Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-603-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-603-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nutrient utilization and diatom productivity changes in the low-latitude south-eastern Atlantic over the past 70 ka: response to Southern Ocean leakage
Katharine Hendry
CORRESPONDING AUTHOR
University of Bristol, School of Earth Sciences, Bristol BS8 1RJ, UK
Oscar Romero
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany
Vanessa Pashley
Geochronology and Tracers Facility, British Geological Survey, Keyworth NG12 5GG, UK
Related authors
No articles found.
Qiang Zhang, George E. A. Swann, Vanessa Pashley, and Matthew S. A. Horstwood
Biogeosciences, 22, 3533–3546, https://doi.org/10.5194/bg-22-3533-2025, https://doi.org/10.5194/bg-22-3533-2025, 2025
Short summary
Short summary
We present the first coupled record of radiolarian silicon isotopes (δ30Sirad) from paired water column and surface sediment samples, along with the fractionation factor for δ30Sirad in the South China Sea. No significant discrepancies in δ30Sirad values were observed between plankton and sediment samples, implying minimal dissolution impact on δ30Sirad during sinking. This indicates faithful preservation of the δ30Sirad signature and its potential for studying past marine silicon cycle changes.
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022, https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Short summary
A 5-year record of long-chain mid-chain diol export flux and composition is presented with a 1- to 3-week resolution sediment trap CBeu (in the NW African upwelling). All environmental parameters as well as the diol composition are dominated by the seasonal cycle, albeit with different phase relations for temperature and upwelling. Most diol-based proxies are dominated by upwelling. The long-chain diol index reflects temperatures of the oligotrophic summer sea surface.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
Cited articles
Abrantes, F.: 200 000 yr diatom records from Atlantic upwelling sites reveal
maximum productivity during LGM and a shift in phytoplankton community
structure at 185 000 yr, Earth Planet. Sci. Lett., 176, 7–16,
2000. a
Abrantes, F.: A 340,000 year continental climate record from tropical
Africa – news from opal phytoliths from the equatorial Atlantic, Earth
Planet. Sci. Lett., 209, 165–179, 2003. a
Berger, W. and Wefer, G.: Expeditions into the past: paleoceanographic studies
in the South Atlantic, in: The South Atlantic, edited by: Wefer, G., Berger, W. H.,
Siedler, G., and Webb, D. J., Springer, Berlin,
Heidelberg, Germany, 363–410, 1996. a
Berger, W. H., Lange, C. B., and Wefer, G.: Upwelling history of the
Benguela-Namibia system: A synthesis of Leg 175 results, Proceedings of
the Ocean Drilling Program, Scientific Results, 175, 1–103, 2002. a
Bradtmiller, L., Anderson, R., Fleisher, M., and Burckle, L.: Diatom
productivity in the equatorial Pacific Ocean from the last glacial period to
the present: A test of the silicic acid leakage hypothesis, Paleoceanography,
21, PA4201, https://doi.org/10.1029/2006PA001282, 2006. a
Bradtmiller, L., Anderson, R., Fleisher, M., and Burckle, L.: Opal burial in
the equatorial Atlantic Ocean over the last 30 kyr: Implications for
glacial-interglacial silica distribution, Paleoceanography, 22, PA4216, https://doi.org/10.1029/2007PA001443, 2007. a
Bradtmiller, L., Anderson, R., Fleisher, M., and Burckle, L.: Comparing glacial
and Holocene opal fluxes in the Pacific sector of the Southern Ocean,
Paleoceanography 24, PA2214, https://doi.org/10.1029/2008PA001693, 2009. a
Brzezinski, M. A., Pride, C. J., Franck, V. M., Sigman, D. M., Sarmiento,
J. L., Matsumoto, K., Gruber, N., Rau, G. H., and Coale, K. H.: A switch from Si(OH)4 to NO depletion in the glacial Southern Ocean, Geophys.
Res. Lett., 29, 1564, https://doi.org/10.1029/2001GL014349, 2002. a, b, c
Cardinal, D., Alleman, L. Y., de Jong, J., Ziegler, K., and André, L.:
Isotopic composition of silicon measured by multicollector plasma source mass
spectrometry in dry plasma mode, J. Anal. Atom. Spectrom.,
18, 213–218, 2003. a
Cassarino, L., Coath, C. D., Xavier, J. R., and Hendry, K. R.: Silicon isotopes of deep sea sponges: new insights into biomineralisation and skeletal structure, Biogeosciences, 15, 6959–6977, https://doi.org/10.5194/bg-15-6959-2018, 2018. a
Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: Accumulation of
biogenic and lithogenic material in the Pacific sector of the Southern Ocean
during the past 40,000 years, Deep Sea Res., 50, 799–832, 2003. a
Crosta, X., Shemesh, A., Etourneau, J., Yam, R., Billy, I., and Pichon, J.:
Nutrient cycling in the Indian sector of the Southern Ocean over the last
50,000 years, Global Biogeochem. Cy., 19, GB3007, https://doi.org/10.1029/2004GB002344, 2005. a
De La Rocha, C. and Bickle, M. J.: Sensitivity of silicon isotopes to
whole-ocean changes in the silica cycle, Mar. Geol., 217, 267–282, 2005. a
De La Rocha, C. L., Brzezinski, M. A., and DeNiro, M. J.: Fractionation of
silicon isotopes by marine diatoms during biogenic silica formation,
Geochim. Cosmochim. Ac., 61, 5051–5056, 1997. a
Doering, K., Ehlert, C., Grasse, P., Crosta, X., Fleury, S., Frank, M., and
Schneider, R.: Differences between mono-generic and mixed diatom silicon
isotope compositions trace present and past nutrient utilisation off Peru,
Geochim. Cosmochim. Ac., 177, 30–47, 2016a. a
Doering, K., Erdem, Z., Ehlert, C., Fleury, S., Frank, M., and Schneider, R.:
Changes in diatom productivity and upwelling intensity off Peru since the
Last Glacial Maximum: Response to basin-scale atmospheric and oceanic
forcing, Paleoceanography, 31, 1453–1473, 2016b. a
Dubois, N., Kienast, M., Kienast, S., Calvert, S. E., François, R., and
Anderson, R. F.: Sedimentary opal records in the eastern equatorial Pacific:
It is not all about leakage, Global Biogeochem. Cy., 24, GB4020, https://doi.org/10.1029/2010GB003821, 2010. a
Etourneau, J., Ehlert, C., Frank, M., Martinez, P., and Schneider, R.: Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to Late Pliocene/Early Pleistocene climate cooling, Clim. Past, 8, 1435–1445, https://doi.org/10.5194/cp-8-1435-2012, 2012. a
Flores, J.-A., Bárcena, M., and Sierro, F.: Ocean-surface and wind dynamics
in the Atlantic Ocean off Northwest Africa during the last 140 000 years,
Palaeogeogr. Palaeocl., 161, 459–478, 2000. a
Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N.: New sample
preparation techniques for the determination of Si isotopic compositions
using MC-ICPMS, Chem. Geol., 235, 95–104,
https://doi.org/10.1016/j.chemgeo.2006.06.006, 2006. a
Hasle, G. R., Syvertsen, E. E., Steidinger, K. A., Tangen, K., and Tomas,
C. R.: Identifying marine diatoms and dinoflagellates, Elsevier Academic Press, San Diego, USA, 1996. a
Hendry, K. R., Leng, M. J., Robinson, L. F., Sloane, H. J., Blusztjan, J.,
Rickaby, R. E., Georg, R. B., and Halliday, A. N.: Silicon isotopes in
Antarctic sponges: an interlaboratory comparison, Antarctic Sci., 23,
34–42, 2011. a
Hendry, K. R., Robinson, L. F., McManus, J. F., and Hays, J. D.: Silicon
isotopes indicate enhanced carbon export efficiency in the North Atlantic
during deglaciation, Nat. Commun., 5, 1–9, 2014. a
Hendry, K. R., Swann, G. E. A., Leng, M. J., Sloane, H. J., Goodwin, C., Berman, J., and Maldonado, M.: Technical Note: Silica stable isotopes and silicification in a carnivorous sponge Asbestopluma sp., Biogeosciences, 12, 3489–3498, https://doi.org/10.5194/bg-12-3489-2015, 2015. a
Hendry, K. R., Gong, X., Knorr, G., Pike, J., and Hall, I. R.: Deglacial diatom
production in the tropical North Atlantic driven by enhanced silicic acid
supply, Earth Planet. Sci. Lett., 438, 122–129, 2016. a
Hendry, K. R., Romero, O. E., and Pashley, V.: δ30Si data measured on two diatom species in sediment core GeoB3606-1, PANGAEA, https://doi.org/10.1594/PANGAEA.921237, 2020. a
Horn, M. G., Beucher, C. P., Robinson, R. S., and Brzezinski, M. A.: Southern
ocean nitrogen and silicon dynamics during the last deglaciation, Earth
Planet. Sci. Lett., 310, 334–339, 2011. a
Kienast, S., Kienast, M., Jaccard, S., Calvert, S., and François, R.:
Testing the silica leakage hypothesis with sedimentary opal records from the
eastern equatorial Pacific over the last 150 kyrs, Geophys. Res.
Lett., 33, L15607, https://doi.org/10.1029/2006GL026651, 2006. a, b
Kohfeld, K. E., Le Quéré, C., Harrison, S. P., and Anderson, R. F.:
Role of marine biology in glacial-interglacial CO2 cycles, Science, 308,
74–78, 2005. a
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub,
M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.: Iron
fertilization of the Subantarctic Ocean during the last ice age, Science,
343, 1347–1350, 2014. a
Matsumoto, K. and Sarmiento, J.: A corollary to the silicic acid leakage
hypothesis, Paleoceanography 23, PA2203, https://doi.org/10.1029/2007PA001515, 2008. a, b
Meckler, A. N., Sigman, D. M., Gibson, K. A., François, R.,
Martinez-Garcia, A., Jaccard, S. L., Röhl, U., Peterson, L. C.,
Tiedemann, R., and Haug, G. H.: Deglacial pulses of deep-ocean silicate into
the subtropical North Atlantic Ocean, Nature, 495, 495–498, 2013. a
Pichevin, L., Cremer, M., Giraudeau, J., and Bertrand, P.: A 190 ky record of
lithogenic grain-size on the Namibian slope: Forging a tight link between
past wind-strength and coastal upwelling dynamics, Mar. Geol., 218,
81–96, 2005. a
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. F., Brzezinski, M. A., DeMaster, D. J., Dugdale, R. C., Dymond, J., Fischer, G., François, R., Heinze, C., Maier-Reimer, E., Martin-Jézéquel, V., Nelson, D. M., and Quéguiner, B.: A
review of the Si cycle in the modern ocean: recent progress and missing gaps
in the application of biogenic opal as a paleoproductivity proxy, Global
Planet. Change, 26, 317–365, 2000. a, b
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H.,
Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J.,
Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, Ron W.,
Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal
BP, Radiocarbon, 55, 1869–1887, 2013. a
Reynolds, B. C., Aggarwal, J., Andre, L., Baxter, D., Beucher, C., Brzezinski,
M. A., Engstrom, E., Georg, R. B., Land, M., Leng, M. J., Opfergelt, S.,
Rodushkin, I., Sloane, H. J., van den Boorn, S. H. J. M., Vroon, P. Z., and
Cardinal, D.: An inter-laboratory comparison of Si isotope reference
materials, J. Anal. Atom. Spectron.,
22, 561–568,
https://doi.org/10.1039/b616755a, 2007. a, b
Rousseau, J., Ellwood, M. J., Bostock, H., and Neil, H.: Estimates of late
Quaternary mode and intermediate water silicic acid concentration in the
Pacific Southern Ocean, Earth Planet. Sci. Lett., 439, 101–108,
2016. a
Sijp, W. P. and England, M. H.: The effect of a northward shift in the southern
hemisphere westerlies on the global ocean, Prog. Oceanogr., 79,
1–19, 2008. a
Swann, G. E., Pike, J., Leng, M. J., Sloane, H. J., and Snelling, A. M.:
Temporal controls on silicic acid utilisation along the West Antarctic
Peninsula, Nat. Commun., 8, 1–8, 2017. a
Thornalley, D. J., Barker, S., Becker, J., Hall, I. R., and Knorr, G.: Abrupt
changes in deep Atlantic circulation during the transition to full glacial
conditions, Paleoceanography, 28, 253–262, 2013. a
Tréguer, P., Bowler, C. Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, P., Bittner, L., Dugdale, R., Finkel,
Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence of
diatom diversity on the ocean biological carbon pump, Nat. Geosci., 11,
27–37, 2018. a
Xiong, Z., Li, T., Algeo, T., Doering, K., Frank, M., Brzezinski, M. A., Chang, F., Opfergelt, S., Crosta, X.,
Jiang, F., Wan, S. and Zhai, B.: The silicon isotope
composition of Ethmodiscus rex laminated diatom mats from the tropical West
Pacific: Implications for silicate cycling during the Last Glacial Maximum,
Paleoceanography, 30, 803–823, 2015. a
Short summary
Productive eastern boundary upwelling systems (EBUs) are characterized by abundant siliceous algae and diatoms, and they play a key role in carbon fixation. Understanding past shifts in diatom production is critical for predicting the impact of future climate change. We combine existing sediment archives from the Benguela EBU with new diatom isotope analyses and modelling to reconstruct late Quaternary silica cycling, which we suggest depends on both upwelling intensity and surface utilization.
Productive eastern boundary upwelling systems (EBUs) are characterized by abundant siliceous...