Articles | Volume 18, issue 6
https://doi.org/10.5194/cp-18-1255-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1255-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Holocene wildfire regimes in western Siberia: interaction between peatland moisture conditions and the composition of plant functional types
Angelica Feurdean
CORRESPONDING AUTHOR
Department of Physical Geography, Goethe University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 25, 60325 Frankfurt am Main, Germany
STAR-UBB Institute, Babeş-Bolyai University, Kogălniceanu 1, 400084, Cluj-Napoca, Romania
Andrei-Cosmin Diaconu
Department of Geology, Babeş-Bolyai University, Kogălniceanu 1, 400084, Cluj-Napoca, Romania
Mirjam Pfeiffer
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 25, 60325 Frankfurt am Main, Germany
Mariusz Gałka
Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, Lodz, Poland
Simon M. Hutchinson
School of Science, Engineering and Environment, University of Salford, Greater Manchester M5 4WT, Salford, UK
Geanina Butiseaca
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 25, 60325 Frankfurt am Main, Germany
Natalia Gorina
Department of Ecology, Natural Use and Environmental Engineering, National Tomsk State University, Lenina Pr., 36, 634050, Tomsk, Russia
Spassimir Tonkov
Laboratory of Palynology, Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tsankov 8, 1164, Sofia, Bulgaria
Aidin Niamir
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 25, 60325 Frankfurt am Main, Germany
Ioan Tantau
Department of Geology, Babeş-Bolyai University, Kogălniceanu 1, 400084, Cluj-Napoca, Romania
Hui Zhang
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Chaoyang District, 100029, Beijing, China
Sergey Kirpotin
Department of Organization of Scientific Research, Tuvan State University, Lenina 36, 667000, Kyzyl, Russia
Bio-Clim-Land Center of Excellence, National Research, Tomsk State University, Lenina Pr., 36, 634050, Tomsk, Russia
Related authors
Angelica Feurdean, Randy Fulweber, Andrei-Cosmin Diaconu, Graeme T. Swindels, and Mariusz Gałka
EGUsphere, https://doi.org/10.5194/egusphere-2025-2318, https://doi.org/10.5194/egusphere-2025-2318, 2025
Short summary
Short summary
We found minimal fire activity in northern Arctic Alaska from ~1000 BCE to 500 CE and a marked increase at 1850 CE when it exceeded any levels observed in the preceding millennia. Our findings suggest that deepening of water tables and peatland drying associated with permafrost thaw have facilitated woody encroachment, especially by more flammable Ericaceous shrubs. This study highlights the importance of moisture–vegetation–fire feedback in shaping the tundra fire regime.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Angelica Feurdean, Randy Fulweber, Andrei-Cosmin Diaconu, Graeme T. Swindels, and Mariusz Gałka
EGUsphere, https://doi.org/10.5194/egusphere-2025-2318, https://doi.org/10.5194/egusphere-2025-2318, 2025
Short summary
Short summary
We found minimal fire activity in northern Arctic Alaska from ~1000 BCE to 500 CE and a marked increase at 1850 CE when it exceeded any levels observed in the preceding millennia. Our findings suggest that deepening of water tables and peatland drying associated with permafrost thaw have facilitated woody encroachment, especially by more flammable Ericaceous shrubs. This study highlights the importance of moisture–vegetation–fire feedback in shaping the tundra fire regime.
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Dushyant Kumar, Mirjam Pfeiffer, Camille Gaillard, Liam Langan, and Simon Scheiter
Biogeosciences, 18, 2957–2979, https://doi.org/10.5194/bg-18-2957-2021, https://doi.org/10.5194/bg-18-2957-2021, 2021
Short summary
Short summary
In this paper, we investigated the impact of climate change and rising CO2 on biomes using a vegetation model in South Asia, an often neglected region in global modeling studies. Understanding these impacts guides ecosystem management and biodiversity conservation. Our results indicate that savanna regions are at high risk of woody encroachment and transitioning into the forest, and the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and CO2.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Mirjam Pfeiffer, Dushyant Kumar, Carola Martens, and Simon Scheiter
Biogeosciences, 17, 5829–5847, https://doi.org/10.5194/bg-17-5829-2020, https://doi.org/10.5194/bg-17-5829-2020, 2020
Short summary
Short summary
Lags caused by delayed vegetation response to changing environmental conditions can lead to disequilibrium vegetation states. Awareness of this issue is relevant for ecosystem conservation. We used the aDGVM vegetation model to quantify the difference between transient and equilibrium vegetation states in Africa during the 21st century for two potential climate trajectories. Lag times increased over time and vegetation was non-analog to any equilibrium state due to multi-lag composite states.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Cited articles
Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O.,
van Leeuwen, J. F., Bigler, C., Connor, S. E., Gałka, M., La Mantia,
T., and Tinner, W.: The sedimentary and remote sensing reflection of biomass
burning in Europe, Global Ecol. Biogeogr., 27, 199–212,
https://doi.org/10.1111/geb.12682, 2018.
Agee, J. K.: Fire and Pine Ecosystems, in: Ecology and Biogeography of Pinus,
edited by: Richardson, D. M., Cambridge Univ Press, Cambridge, 193–218, ISBN: 0521551765 9780521551762, 1998.
Amesbury, M. J., Swindles, G. T., Bobrov, A., Charman, D. J., Holden, J.,
Lamentowicz, M., Mallon, G., Mazei, Y., Mitchell, E. A. D., Payne, R. J.,
Roland, T. P., Turner, T. E., and Warner, B. G.: Development of a new
pan-European testate amoeba transfer function for reconstructing peatland
palaeohydrology, Quaternary Sci. Rev., 152, 132–151, https://doi.org/10.1016/j.quascirev.2016.09.024, 2018.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in 10 global burned
area, Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Barhoumi, C., Peyron, O., Joannin, S., Subetto, D., Kryshen, A., Drobyshev,
I., Girardin, M. P., Brossier, B., Paradis, L., Pastor, T., and Alleaume, S.:
Gradually increasing forest fire activity during the Holocene in the
northern Ural region (Komi Republic, Russia), The Holocene, 29, 1906–1920,
https://doi.org/10.1177/0959683619865593, 2019.
Barhoumi, C., Ali, A. A., Peyron, O., Dugerdil, L., Borisova, O., Golubeva,
Y., Subetto, D., Kryshen, A., Drobyshev, I., Ryzhkova, N., and Joannin, S.:
Did long-term fire control the coniferous boreal forest composition of the
northern Ural region (Komi Republic, Russia), J. Biogeogr., 47, 2426–2441,
https://doi.org/10.1111/jbi.13922, 2020.
Barhoumi, C., Vogel, M., Dugerdil, L., Limani, H., Joannin, S., Peyron, O., and Ali, A. A.: Holocene Fire Regime Changes in the Southern Lake Baikal Region Influenced by Climate-Vegetation-Anthropogenic Activity Interactions,
Forests, 12, 978, https://doi.org/10.3390/f12080978, 2021.
Bennett, K. D. and Willis, K. J.: Pollen, in: Tracking Environmental Change Using Lake Sediments, edited by: Smol, J. S., Birks, H. J. B., and Last, W. M., Kluwer Academic Publishers, Dordrecht, 5–32, https://doi.org/10.1007/0-306-47668-1_2, 2001.
Blaauw, M.: Methods and code for `classical' age-modelling of radiocarbon
sequences, Quat. Geochronol., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Blarquez, O., Vannière, B., Marlon, J. R., Daniau, A.-L., Power, M. J.,
Brewer, S., and Bartlein, P. J.: Paleofire An R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning, Comput. Geosci., 72, 255–261, https://doi.org/10.1016/j.cageo.2014.07.020, 2014.
Bleuten, W. and Filippov, I.: Hydrology of mire ecosystems in central West
Siberia: the Mukhrino field station, edited by: Glagolev, M. V. and Lapshina, E. D., Transactions of UNESCO Department of Yugorsky State University
Environmental Dynamics and Global Climate Change, 1, 208–224, https://doi.org/10.17816/edgcc11S208-224, 2008.
Blyakharchuk, T. A.: Four new pollen sections tracing the Holocene
vegetational development of the southern part of the West Siberan Lowland.
The Holocene 13, 715–731. https://doi.org/10.1191/0959683603hl658rp, 2003.
Blyakharchuk, T. A. and Kurina, I.: Late Holocene environmental and climatic
changes in the Western Sayan Mountains based on high-resolution multi-proxy
data, Boreas, 50, 919–934, https://doi.org/10.1111/bor.12493, 2021.
Blyakharchuk, T. A. and Sulerzhitsky, L. D.: Holocene vegetational and climatic changes in the forest zone of Western Siberia according to pollen records from the extrazonal palsa bog Bugristoe, The Holocene, 9, 621–628,
https://doi.org/10.1191/095968399676614561, 1999.
Blyakharchuk, T. A., Kurina, I. V., and Pologova, N. N.: Late-Holocene dynamics of vegetation cover and humidity of climate in the southeastern sector of the West Siberian Plain according to the data of palynological and rhizopod research of peat deposits, Tomsk State University Journal of Biology, 45, 164–189, https://doi.org/10.17223/19988591/44/9, 2019 (in Russian, English Summary).
Borisova, O. K., Novenko, E. Y., Zelikson, E. M., and Kremenetski, K. V.:
Lateglacial and Holocene vegetational and climatic changes in the southern
taiga zone of West Siberia according to pollen records from Zhukovskoye peat
mire, Quatern. Int., 237, 65–73, https://doi.org/10.1016/j.quaint.2011.01.015, 2011.
Bova, S., Rosenthal, Y., Liu, Z., Godat, S. P., and Yan, M.: Seasonal origin
of the thermal maxima at the Holocene and the last
interglacial, Nature, 589, 548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021.
Camill, P., Barry, A., Williams, E., Andreassi, C., Limmer, J., and Solick,
D.: Climate vegetation–fire interactions and their impact on long-term
carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada,
J. Geophys. Res., 114, G04017, https://doi.org/10.1029/2009JG001071, 2009.
Chambers, F. M. and Charman, D. J.: Holocene environmental change:
contributions from the peatland archive, The Holocene, 14, 1–6,
https://doi.org/10.1191/0959683604hl684ed, 2004.
Charman, D. J., Hendon, D., and Woodland, W. A.: The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats, Technical Guide No. 9. Quaternary Research Association, London, ISBN 0907780482, 2000.
Coop, J. D., Parks, S. A., Stevens-Rumann, C. S., Crausbay, S. D., Higuera,
P. E., Hurteau, M. D., Tepley, A., Whitman, E., Assal, T., Collins, B. M., and Davis, K. T.: Wildfire-driven forest conversion in western North American
landscapes, BioScience, 70, 659–73, https://doi.org/10.1093/biosci/biaa061, 2020.
Courtney Mustaphi, C. J. and Pisaric, M. F.: A classification for macroscopic
charcoal morphologies found in Holocene lacustrine sediments, Prog. Phys. Geog., 38, 734–754, https://doi.org/10.1177/0309133314548886, 2014.
Crawford, A. J. and Belcher, C. M.: Charcoal morphometry for paleoecological
analysis: the effects of fuel type and transportation on morphological parameters, Appl. Plant Sci., 2, 1400004, https://doi.org/10.3732/apps.1400004, 2014.
Dieleman, C. M., Rogers, B. M., Potter, S., Veraverbeke, S., Johnstone, J. F., Laflamme, J., Solvik, K., Walker, X. J., Mack, M. C., and Turetsky, M. R.: Wildfire combustion and carbon stocks in the southern Canadian boreal
forest: implications for a warming world, Global Change Biol., 26, 6062–6079, https://doi.org/10.1111/gcb.15158, 2020.
Enache, M. D. and Cumming, B. F.: Tracking recorded fires using charcoal
morphology from the sedimentary sequence of Prosser Lake, British Columbia
(Canada), Quaternary Res., 65, 282–292, https://doi.org/10.1016/j.yqres.2005.09.003, 2006.
Feurdean, A.: Experimental production of charcoal morphologies to discriminate fuel source and fire type: an example from Siberian taiga, Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021,
2021.
Feurdean, A., Veski, S., Florescu, G., Vannière, B., Pfeiffer, M.,
O'Hara, R. B., Stivrins, N., Amon, L., Heinsalu, A., Vassiljev, J., and
Hickler, T.: Broadleaf deciduous forest counterbalanced the direct effect of
climate on Holocene fire regime in hemiboreal/boreal region (NE Europe),
Quaternary Sci. Rev., 169, 378–390, https://doi.org/10.1016/j.quascirev.2017.05.024, 2017.
Feurdean, A., Gałka, M., Tantau, I., Florescu, G., Hutchinson, S. M.,
Diaconu, A., and Kirpotin, S.: 2000 years of variability in hydroclimate and
carbon accumulation in western Siberia and the relationship with large scale
atmospheric circulation: A multiproxy peat record, Quaternary Sci. Rev., 226, 105948, https://doi.org/10.1016/j.quascirev.2019.105948, 2019.
Feurdean, A., Florescu, G., Tanţău, I., Vannière, B., Diaconu,
A. C., Pfeiffer, M., Warren, D., Hutchinson, S. M., Gorina, N., Gałka, M.,
and Kirpotin, S.: Recent fire regime in the southern boreal forests
of western Siberia is unprecedented in the last five millennia, Quaternary Sci. Rev., 244, 106495, https://doi.org/10.1016/j.quascirev.2020.106495, 2020a.
Feurdean, A., Vannière, B., Finsinger, W., Warren, D., Connor, S. C., Forrest, M., Liakka, J., Panait, A., Werner, C., Andrič, M., Bobek, P., Carter, V. A., Davis, B., Diaconu, A.-C., Dietze, E., Feeser, I., Florescu, G., Gałka, M., Giesecke, T., Jahns, S., Jamrichová, E., Kajukało, K., Kaplan, J., Karpińska-Kołaczek, M., Kołaczek, P., Kuneš, P., Kupriyanov, D., Lamentowicz, M., Lemmen, C., Magyari, E. K., Marcisz, K., Marinova, E., Niamir, A., Novenko, E., Obremska, M., Pędziszewska, A., Pfeiffer, M., Poska, A., Rösch, M., Słowiński, M., Stančikaitė, M., Szal, M., Święta-Musznicka, J., Tanţău, I., Theuerkauf, M., Tonkov, S., Valkó, O., Vassiljev, J., Veski, S., Vincze, I., Wacnik, A., Wiethold, J., and Hickler, T.: Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe, Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, 2020b.
Gałka, M., Tanţău, I., Ersek, V., and Feurdean, A.: A 9000 year
record of cyclic vegetation changes identified in a montane peatland deposit
located in the Eastern Carpathians (Central-Eastern Europe): Autogenic
succession or regional climatic influences?, Palaeogeogr. Palaeocl., 449, 52–61, https://doi.org/10.1016/j.palaeo.2016.02.007, 2016.
Gewin, B.: How peat could protect the planet, Nature, 578, 204–208,
https://doi.org/10.1038/d41586-020-00355-3, 2020.
Gill, A. M.: Fire adaptive traits of vascular plants, in: Fire regimes and
ecosystem properties: proceedings of the conference, Honolulu, Hawaii, 11–15 December 1978, U.S. Forest Service, Washington, WO-26, 208–230, 1981.
Glückler, R., Herzschuh, U., Kruse, S., Andreev, A., Vyse, S. A., Winkler, B., Biskaborn, B. K., Pestryakova, L., and Dietze, E.: Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record, Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, 2021.
Goldammer, J. G. and Furyaev, V. V.: Fire in Ecosystems of Boreal Eurasia:
Ecological Impacts and Links to the Global System, in: Fire in Ecosystems of Boreal Eurasia. Forestry Sciences, vol. 48, edited by: Goldammer, J. G. and Furyaev, V. V., Springer, Dordrecht, https://doi.org/10.1007/978-94-015-8737-2_1, 1996.
Groisman, P. Y., Blyakharchuk, T. A., Chernokulsky, A. V., Arzhanov, M. M.,
Marchesini, L. B., Bogdanova, E. G., Borzenkova, II, Bulygina, O. N., Karpenko, A. A., Karpenko, L. V., and Knight, R. W.: Climate changes in Siberia, in: Regional environmental changes in Siberia and their global consequences, edited by: Groisman, P. Ya. and Gutman, G., Springer, Dordrecht, https://doi.org/10.1007/978-94-007-4569-8, 2012.
Grooth, W. J., Cantin, A. S., Flannigan, M. D., Soja, A. J., Gowman, L. M., and Newbery, A.: A comparison of Canadian and Russian boreal forest fie regimes, Forest Ecol. Manag.,, 294, 23–34, https://doi.org/10.1016/j.foreco.2012.07.033, 2013.
Grospietsch, T.: Wechseltierchen (Rhizopoden), Kosmos Verlag, Stuttgart, ISBN B0000BIT21, 1958.
Hendon, D. and Charman, D. J.: The preparation of testate amoebae (Protozoa:
Rhizopoda) samples from peat, Holocene, 7, 199–205, https://doi.org/10.1177/095968369700700207, 1997.
Higuera, P., Brubaker, L., Anderson, P., Hu, F., and Brown, T.: Vegetation
mediated the impacts of postglacial climate change on fire regimes in the
south-central Brooks Range, Alaska, Ecol. Monogr., 79, 201–219,
https://doi.org/10.1890/07-2019.12009, 2009.
Higuera, P. E., Sprugel, D. G., and Brubaker, L. B.: Reconstructing fire
regimes with charcoal from small-hollow sediments: a calibration with
tree-ring records of fire, The Holocene, 15, 238–251,
https://doi.org/10.1191/0959683605hl789rp, 2005.
Higuera, P. E., Briles, C. E., and Whitlock, C.: Fire-regime complacency and
sensitivity to centennial-through millennial-scale climate change in Rocky
Mountain subalpine forests, Colorado, USA, J. Ecol., 102, 1429–1441, https://doi.org/10.1111/1365-2745.12296, 2014.
Holden, J., Palmer, S. M., Johnston, K., Wearing, C., Irvine, B., and Brown,
L. E.: Impact of prescribed burning on blanket peat hydrology, Water Resour.
Res., 51, 6472–6484, https://doi.org/10.1002/2014WR016782, 2015.
Hudspith, V. A., Hadden, R. M., Bartlett, A. I., and Belcher, C. M.: Does
fuel type influence the amount of charcoal produced in wildfires?
Implications for the fossil record, Palaeontology, 61, 159–171,
https://doi.org/10.1111/pala.12341, 2018.
Hutchinson, S. M., Akinyemi, F. O., Mîndrescu, M., Begy, R., and Feurdean, A.: Recent sediment accumulation rates in contrasting lakes in the
Carpathians (Romania): impacts of shifts in socio-economic regime, Reg.
Environ. Change, 16, 501–513, https://doi.org/10.1007/s10113-015-0764-7, 2016.
Idimeshev, A. A., Bychkov, D. A., and Asochakova, E. M.: Stone industry of
Samuska III settlement based on the results of the statistic analysis, Tomsk Journal of Linguistics and Anthropology, 3, 115–127, https://doi.org/10.23951/2307-6119-2020-3-115-127, 2020.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu. R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2021.
Ivanova, G. A.: Vegetation zone-specific characteristics of Scots pine forest fires in central Siberia, PhD thesis, V.N. Sukachev Institute of Forest Publishing, Krasnoyarsk, Russia, 2005 (in Russian).
Jensen, K., Lynch, E., Calcote, R., and Hotchkiss, S. C.: Interpretation of
charcoal morphotypes in sediments from Ferry Lake, Wisconsin, USA: do
different plant fuel sources produce distinctive charcoal morphotypes?,
Holocene, 17, 907– 915, https://doi.org/10.1177/0959683607082405, 2007.
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P. S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a multi-method reconstruction approach, Scientific Data, 7, 201,
https://doi.org/10.1038/s41597-020-0530-7, 2020.
Kasischke, E. S., Verbyla, D. L., Rupp, T. S., McGuire, A. D., Murphy, K. A., Randi, J., Barnes, J. L., Hoy, E. E., Duffy, P. A., Calef, M., and Turetsky, M. R.: Alaska’s changing fire regime–implications for the vulnerability of its boreal forests, Can. J. Forest Res., 40, 1313–1324, https://doi.org/10.1139/X10-098, 2010.
Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B., and Hu, F. S.: Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years, P. Natl. Acad. Sci. USA, 110, 13055–13060, https://doi.org/10.1073/pnas.1305069110, 2013.
Kelly, R. F., Higuera, P. E., Barrett, C. M., and Hu, F. S.: A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records, Quaternary Res., 75, 11–17,
https://doi.org/10.1016/j.yqres.2010.07.011, 2011.
Kettridge, N., Turetsky, M., Sherwood, J. H., Thompson, D. K., Miller, C. A.,
Benscoter, B. W., Flannigan, M. D., Wotton, B. M., and Waddington, J. M.:
Moderate drop in water table increases peatland vulnerability to post-fire
regime shift, Scientific Reports, 5, 8063, https://doi.org/10.1038/srep08063, 2015.
Kharuk, V. I., Ponomarev, E. I., Ivanova, G. A., Dvinskaya, M. L., Coogan, S. C., and Flannigan, M. D.: Wildfires in the Siberian taiga, Ambio, 50, pages 1953–1974, https://doi.org/10.1007/s13280-020-01490-x, 2021.
Kirpotin, S. N., Antoshkina, O. A., Berezin, A. E., Elshehawi, S., Feurdean,
A., Lapshina, E. D., Pokrovsky, O. S., Peregon, A. M., Semenova, N. M.,
Tanneberger, F., and Volkov, I. V.: Great Vasyugan Mire: How the world's
largest peatland helps addressing the world's largest problems, Ambio, 50, 2038–2049, https://doi.org/10.1007/s13280-021-01520-2, 2021.
Kukavskaya, E. A., Ivanova, G. A., Conard, S. G., McRae, D. J., and Ivanov,
V. A.: Biomass dynamics of central Siberian Scots pine forests following
surface fires of varying severity, Int. J. Wildland Fire, 23, 872–886,
https://doi.org/10.1071/WF13043, 2014.
Kukavskaya, E. A., Buryak, L. V., Shvetsov, E. G., Conard, S. G., and
Kalenskaya, O. P.: The impact of increasing fire frequency on forest
transformations in southern Siberia, Forest Ecol. Manag., 382, 225–235, https://doi.org/10.1016/j.foreco.2016.10.015, 2016.
Kuosmanen, N., Fang, K., Bradshaw, R. H., Clear, J. L., and Seppä, H.:
Role of forest fires in Holocene stand-scale dynamics in the unmanaged taiga
forest of northwestern Russia, The Holocene 24, 1503–1514,
https://doi.org/10.1177/0959683614544065, 2014.
Kurina, I. V. and Li, H.: Why Do Testate Amoeba Optima Related to Water Table
Depth Vary?, Microb. Ecol., 77, 37–55, https://doi.org/10.1007/s00248-018-1202-4, 2019.
Kurina, I. V., Veretennikova, E. E., Golovatskaya, E. A., Blyakharchuk, T. A., and Smirnov, S. V.: Dynamics of the surface wetness of mires in the southern taiga subzone of Western Siberia in the middle and late Holocene. Tomsk State University Journal of Biology, 42, 218–241, https://doi.org/10.17223/19988591/42/12, 2018.
Lashchinsky, N. N. and Korolyuk, A. Yu.: Syntaxonomy of zonal dark-coniferous
forests of southern taiga of the West Siberian plain and of humid
low-mountains of the Altai-Sayan mounain region, Vegetation of Russia, 26, 85–107, https://doi.org/10.31111/vegrus/2015.26.85, 2015.
Lamentowicz, M., Słowinski, M., Marcisz, K., Zielinska, M., Kaliszan, K.,
Lapshina, E., Gilbert, D., Buttler, A., Fiałkiewicz-Kozieł, B., Jassey,
V. E., and Laggoun-Defarge, F.: Hydrological dynamics and fire history of the
last 1300 years in western Siberia reconstructed from a high-resolution,
ombrotrophic peat archive, Quaternary Res., 84, 312–325,
https://doi.org/10.1016/j.yqres.2015.09.002, 2015.
Leshchinskiy, S. V., Blyakharchuk, T. A., Vvedenskaya, I. A., and Orlova, L. A.: The first terrace above the Ob’ floodplain near Kolpashevo: the age and formation conditions, Russ. Geol. Geophys., 52, 641–649, https://doi.org/10.1016/j.rgg.2011.05.007, 2011.
Line, J. M., ter Braak, C. J. F., and Birks, H. J. B.: WACALIB version 3.3 – a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction, J. Paleolimnol., 10, 147–152, 1994.
Liss, O. L., Abramova, L. I., Avetov, N. A., Berezina, N. A., Inisheva, L. I., Kurnishkova, T. V., Sluka, Z. A., Tolpycheva, T. Yu., and Shvedchikova, N. K.: Mire systems of Western Siberia and their environmental importance, Grifi K Publisher, Tula, 2001 (in Russian).
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C., Müller, J., van Bellen, S., West, J. B., Yu, Z., Bubier, J. L., Garneau, M., Moore, T., Britta, A., Sannel, K., Page, S., Väliranta, M., Bechtold,M., Brovkin, V., Cole, L. E. S., Chanton, J. P., Christensen, T. R., Davies, M. A., De Vleeschouwer, F., Finkelstein, S. A., Frolking, S., Gałka, M., Gandois, L., Girkin, N., Harris, L. I., Heinemeyer, A., Hoyt, A. M., Jones, M.-C., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T., Lamentowicz, M., Larmola, T., Leifeld, L., Lohila, A., Milner, A. M., Minkkinen, K., Moss, P., Naafs, B. D. A., Nichols, J., O'donnell, J., Payne, R., Philben, M., Piilo, S., Quillet, A., Ratnayake, A. S., Roland, T. P., Sjögersten, S., Sonnentag, O., Swindles, G. T., Swinnen, W., Talbot, J., Treat, C., Valach, A. C., and Wu, J.: Expert assessment of future vulnerability of the global peatland carbon sink, Nat. Clim. Change, 11, 70–77, https://doi.org/10.1038/s41558-020-00944-0, 2021.
Magnan, G., Lavoie, M., and Payette, S.: Impact of fire on long-term
vegetation dynamics of ombrotrophic peatlands in northwestern Quebec, Canada, Quaternary Res., 77, 110–121, https://doi.org/10.1016/j.yqres.2011.10.006, 2012.
Marlon, J. R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M. J., Bartlein, P., Higuera, P., Blarquez, O., Brewer, S., Brücher, T., Feurdean, A., Romera, G. G., Iglesias, V., Maezumi, S. Y., Magi, B., Courtney Mustaphi, C. J., and Zhihai, T.: Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons, Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, 2016.
Mazei, Y. and Tsyganov, A.: Freshwater Testate Amoebae, KMK, Moscow, 2006.
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F, and Rogers, B. M.: Expansion of high-latitude deciduous forests driven by interactions
between climate warming and fire, Nat. Plants, 5, 952–958,
https://doi.org/10.1038/s41477-019-0495-8, 2019.
Mikhailova, A. B., Grenaderova, A. V., Kurina, I.V ., Shumilovskikh, L., and
Stojko, T. G.: Holocene vegetation and hydroclimate changes in the Kansk
forest steppe, Yenisei River Basin, East Siberia, Boreas, 50, 948–966, https://doi.org/10.1111/bor.12542, 2021.
Morales-Molino, C., Tinner, W., Perea, R., Carrión, J. S., Colombaroli,
D., Valbuena-Carabaña, M., Zafra, E., and Gil, L.: Unprecedented
herbivory threatens rear-edge populations of Betula in southwestern Eurasia, Ecology, 100, e02833, https://doi.org/10.1002/ecy.2833, 2019.
Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J.,
Hessburg, P. F., Leonard, J., McCaffrey, S., Odion, D. C., Schoennagel, T.,
and Syphard, A. D.: Learning to coexist with wildfire, Nature, 515, 58–66,
https://doi.org/10.1038/nature13946, 2014.
Naumov, I. V.: The history of Siberia, Routledge, London, New York, https://doi.org/10.4324/9780203027981, 2006.
Novenko, E. Y., Kupryanov, D. A., Mazei, N. G., Prokushkin, A., Phelps, L. N., Buri, A., and Davis, B. A.: Evidence that modern fires may be unprecedented during the last 3400 years in permafrost zone of central Siberia, Russia, Environ. Res. Lett., 17, 025004, https://doi.org/10.1088/1748-9326/ac4b53, 2022.
Ogden, C. G. and Hedley, R. H.: An Atlas of Freshwater Testate Amoebae,
Oxford University Press, London, https://doi.org/10.1111/j.1550-7408.1980.tb04269.x, 1980.
Page, S., Hoscilo, A., Langner, A., Tansey, K., Siegert, F., Limin S., and
Rieley, J.: Tropical peatland fires in Southeast Asia, in: Tropical Fire
Ecology, edited by: Cochrane, M. A., Springer Praxis Books, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-77381-8_9, 2009.
Power, M. J., Marlon, J. R., Bartlein, P. J., and Harrison, S. P.: Fire history and the Global Charcoal Database: a new tool for hypothesis testing and data exploration, Palaeogeogr. Palaeocl., 291, 52–59,
https://doi.org/10.1016/j.palaeo.2009.09.014, 2010.
Qin, Y., Li, H., Mazei, Y., Kurina, I., Swindles, G. T., Bobrov, A., Tsyganov, A. N., Gu, Y., Huang, X., Xue, J., Lamentowicz, L., Marcisz, K., Roland, T., Payne, R., Mitchell, E. A. M., and Xie, S.: Developing a continental-scale testate amoeba hydrological transfer function for Asian peatlands, Quaternary Sci. Rev., 258, 106868, https://doi.org/10.1016/j.quascirev.2021.106868, 2021.
Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey,
C., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Remy, C. C., Fouquemberg, C., Asselin, H., Andrieux, B., Magnan, G.,
Brossier, B., Grondin, P., Bergeron, Y., Talon, B., Girardin, M. P., Blarquez, O.: Guidelines for the use and interpretation of palaeofire
reconstructions based on various archives and proxies, Quaternary. Sci. Rev., 193, 312–322, https://doi.org/10.1016/j.quascirev.2018.06.010, 2018.
Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J. T.: Influence of tree species on continental differences in boreal fires and climate
feedbacks, Nat. Geosci., 8, 228–234, https://doi.org/10.1038/ngeo2352, 2015.
Rowe, J. S.: Concepts of fire effects on plant individuals and species, in: The role of fire in northern circumpolar
ecosystems, 18th edn., edited by: Wein, R. W. and McLean, D. A., Wiley, Chichester, 1983.
Rudaya, N., Krivonogov, S., Słowiński, M., Cao, S., and Zhilich, S: Postglacial history of the Steppe Altai: Climate, fire and plant
diversity, Quaternary Sci. Rev., 249, 106616, https://doi.org/10.1016/j.quascirev.2020.106616, 2020.
Sannikov, S. N. and Goldammer, J. G.: Fire ecology of pine forests of
northern Eurasia, in: Fire in ecosystems of boreal Eurasia, Forestry Sciences, edited by: Goldammer, J. G. and Furyaev, V. V., Kluver, Dordrecht, 48, 151–167, https://doi.org/10.1007/978-94-015-8737-2_1, 1996.
Scheffer M., Hirota M., Holmgren M., Van Nes, E. H., and Chapin III, F. S.:
Thresholds for Boreal Biome Transitions, P. Natl. Acad. Sci. USA, 109, 21384–21389, https://doi.org/10.1073/pnas.1219844110, 2012.
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., and
Veraverbeke, S.: Overwintering fires in boreal forests, Nature, 593, 399–404, https://doi.org/10.1038/s41586-021-03437-y, 2021.
Stivrins, N., Aakala, T., Ilvonen, L., Pasanen, L., Kuuluvainen, T.,
Vasander, H., Gałka, M., Disbrey, H. R., Liepins, J., Holmström, L.,
and Seppä, H.: Integrating fire-scar, charcoal and fungal spore data to
study fire events in the boreal forest of northern Europe, The Holocene, 29,
1480–1490, https://doi.org/10.1177/0959683619854524, 2019.
Swindles, G., Morris, P., Mullan, D., Watson, E. J., Turner, T. E., Roland,
T. P., Amesbury, M. J., Kokfelt, U., Schoning, K., Pratte, S., and
Gallego-Sala, A.: The long-term fate of permafrost peatlands under rapid
climate warming, Scientific Reports, 5, 17951, https://doi.org/10.1038/srep17951, 2016.
Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R. J., Roland, T. M.,
Amesbury, M. J., Lamentowicz, M., Turner, T. E., Gallego-Sala, A., Sim, T.,
Barr, L. D., Blaauw, B., Blundell, B., Chambers, F. M., Charman, D. J.,
Feurdean, A., Galloway, J. M., Gałka, M., Green, S., Kajukało, K.,
Karofeld, E., Korhola, A., Lamentowicz, Ł., Langdon, P., Marcisz, K.,
Mauquoy, D., Mazei, Y. A., McKeown, M., Mitchell, E. A. D., Novenko, E.,
Plunkett, G., Roe, H. M., Schoning, K., Sillasoo, Ü., Tsyganov, A., van
der Linden, M., Väliranta, M., and Warner, B.: Widespread drying of
European peatlands in recent centuries, Nat. Geosci., 12, 922–928,
https://doi.org/10.1038/s41561-019-0462-z, 2019.
Tautenhahn, S., Lichstein, J. W., Jung, M., Kattge, J., Bohlman, S. A.,
Heilmeier, H., Prokushkin, A., Kahl, A., and Wirth, C.: Dispersal
limitation drives successional pathways in Central Siberian forests under
current and intensified fire regimes, Global Change Biol., 22, 2178–2197,
https://doi.org/10.1111/gcb.13181, 2016.
Turunen, J., Tahvanainen, T., Tolonen, K., and Pitkänen, A.: Carbon
accumulation in West Siberian Mires, Russia Sphagnum peatland distribution
in North America and Eurasia during the past 21,000 years, Global Biogeochem. Cy., 15, 285–296, https://doi.org/10.1029/2000GB001312, 2001.
Vachula, R. S., Sae-Lim, J., and Li, R.: A critical appraisal of charcoal
morphometry as a paleofire fuel type proxy, Quaternary Sci. Rev., 262, 106979, https://doi.org/10.1016/j.quascirev.2021.106979, 2021.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017.
Vompersky, S. E., Ivanova, A. I., Tsyganova, O. P., Valiaeva, N. A., Glukhova, T. V., Dubinin, F. I., and Markelova, L. G.: Wet soilsand mires in Russia and their carbon pool, Pochvovedenie, 12, 17–25, 1994 (in Russian).
Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz,
S., Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E. A. G., Turetsky, M. R., and Mack, M. C.: Increasing wildfires threaten historic carbon sink of boreal forest soils, Nature, 572, 520–523, https://doi.org/10.1038/s41586-019-1474-y, 2019.
Wirth, C.: Fire regime and tree diversity in boreal forests: implications
for the carbon cycle, in: Forest Diversity and Function, edited by: Scherer-Lorenzen, M., Körner, C., and Schulze, E. D., Springer, Berlin, Heidelberg, 309–344, https://doi.org/10.1007/3-540-26599-6_15, 2005.
Whitlock, C. and Larsen, C.: Charcoal as a fire proxy, in: Tracking environmental change using lake sediments. Volume 3: Terrestrial, algal, and siliceous indicators, edited by: Smol, J. P., Birks, H. J. B., and Last, W. M., Kluwer Academic Publishers, 75–97, https://doi.org/10.1007/0-306-47668-1_5, 2001.
Whitlock, C., Colombaroli, D., Conedera, M., and Tinner, W.: Land-use history as a guide for forest conservation and management, Conserv. Biol., 32,
84–97, https://doi.org/10.1111/cobi.12960, 2018.
Whitman, E., Parisien, M. A., Thompson, D. K., and Flannigan, M. D.:
Topoedaphic and forest controls on post-fire vegetation assemblies are
modified by fire history and burn severity in the northwestern Canadian
boreal forest, Forests, 9, 151, https://doi.org/10.3390/f9030151, 2018.
Whitman, E., Parisien, M. A., Thompson, D. K., and Flannigan, M. D.:
Short-interval wildfire and drought overwhelm boreal forest resilience,
Scientific Reports, 9, 18796, https://doi.org/10.1038/s41598-019-55036-7, 2019.
Zhang, D. and Feng, Z.: Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records, Earth-Sci. Rev., 185, 847–869, https://doi.org/10.1016/j.earscirev.2018.08.007, 2018.
Zolnikov, I. D., Nikulina, A. V., Pavlenok, K. K., Vybornov, A. V., Postnov,
A. V., Bychkov, D. A., and Glushkova, N. V.: Regularities in the spatial
location of archaeological objects in Timks, Rossiiskaia arkheologiia,
1, 22–31, https://doi.org/10.31857/S086960630008251-5, 2020.
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer...