.: Paleo-CO2 data archive (Version 1), Zenodo [data set],
https://doi.org/10.5281/zenodo.5777278, 2021.
Hull, P. M., Bornemann, A., Penman, D. E., Henehan, M. J., Norris, R. D.,
Wilson, P. A., Blum, P., Alegret, L., Batenburg, S. J., and Bown, P. R.: On
impact and volcanism across the Cretaceous-Paleogene boundary, Science, 367,
266–272, https://doi.org/10.1126/science.aay5055, 2020.
Huyghe, D., Daëron, M., de Rafelis, M., Blamart, D., Sébilo, M.,
Paulet, Y. M., and Lartaud, F.: Clumped isotopes in modern marine bivalves,
Geochim. Cosmochim, Ac., 316, 41–58, https://doi.org/10.1016/j.gca.2021.09.019, 2022.
Jagt, J. W., Donovan, S. K., Fraaije, R., Mulder, E. W., Nieuwenhuis, E., Stroucken, J., van Bakel, B., and van Knippenberg, P.: Remarkable preservation of selected latest Cretaceous macrofossils from the Maastrichtian type area (the Netherlands, Belgium), Foss. Rec., 4, 75–78, 2016.
Jagt, J. W. M. and Jagt-Yazykova, E. A.: Stratigraphy of the type
Maastrichtian – a synthesis, Scr. Geol., 8, 5–32, 2012.
Johansson, L., Zahirovic, S., and Müller, R. D.: The interplay between
the eruption and weathering of large igneous provinces and the deep-time
carbon cycle, Geophys. Res. Lett., 45, 5380–5389,
https://doi.org/10.1029/2017GL076691, 2018.
Keutgen, N.: A bioclast-based astronomical timescale for the Maastrichtian
in the type area (southeast Netherlands, northeast Belgium) and
stratigraphic implications: the legacy of PJ Felder, Neth. J. Geosci., 97,
229–260, https://doi.org/10.1017/njg.2018.15, 2018.
Kim, S. T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Ladant, J. B. and Donnadieu, Y.: Palaeogeographic regulation of glacial
events during the Cretaceous supergreenhouse, Nat. Commun., 7, 1–9,
https://doi.org/10.1038/ncomms12771, 2016.
Ladant, J.-B., Poulsen, C. J., Fluteau, F., Tabor, C. R., MacLeod, K. G., Martin, E. E., Haynes, S. J., and Rostami, M. A.: Paleogeographic controls on the evolution of Late Cretaceous ocean circulation, Clim. Past, 16, 973–1006, https://doi.org/10.5194/cp-16-973-2020, 2020.
Land, L. S.: Diagenesis of skeletal carbonates, J. Sediment Res., 37,
914–930, https://doi.org/10.1306/74D717D5-2B21-11D7-8648000102C1865D, 1967.
Leloux, J.: Numerical distribution of Santonian to Danian corals
(Scleractinia, Octocorallia) of southern Limburg, the Netherlands, Geol.
Mijnbouw, 78, 191–195, https://doi.org/10.1023/A:1003743301625, 1999.
Li, L. and Keller, G.: Abrupt deep-sea warming at the end of the Cretaceous,
Geology, 26, 995–998,
1998.
Liebau, A.: Paläobathymetrische und paläoklimatische
Veränderungen im Mikrofaunenbild der Maastrichter Tuffkreide, Neues
Jahrb. Geol. P. A., 157, 233–237, 1978.
Luijendijk, E., Van Balen, R. T., Ter Voorde, M., and Andriessen, P. A. M.:
Reconstructing the Late Cretaceous inversion of the Roer Valley Graben
(southern Netherlands) using a new model that integrates burial and
provenance history with fission track thermochronology, J. Geophys.
Res.-Sol. Ea., 116, p. 19, https://doi.org/10.1029/2010JB008071, 2011.
Maastricht Climate:
https://en.climate-data.org/europe/the-netherlands/limburg/maastricht-893/#temperature-graph,
last access: 14 June 2021.
Mackey, T. J., Jost, A. B., Creveling, J. R., and Bergmann, K. D.: A Decrease to
Low Carbonate Clumped Isotope temperatures in Cryogenian Strata, AGU
Advances, 1, e2019AV000159, https://doi.org/10.1029/2019AV000159, 2020.
Meckler, A. N., Ziegler, M., Millaìn, M. I., Breitenbach, S. F. M., and
Bernasconi, S. M.: Long-term performance of the Kiel carbonate device with a
new correction scheme for clumped isotope measurements, Rapid Commun. Mass
Sp., 28, 1705–1715, https://doi.org/10.1002/rcm.6949, 2014.
Meyer, K. W., Petersen, S. V., Lohmann, K. C., and Winkelstern, I. Z.:
Climate of the Late Cretaceous North American Gulf and Atlantic Coasts,
Cretaceous Res., 89, 160–173,
https://doi.org/10.1016/j.cretres.2018.03.017, 2018.
Meyer, K. W., Petersen, S. V., Lohmann, K. C., Blum, J. D., Washburn, S. J.,
Johnson, M. W., Gleason, J. D., Kurz, A. Y., and Winkelstern, I. Z.:
Biogenic carbonate mercury and marine temperature records reveal global
influence of Late Cretaceous Deccan Traps, Nat. Commun., 10, 1–8,
https://doi.org/10.1038/s41467-019-13366-0, 2019.
Miller, K. G., Wright, J. D., and Browning, J. V.: Visions of ice sheets in
a greenhouse world, Mar. Geol., 217, 215–231,
https://doi.org/10.1016/j.margeo.2005.02.007, 2005.
Molina, E., Alegret, L., Arenillas, I., Arz, J. A., Gallala, N., Hardenbol,
J., Salis, K. von, Steurbaut, E., Vandenberghe, N., and Zaghbib-Turki, D.:
The global boundary stratotype section and point for the base of the Danian
stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef,
Tunisia-original definition and revision, Episodes, 29, 263–273, 2006.
Möller, P. and Kubanek, F.: Role of magnesium in nucleation processes of
calcite, aragonite and dolomite, Neues Jb. Miner. Abh., 126, 199–220, 1976.
Nava, A. H., Black, B. A., Gibson, S. A., Bodnar, R. J., Renne, P. R., and
Vanderkluysen, L.: Reconciling early Deccan Traps CO2 outgassing and
pre-KPB global climate, P. Natl. Acad. Sci. USA, 118, e2007797118, ,
https://doi.org/10.1073/pnas.2007797118, 2021.
O'Hora, H. E., Petersen, S. V., Vellekoop, J., Jones, M. M., and Scholz, S. R.: Clumped isotope data from Maastrichtian-aged bivalves from the Maastrichtian type region, Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/112046, 2021.
Percival, L. M., Jenkyns, H. C., Mather, T. A., Dickson, A. J., Batenburg,
S. J., Ruhl, M., Hesselbo, S. P., Barclay, R., Jarvis, I., and Robinson, S.
A.: Does large igneous province volcanism always perturb the mercury cycle?
Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to
other Mesozoic events, Am. J. Sci., 318, 799–860,
https://doi.org/10.2475/08.2018.01, 2018.
Petersen, S. V., Dutton, A., and Lohmann, K. C.: End-Cretaceous extinction
in Antarctica linked to both Deccan volcanism and meteorite impact via
climate change, Nat. Commun., 7, 1–9, https://doi.org/10.1038/ncomms12079,
2016a.
Petersen, S. V., Tabor, C. R., Lohmann, K. C., Poulsen, C. J., Meyer, K. W.,
Carpenter, S. J., Erickson, J. M., Matsunaga, K. K., Smith, S. Y., and
Sheldon, N. D.: Temperature and salinity of the Late Cretaceous western
interior seaway, Geology, 44, 903–906, https://doi.org/10.1130/G38311.1,
2016b.
Petersen, S. V., Winkelstern, I. Z., Lohmann, K. C., and Meyer, K. W.: The
effects of Porapak™ trap temperature on δ18O, δ13C, and Δ47 values in preparing samples for clumped
isotope analysis, Rapid Commun. Mass Sp., 30, 199–208,
https://doi.org/10.1002/rcm.7438, 2016c.
Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington,
K. W., John, C. M., Kelson, J. R., Bernasconi, S. M., Colman, A. S., Kluge,
T., Olack, G. A., Schauer, A. J., Bajnai, D., Bonifacie, M., Breitenbach, S. F. M., Fiebig, J., Fernandez, A. B., Henkes, G. A., Hodell, D., Katz, A., Kele, S., Lohmann, K.C., Passey, B. H., Peral, M. Y., Petrizzo, D. A., Rosenheim, B. E., Tripati, A., Venturelli, R., Young, E. D., and Winkelstern, I. Z.: Effects of improved 17O correction on interlaboratory
agreement in clumped isotope calibrations, estimates of mineral-specific
offsets, and temperature dependence of acid digestion fractionation,
Geochem. Geophy. Geosy., 20, 3495–3519,
https://doi.org/10.1029/2018GC008127, 2019.
Pucéat, E., Lécuyer, C., Donnadieu, Y., Naveau, P., Cappetta, H.,
Ramstein, G., Huber, B. T., and Kriwet, J.: Fish tooth δ18O
revising Late Cretaceous meridional upper ocean water temperature gradients,
Geology, 35, 107–110, https://doi.org/10.1130/G23103A.1, 2007.
Ravizza, G. and Peucker-Ehrenbrink, B.: Chemostratigraphic evidence of
Deccan volcanism from the marine osmium isotope record, Science, 302,
1392–1395, https://doi.org/10.1126/science.1089209, 2003.
Remin, Z., Gruszczyński, M., and Marshall, J. D.: Changes in
paleo-circulation and the distribution of ammonite faunas at the
Coniacian–Santonian transition in central Poland and western Ukraine, Acta
Geol. Pol., 66, 107–124, https://doi.org/10.1515/agp-2016-0006, 2016.
Roep, T. B. and Smit, J.: Sedimentological aspects of the K/T boundary at
Geulhemmerberg, Zuid Limburg, the Netherlands, Geol. Mijnbouw, 75, 119–131,
1996.
Schaller, M. F., Wright, J. D., Kent, D. V., and Olsen, P. E.: Rapid
emplacement of the Central Atlantic Magmatic Province as a net sink for
CO2, Earth Planet. Sc. Lett., 323, 27–39,
https://doi.org/10.1016/j.epsl.2011.12.028, 2012.
Schiøler, P., Brinkhuis, H., Roncaglia, L., and Wilson, G. J.:
Dinoflagellate biostratigraphy and sequence stratigraphy of the type
Maastrichtian (Upper Cretaceous), ENCI Quarry, The Netherlands, Mar.
Micropaleontol., 31, 65–95, https://doi.org/10.1016/S0377-8398(96)00058-8,
1997.
Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G.,
Adatte, T., and Khadri, S. F.: U–Pb constraints on pulsed eruption of the
Deccan Traps across the end-Cretaceous mass extinction, Science, 363,
862–866, https://doi.org/10.1126/science.aau2422, 2019.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P.
R., Bralower, T. J., Christeson, G. L., Claeys, P., and Cockell, C. S.: The
Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene
boundary, Science, 327, 1214–1218, https://doi.org/10.1126/science.1177265,
2010.
Scotese, C. R.: An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come
In and the Seas Go Out, Annu. Rev. Earth Pl. Sc., 49, 669–718,
https://doi.org/10.1146/annurev-earth-081320-064052, 2021.
Sial, A. N., Chen, J., Lacerda, L. D., Frei, R., Tewari, V. C., Pandit, M.
K., Gaucher, C., Ferreira, V. P., Cirilli, S., and Peralta, S.: Mercury
enrichment and Hg isotopes in Cretaceous–Paleogene boundary successions:
Links to volcanism and palaeoenvironmental impacts, Cretaceous Res., 66,
60–81, https://doi.org/10.1016/j.cretres.2016.05.006, 2016.
Smit, J. and Brinkhuis, H.: The Geulhemmerberg Cretaceous/Tertiary boundary
section (Maastrichtian type area, SE Netherlands); summary of results and a
scenario of events, Geol. Mijnbouw, 75, 283–293, 1996.
Smit, J. and Zachariasse, W.J.: Planktic foraminifera in the
Cretaceous/Tertiary boundary clays of the Geulhemmerberg
(Netherlands), Geol. Mijnbouw, 75, 187–191, 1996.
Sprain, C. J., Renne, P. R., Clemens, W. A., and Wilson, G. P.: Calibration
of chron C29r: New high-precision geochronologic and paleomagnetic
constraints from the Hell Creek region, Montana, Geol. Soc. Am. Bull., 130,
1615–1644, https://doi.org/10.1130/B31890.1, 2018.
Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., and
Mittal, T.: The eruptive tempo of Deccan volcanism in relation to the
Cretaceous-Paleogene boundary, Science, 363, 866–870,
https://doi.org/10.1126/science.aav1446, 2019.
Stott, L. D. and Kennett, J. P.: The paleoceanographic and paleoclimatic
signature of the Cretaceous/Paleogene boundary in the Antarctic: stable
isotopic results from ODP Leg 113, in: Proceedings of the Ocean Drilling
Program, Scientific Results, College Station, Texas, USA (Ocean Drilling Program), 113, 829–848, 1990.
Tabor, C. R., Poulsen, C. J., Lunt, D. J., Rosenbloom, N. A., Otto-Bliesner,
B. L., Markwick, P. J., Brady, E. C., Farnsworth, A., and Feng, R.: The
cause of Late Cretaceous cooling: A multimodel-proxy comparison, Geology,
44, 963–966, https://doi.org/10.1130/G38363.1, 2016.
Tagliavento, M., John, C. M., and Stemmerik, L.: Tropical temperature in the
Maastrichtian Danish Basin: Data from coccolith Δ47 and δ18O, Geology, 47, 1074–1078, https://doi.org/10.1130/G46671.1, 2019.
Tobin, T. S., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A.,
Mitchell, R. N., Diamond, M. R., Raub, T. D., and Kirschvink, J. L.:
Extinction patterns, δ18O trends, and magnetostratigraphy from
a southern high-latitude Cretaceous–Paleogene section: Links with Deccan
volcanism, Palaeogeogr. Palaeocl., 350, 180–188,
https://doi.org/10.1016/j.palaeo.2012.06.029, 2012.
Tobin, T. S., Wilson, G. P., Eiler, J. M., and Hartman, J. H.: Environmental
change across a terrestrial Cretaceous-Paleogene boundary section in eastern
Montana, USA, constrained by carbonate clumped isotope paleothermometry,
Geology, 42, 351–354, https://doi.org/10.1130/G35262.1, 2014.
Tobin, T. S., Bitz, C. M., and Archer, D.: Modeling climatic effects of
carbon dioxide emissions from Deccan Traps volcanic eruptions around the
Cretaceous–Paleogene boundary, Palaeogeogr. Palaeocl., 478, 139–148,
https://doi.org/10.1016/j.palaeo.2016.05.028, 2017.
Ullmann, C. V., Campbell, H. J., Frei, R., Hesselbo, S. P., Pogge von
Strandmann, P. A. E., and Korte, C.: Partial diagenetic overprint of Late
Jurassic belemnites from New Zealand: Implications for the preservation
potential of δ7Li values in calcite fossils, Geochim.
Cosmochim. Ac., 120, 80–96, https://doi.org/10.1016/j.gca.2013.06.029,
2013.
Vandenberghe, N., Craen, M. D., and Beerten, K.: Geological framework of the
Campine Basin, Studiecentrum voor Kernenergie Centre d’étude de l’énergie Nucléaire, 112, 2014.
van der Ham, R. W. J. M., van Konijnenburg-van Cittert, J. H. A., Jagt, J.
W. M., Indeherberge, L., Meuris, R., Deckers, M. J. M., Renkens, S., and
Laffineur, J.: Seagrass stems with attached roots from the type area of the
Maastrichtian Stage (NE Belgium, SE Netherlands): Morphology, anatomy, and
ecological aspects, Rev. Palaeobot. Palyno., 241, 49–69,
https://doi.org/10.1016/j.revpalbo.2017.02.001, 2017.
van Hinsbergen, D. J., de Groot, L. V., van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A
paleolatitude calculator for paleoclimate studies, PLOS One, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
Vellekoop, J., Sluijs, A., Smit, J., Schouten, S., Weijers, J. W. H.,
Sinninghe Damste, J. S., and Brinkhuis, H.: Rapid short-term cooling
following the Chicxulub impact at the Cretaceous-Paleogene boundary,
Proceedings of the National Academy of Sciences, P. Natl. Acad. Sci. USA,
111, 7537–7541, https://doi.org/10.1073/pnas.1319253111, 2014.
Vellekoop, J., Esmeray-Senlet, S., Miller, K. G., Browning, J. V., Sluijs,
A., Schootbrugge, B. van de, Damsté, J. S. S., and Brinkhuis, H.:
Evidence for Cretaceous-Paleogene boundary bolide “impact winter”
conditions from New Jersey, USA, Geology, 44, 619–622,
https://doi.org/10.1130/G37961.1, 2016.
Vellekoop, J., Sluijs, A., and Speijer, R. P.: An acme of the dinoflagellate cyst Palynodinium grallator, Gocht, 1970; a marker for the late Maastrichtian warming event at Northern mid-latitudes?, in: 6th International Geologica Belgica Congress: 12-14 September 2018 – Leuven, Belgium, edited by: Elsen, J., Hulsbosch, N., and Stassen, P., Geologica Belgica Conference Proceedings, 3, 298 p., https://doi.org/10.20341/gbcp.vol3, 2018.
Vellekoop, J., Woelders, L., Sluijs, A., Miller, K. G., and Speijer, R. P.: Phytoplankton community disruption caused by latest Cretaceous global warming, Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, 2019.
Vellekoop, J., van Tilborgh, K. H. V., Knippenberg, P. V., Jagt, J. W. M.,
Stassen, P., Goolaerts, S., and Speijer, R. P.: Type-Maastrichtian gastropod
faunas show rapid ecosystem recovery following the Cretaceous–Palaeogene
boundary catastrophe, Palaeontology, 63, 349–367,
https://doi.org/10.1111/pala.12462, 2020.
Vellekoop, J., Kaskes, P., Sinnesael, M., Dehais, T., Huygh, J., Jagt, J., Speijer, R. P., and Claeys, P.: A new age model and chemostratigraphic framework for the Maastrichtian type area (southeastern Netherlands, northeastern Belgium), Newsl. Stratigr., 55, 4, 479–501, https://doi.org/10.1127/nos/2022/0703, 2022
Voigt, S., Wilmsen, M., Mortimore, R. N., and Voigt, T.: Cenomanian
palaeotemperatures derived from the oxygen isotopic composition of
brachiopods and belemnites: evaluation of Cretaceous palaeotemperature
proxies, Int. J. Earth Sci., 92, 285–299,
https://doi.org/10.1007/s00531-003-0315-1, 2003.
Vonhof, H. B. and Smit, J.: Strontium-isotope stratigraphy of the type
Maastrichtian and the Cretaceous/Tertiary boundary in the Maastricht area
(SE Netherlands), Geol. Mijnbouw, 75, 275–282, 1996.
Watkins, D. K. and Self-Trail, J. M.: Calcareous nannofossil evidence for
the existence of the Gulf Stream during the late Maastrichtian,
Paleoceanography, 20, PA3006, https://doi.org/10.1029/2004PA001121, 2005.
Wilf, P., Johnson, K. R., and Huber, B. T.: Correlated terrestrial and
marine evidence for global climate changes before mass extinction at the
Cretaceous-Paleogene boundary, P. Natl. Acad. Sci. USA, 100, 599–604,
https://doi.org/10.1073/pnas.0234701100, 2003.
Winkelstern, I. Z. and Lohmann, K. C.: Shallow burial alteration of dolomite
and limestone clumped isotope geochemistry, Geology, 44, 467–470,
https://doi.org/10.1130/G37809.1, 2016.
Woelders, L., Vellekoop, J., Kroon, D., Smit, J., Casadío, S.,
Prámparo, M. B., Dinarès-Turell, J., Peterse, F., Sluijs, A.,
Lenaerts, J. T. M., and Speijer, R. P.: Latest Cretaceous climatic and
environmental change in the South Atlantic region, Paleoceanography, 32,
466–483, https://doi.org/10.1002/2016PA003007, 2017.
Woelders, L., Vellekoop, J., Weltje, G. J., de Nooijer, L., Reichart, G.-J.,
Peterse, F., Claeys, P., and Speijer, R. P.: Robust multi-proxy data
integration, using late Cretaceous paleotemperature records as a case study,
Earth Planet. Sc. Lett., 500, 215–224,
https://doi.org/10.1016/j.epsl.2018.08.010, 2018.
Zhang, J. Z., Petersen, S. V., Winkelstern, I. Z., and Lohmann, K. C.: Seasonally variable aquifer discharge and cooler climate in Bermuda during the Last Interglacial revealed by subannual clumped isotope analysis, Paleoceanogr. Paleoclimatol., 36, e2020PA004145, https://doi.org/10.1029/2020PA004145, 2021.
Zhang, L., Wang, C., Wignall, P. B., Kluge, T., Wan, X., Wang, Q., and Gao,
Y.: Deccan volcanism caused coupled pCO2 and terrestrial temperature rises,
and pre-impact extinctions in northern China, Geology, 46, 271–274,
https://doi.org/10.1130/G39992.1, 2018.
Zhao, M., Ma, M., He, M., Qiu, Y., and Liu, X.: Evaluation of the four potential
Cretaceous-Paleogene (K–Pg) boundaries in the Nanxiong Basin based on
evidences from volcanic activity and paleoclimatic evolution, Sci. China
Earth Sci., 64, 631–641, https://doi.org/10.1007/s11430-020-9736-0, 2021.
Short summary
At the end of the Cretaceous period, massive volcanism in India emitted enough carbon dioxide into the atmosphere to warm the climate globally above an already warm background state. We reconstruct late Cretaceous seawater temperatures much warmer than today using the chemistry of fossil oysters from the modern-day Netherlands and Belgium. Covariations in temperature and water chemistry indicate changing ocean circulation patterns, potentially related to fluctuating sea level in this region.
At the end of the Cretaceous period, massive volcanism in India emitted enough carbon dioxide...