Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sequential changes in ocean circulation and biological export productivity during the last glacial–interglacial cycle: a model–data study
Cameron M. O'Neill
CORRESPONDING AUTHOR
Research School of Earth Sciences, Australian National University, Canberra, Australia
Andrew McC. Hogg
Research School of Earth Sciences, Australian National University, Canberra, Australia
ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australia
Michael J. Ellwood
Research School of Earth Sciences, Australian National University, Canberra, Australia
Bradley N. Opdyke
Research School of Earth Sciences, Australian National University, Canberra, Australia
Stephen M. Eggins
Research School of Earth Sciences, Australian National University, Canberra, Australia
Related authors
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Stephen M. Eggins, and Bradley N. Opdyke
Geosci. Model Dev., 12, 1541–1572, https://doi.org/10.5194/gmd-12-1541-2019, https://doi.org/10.5194/gmd-12-1541-2019, 2019
Short summary
Short summary
The [simple carbon project] model v1.0 (SCP-M) was constructed for simulations of the paleo and modern carbon cycle. In this paper we show its application to the carbon cycle transition from the Last Glacial Maximum to the Holocene period. Our model–data experiment uses SCP-M's fast run time to cover a large range of possible inputs. The results highlight the role of varying the strength of ocean circulation to account for large fluctuations in atmospheric CO2 across the two periods.
Claire K. Yung, Madelaine G. Rosevear, Adele K. Morrison, Andrew McC Hogg, and Yoshihiro Nakayama
EGUsphere, https://doi.org/10.5194/egusphere-2024-3513, https://doi.org/10.5194/egusphere-2024-3513, 2024
Short summary
Short summary
Ocean models are used to understand how the ocean interacts with the Antarctic Ice Sheet, but they are too coarse in resolution to capture the small-scale ocean processes driving melting and require a parameterisation to predict melt. Previous parameterisations ignore key processes occurring in some regions of Antarctica. We develop a parameterisation with the feedback of stratification on melting and test it in idealised and regional ocean models, finding changes to melt rate and circulation.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Andrew E. Kiss, Andrew McC. Hogg, Nicholas Hannah, Fabio Boeira Dias, Gary B. Brassington, Matthew A. Chamberlain, Christopher Chapman, Peter Dobrohotoff, Catia M. Domingues, Earl R. Duran, Matthew H. England, Russell Fiedler, Stephen M. Griffies, Aidan Heerdegen, Petra Heil, Ryan M. Holmes, Andreas Klocker, Simon J. Marsland, Adele K. Morrison, James Munroe, Maxim Nikurashin, Peter R. Oke, Gabriela S. Pilo, Océane Richet, Abhishek Savita, Paul Spence, Kial D. Stewart, Marshall L. Ward, Fanghua Wu, and Xihan Zhang
Geosci. Model Dev., 13, 401–442, https://doi.org/10.5194/gmd-13-401-2020, https://doi.org/10.5194/gmd-13-401-2020, 2020
Short summary
Short summary
We describe new computer model configurations which simulate the global ocean and sea ice at three resolutions. The coarsest resolution is suitable for multi-century climate projection experiments, whereas the finest resolution is designed for more detailed studies over time spans of decades. The paper provides technical details of the model configurations and an assessment of their performance relative to observations.
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Stephen M. Eggins, and Bradley N. Opdyke
Geosci. Model Dev., 12, 1541–1572, https://doi.org/10.5194/gmd-12-1541-2019, https://doi.org/10.5194/gmd-12-1541-2019, 2019
Short summary
Short summary
The [simple carbon project] model v1.0 (SCP-M) was constructed for simulations of the paleo and modern carbon cycle. In this paper we show its application to the carbon cycle transition from the Last Glacial Maximum to the Holocene period. Our model–data experiment uses SCP-M's fast run time to cover a large range of possible inputs. The results highlight the role of varying the strength of ocean circulation to account for large fluctuations in atmospheric CO2 across the two periods.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
O. Friedrich, R. D. Norris, P. A. Wilson, and B. N. Opdyke
Sci. Dril., 19, 39–42, https://doi.org/10.5194/sd-19-39-2015, https://doi.org/10.5194/sd-19-39-2015, 2015
Short summary
Short summary
This workshop brought together specialists from various fields to develop a drilling proposal to fill the “Oligo-Miocene Gap” that exists in our understanding of the functions of Earth’s systems. We propose to establish the first continuous high-deposition record of the Oligo-Miocene through International Ocean Discovery Program (IODP) drilling in the North Atlantic. We give a short overview of the major topics discussed during the workshop and the scientific goals of the resulting pre-proposal.
Related subject area
Subject: Carbon Cycle | Archive: Modelling only | Timescale: Pleistocene
Assessing transient changes in the ocean carbon cycle during the last deglaciation through carbon isotope modeling
Marine carbon cycle response to a warmer Southern Ocean: the case of the last interglacial
Local oceanic CO2 outgassing triggered by terrestrial carbon fluxes during deglacial flooding
Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO2 decrease using a large ensemble of modern plausible parameter sets
Long-term deglacial permafrost carbon dynamics in MPI-ESM
The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle
Quantifying the ocean's role in glacial CO2 reductions
A multi-variable box model approach to the soft tissue carbon pump
Hidetaka Kobayashi, Akira Oka, Takashi Obase, and Ayako Abe-Ouchi
Clim. Past, 20, 769–787, https://doi.org/10.5194/cp-20-769-2024, https://doi.org/10.5194/cp-20-769-2024, 2024
Short summary
Short summary
This study examines the transient response of the ocean carbon cycle to climate change since the last ice age by using an ocean general circulation model. Our carbon cycle model calculates atmospheric pCO2 changes that are consistent with ice core records but whose magnitude is underestimated. Our analysis of carbon isotopes suggests that improving the expression of activated ocean ventilation and suppressing biological productivity are critical in simulating atmospheric pCO2 changes.
Dipayan Choudhury, Laurie Menviel, Katrin J. Meissner, Nicholas K. H. Yeung, Matthew Chamberlain, and Tilo Ziehn
Clim. Past, 18, 507–523, https://doi.org/10.5194/cp-18-507-2022, https://doi.org/10.5194/cp-18-507-2022, 2022
Short summary
Short summary
We investigate the effects of a warmer climate from the Earth's paleoclimate (last interglacial) on the marine carbon cycle of the Southern Ocean using a carbon-cycle-enabled state-of-the-art climate model. We find a 150 % increase in CO2 outgassing during this period, which results from competition between higher sea surface temperatures and weaker oceanic circulation. From this we unequivocally infer that the carbon uptake by the Southern Ocean will reduce under a future warming scenario.
Thomas Extier, Katharina D. Six, Bo Liu, Hanna Paulsen, and Tatiana Ilyina
Clim. Past, 18, 273–292, https://doi.org/10.5194/cp-18-273-2022, https://doi.org/10.5194/cp-18-273-2022, 2022
Short summary
Short summary
The role of land–sea fluxes during deglacial flooding in ocean biogeochemistry and CO2 exchange remains poorly constrained due to the lack of climate models that consider such fluxes. We implement the terrestrial organic matter fluxes into the ocean at a transiently changing land–sea interface in MPI-ESM and investigate their effect during the last deglaciation. Most of the terrestrial carbon goes to the ocean during flooding events of Meltwater Pulse 1a, which leads to regional CO2 outgassing.
Krista M. S. Kemppinen, Philip B. Holden, Neil R. Edwards, Andy Ridgwell, and Andrew D. Friend
Clim. Past, 15, 1039–1062, https://doi.org/10.5194/cp-15-1039-2019, https://doi.org/10.5194/cp-15-1039-2019, 2019
Short summary
Short summary
We simulate the Last Glacial Maximum atmospheric CO2 decrease with a large ensemble of parameter sets to investigate the range of possible physical and biogeochemical Earth system changes accompanying the CO2 decrease. Amongst the dominant ensemble changes is an increase in terrestrial carbon, which we attribute to a slower soil respiration rate, and the preservation of carbon by the LGM ice sheets. Further investigation into the role of terrestrial carbon is warranted.
Thomas Schneider von Deimling, Thomas Kleinen, Gustaf Hugelius, Christian Knoblauch, Christian Beer, and Victor Brovkin
Clim. Past, 14, 2011–2036, https://doi.org/10.5194/cp-14-2011-2018, https://doi.org/10.5194/cp-14-2011-2018, 2018
Short summary
Short summary
Past cold ice age temperatures and the subsequent warming towards the Holocene had large consequences for soil organic carbon (SOC) stored in perennially frozen grounds. Using an Earth system model we show how the spread in areas affected by permafrost have changed under deglacial warming, along with changes in SOC accumulation. Our model simulations suggest phases of circum-Arctic permafrost SOC gain and losses, with a net increase in SOC between the last glacial maximum and the pre-industrial.
Pearse J. Buchanan, Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge
Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016, https://doi.org/10.5194/cp-12-2271-2016, 2016
Short summary
Short summary
We quantify the contributions of physical and biogeochemical changes in the ocean to enhancing ocean carbon storage at the Last Glacial Maximum. We find that simulated circulation and surface conditions cannot explain changes in carbon storage or other major biogeochemical fields that existed during the glacial climate. Key modifications to the functioning of the biological pump are therefore required to explain the glacial climate and improve model–proxy agreement for all fields.
M. O. Chikamoto, A. Abe-Ouchi, A. Oka, R. Ohgaito, and A. Timmermann
Clim. Past, 8, 545–563, https://doi.org/10.5194/cp-8-545-2012, https://doi.org/10.5194/cp-8-545-2012, 2012
A. M. de Boer, A. J. Watson, N. R. Edwards, and K. I. C. Oliver
Clim. Past, 6, 827–841, https://doi.org/10.5194/cp-6-827-2010, https://doi.org/10.5194/cp-6-827-2010, 2010
Cited articles
Ahn, J. and Brook, E.: Siple Dome ice reveals two modes of millennial CO2
change during the last ice age, Nat. Commun., 5, 3723, https://doi.org/10.1038/ncomms4723, 2014. a, b
Anderson, R., Chase, Z., Fleisher, M., and Sachs, J.: The Southern Ocean's
biological pump during the Last Glacial Maximum, Deep Sea Res. Part II, 49, 1909–1938, 2002. a
Archer, D., Eshel, G., Winguth, A., Broecker, W., Pierrehumbert, R., Tobis, M.,
and Jacob, R.: Atmospheric CO2: sensitivity to the biologicalpump in the
ocean, Global Biogeochem. Cy., 14, 1219–1230, 2000. a
Arteaga, L., Pahlow, M., Bushinsky, S., and Sarmiento, J.: Nutrient Controls on
Export Production in the Southern Ocean, Global Biogeochem. Cy., 33,
942–956, 2019. a
Barker, S., Knorr, G., Vautravers, M., Diz, P., and Skinner, L.: Extreme
deepening of the Atlantic overturning circulation during deglaciation, Nat.
Geosci., 3, 567–571, 2010. a
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.,
Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C
CO2 record from 800 to 600kyr before present, Geophys. Res. Lett, 42,
542–549, 2015. a
Berger, W.: Increase of carbon dioxide in the atmosphere during deglaciation:
The coral reef hypothesis, Naturwissenschaften, 69, 87–88, 1982. a
Boyd, P., Watson, A., Law, C., Abraham, E., Trull, T., Murdoch, R., Bakker, D.,
Bowie, A., Buesseler, K., Chang, H., Charette, M., Croot, P., Downing, K.,
Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., LaRoche,
J., Liddicoat, M., Ling, R., Maldonado, M., McKay, R., Nodder, S., Pickmere,
S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R.,
Tanneberger, K., Turner, S., Waite, A., and Zeldis, J.: A mesoscale phytoplankton bloom in the polar Southern Ocean
stimulated by iron fertilization, Nature, 407, 695–702, 2000. a
Broecker, W.: Glacial to Interglacial Changes in Ocean and Atmosphere
Chemistry, in: Climatic Variations and Variability: Facts and
Theories, edited by: Berger, A., NATO Advanced Study Institutes Series (Series C – Mathematical and
Physical Sciences), vol. 72, pp. 111–121, Springer, Dordrecht, 1981. a
Broecker, W., Yu, J., and Putnam, A.: Two contributors to the glacial CO2
decline, Earth Planet. Sci. Lett., 429, 191–196, 2015. a
Broecker, W. S., Peng, T. H., and Engh, R.: Modeling the carbon system,
Radiocarbon, 22, 565–598, 1980. a
Broecker, W. S., Lynch-Stieglitz, J., Archer, D., Hofmann, M., Maier-Reimer,
E., Marchal, O., Stocker, T., and Gruber, N.: How strong is the
Harvardton-Bear constraint?, Global Biogeochem. Cy., 13, 817–820,
1999. a
Brovkin, V., Claussen, J. B. M., Ganopolski, A., Kubatzki, C., Petoukhov, V.,
and Andreev, A.: Carbon cycle, vegetation, and climate dynamics in the
Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cy.,
16, 1139, https://doi.org/10.1029/2001GB001662, 2002. a
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of glacial
atmospheric CO2 in response to changes in oceanic circulation and marine
biogeochemistry, Paleoceanography, 22, PA4202, https://doi.org/10.1029/2006PA001380,
2007. a, b, c
Calvo, E., Pelejero, C., Pena, L., Cacho, I., and Logan, G.: Eastern equatorial
pacific productivity and related-CO2 changes since the last glacial
period, P. Natl. Acad. Sci., 108, 5537–5541, 2011. a
Cassar, N., Wright, S., Thomson, P., Trull, T., Westwood, K., de Salas, M.,
Davidson, A., Pearce, I., Davies, D., and Matear, R.: The relation of
mixed-layer carbon export production to plankton community in the Southern
Ocean, Global Biogeochem. Cy., 29, 446–462, 2015. a
Chen, T., Robinson, L., Burke, A., Southon, J., Spooner, P., Morris, P., and
Ng, H.: Synchronous centennial abrupt events in the ocean and atmosphere
during the last deglaciation, Science, 349, 1537–1541, 2015. a
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G.,
Lourantou, A., Harrison, S. P., Prentice, I. C., Kelley, D. I., Koven, C.,
and Piao, S. L.: Large inert carbon pool in the terrestrial biosphere during
the Last Glacial Maximum, Nat. Geosci., 5, 74–79, 2012. a, b, c, d, e, f, g
Cook, M. and Keigwin, L.: Radiocarbon profiles of the NW Pacific from the LGM
and deglaciation: Evaluating ventilation metrics and the effect of uncertain
surface reservoir ages, Paleoceanography, 30, 174–195, 2015. a
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the distribution
of d13C of CO2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017,
https://doi.org/10.1029/2004PA001021, 2005. a, b, c
Dunne, J. P., Armstrong, R. A., Gnanadesikan, A., and Sarmiento, J. L.:
Empirical and mechanistic models for the particle export ratio, Global
Biogeochem. Cy., 19, GB4026, https://doi.org/10.1029/2004GB002390, 2005. a, b, c
Ebersbach, F., Trull, W., Davies, D., and Bray, S.: Controls on mesopelagic
particle fluxes in the Sub-Antarctic and Polar Frontal Zones in the Southern
Ocean south of Australia in summer – Perspectives from free-drifting sediment
traps, Deep Sea Res. Part II, 58,
2260–2276, 2011. a
Filippelli, G., Latimer, J., Murray, R., and Flores, J.-A.: Productivity
records from the Southern Ocean and the equatorial Pacific Ocean: Testing the
glacial Shelf-Nutrient Hypothesis, Deep Sea Res. Part II, 54, 2443–2452, 2007. a
Follows, M. J., Ito, T., and Dutkiewicz, S.: On the solution of the carbonate
chemistry system in ocean biogeochemistry models, Ocean Modell., 12,
290–30, 2006. a
Freeman, E., Skinner, L., Waelbroeck, C., and Hodell, D.: Radiocarbon evidence
for enhanced respired carbon storage in the Atlantic at the Last Glacial
Maximum, Nat. Commun., 7, 1–8,
https://doi.org/10.1038/ncomms11998, 2016. a, b
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity, Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Gebbie, G. and Huybers, P.: Meridional circulation during the Last Glacial
Maximum explored through a combination of South Atlantic δ18O
observations and a geostrophic inverse model, Geochem. Geophys. Geosys, 7,
Q11N07, https://doi.org/10.1029/2006GC001383, 2006. a
Hain, M. P., Sigman, D. M., and Haug, G. H.: Carbon dioxide effects of
Antarctic stratification, North Atlantic Intermediate Water formation, and
subantarctic nutrient drawdown during the last ice age: Diagnosis and
synthesis in a geochemical box model, Global Biogeochem. Cy., 24, GB4023,
https://doi.org/10.1029/2010GB003790, 2010. a, b, c
Harman, I., Trudinger, C., and Raupach, M.: SCCM – the Simple Carbon-Climate
Model: Technical Documentation, CAWCR Technical Report 047, CSIRO Centre for
Australian Weather and Climate Research, CSIRO Marine and Atmospheric
Research, FC Pye Laboratory, GPO Box 3023, Canberra, ACT, 2601, Australia,
2011. a, b, c
Harrison, K. G.: Role of increased marine silica input on paleo-pCO2 levels,
Paleoceanography, 15, 292–298, 2000. a
Hayes, C., Anderson, R. F., and Fleisher, M. Q.: Opal accumulation rates in the
equatorial Pacific and mechanisms of deglaciation, Paleoceanography, 26,
PA1207, https://doi.org/10.1029/2010PA002008, 2011. a
Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Moigne, F. L., and
Quartly, G. D.: A reduced estimate of the strength of the ocean's biological
carbon pump, Geophys. Res. Lett., 38, L04606, https://doi.org/10.1029/2011GL046735,
2011. a, b, c
Hesse, T., Butzin, M., Bickert, T., and Lohmann, G.: A model data comparison of
δ13C in the glacial Atlantic Ocean, Paleoceanography, 26, PA3220,
https://doi.org/10.1029/2010PA002085, 2011. a
Hogg, A. M.: Glacial cycles and carbon dioxide: A conceptual model, Geophys.
Res. Lett., 35, L01701, https://doi.org/10.1029/2007GL032071, 2008. a, b, c
Hoogakker, B. A. A., Smith, R. S., Singarayer, J. S., Marchant, R., Prentice, I. C., Allen, J. R. M., Anderson, R. S., Bhagwat, S. A., Behling, H., Borisova, O., Bush, M., Correa-Metrio, A., de Vernal, A., Finch, J. M., Fréchette, B., Lozano-Garcia, S., Gosling, W. D., Granoszewski, W., Grimm, E. C., Grüger, E., Hanselman, J., Harrison, S. P., Hill, T. R., Huntley, B., Jiménez-Moreno, G., Kershaw, P., Ledru, M.-P., Magri, D., McKenzie, M., Müller, U., Nakagawa, T., Novenko, E., Penny, D., Sadori, L., Scott, L., Stevenson, J., Valdes, P. J., Vandergoes, M., Velichko, A., Whitlock, C., and Tzedakis, C.: Terrestrial biosphere changes over the last 120 kyr, Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, 2016. a, b, c, d, e, f, g, h
Huang, Y., Street-Perrott, F., Metcalfe, S., Brenner, M., Moreland, M., and
Freeman, K.: Climate change as the dominant control on glacial-interglacial
variations in C3 and C4 plant abundance, Science, 293, 1647–1651,
2001. a
Jaccard, S., Hayes, C., Martínez-García, A., an R.F. Anderson, D. H.,
Sigman, D., and Haug, G.: Two Modes of Change in Southern Ocean Productivity
Over the Past Million Years, Science, 339, 1419–1423, 2013. a
Jacquet, S., Lam, P., Trull, T., and Dehairs, F.: Carbon export production in
the Polar Front Zone and Subantarctic Zone south of Tasmania, Deep Sea
Res. Part II, 58, 2277–2292, 2011. a
Kaplan, J., Prentice, I., Knorr, W., and Valdes, P.: Modeling the dynamics of
terrestrial carbon storage since the Last Glacial Maximum, Geophys.
Res. Lett., 22, 2074, https://doi.org/10.1029/2002GL015230, 2002. a, b, c
Key, R., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L.,
Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004. a
Khatiwala, S., Schmittner, A., and Muglia, J.: Air-sea disequilibrium enhances
ocean carbon storage during glacial periods, Sci. Adv., 5, 1–10,
https://doi.org/10.1126/sciadv.aaw4981, 2019. a, b, c, d
Kleypas, J.: Modeled estimates of global reef habitat and carbonate production
since the Last Glacial Maximum, Paleoceanogr. Paleoclim., 12,
533–545, 1997. a
Kwon, E., Primeau, F., and Sarmiento, J.: The impact of remineralization depth
on the air–sea carbon balance, Nat. Geosci., 2, 630–635, 2009. a
LeGrand, P. and Wunsch, C.: Constraints from paleotracer data on the North
Atlantic circulation during the Last Glacial Maximum, Paleoceanogr.
Paleoclim., 10, 1011–1045, 1995. a
Lindgren, A., Hugelius, G., and Kuhry, P.: Extensive loss of past permafrost
carbon but a net accumulation into present-day soils, Lett. Nat., 560,
219–222, 2018. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005. a, b, c
Liu, C., Kohl, A., Liu, Z., Wang, F., and Stammer, D.: Deep-reaching
thermocline mixing in the equatorial pacific cold tongue, Nat.
Commun., 7, 11576, https://doi.org/10.1038/ncomms11576, 2016. a
Lourey, M. J. and Trull, W.: Seasonal nutrient depletion and carbon export in
the Subantarctic and Polar Frontal Zones of the Southern Ocean south of
Australia, J. Geophys. Res.-Oceans, 106, 31463–31487,
2001. a
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K-1 and K-2:
validation based on laboratory measurements of CO2 in gas and seawater at
equilibrium, Mar. Chem., 70, 105–119, 2000. a
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4 and
N2O ice core records extended to 2000 years BP, Geophys. Res.
Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006. a, b
Marcott, S., Bauska, T., Buizert, C., Steig, E., Rosen, J., Cuffey, K., Fudge,
T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L., McConnell, J. R., Sowers,
T., Taylor, K., White, J. W. C., and Brook, E.: Centennial-scale changes in
the global carbon cycle during the last deglaciation, Nature, 514, 616–621,
2014. a, b
Marzocchi, A. and Jansen, M. F.: Connecting Antarctic sea ice to deep-ocean
circulation in modern and glacial climate simulations, Geophys. Res.
Lett., 44, 6286–6295, https://doi.org/10.1002/2017GL073936, 2017. a, b
Matsumoto, K.: Biology-mediated temperature control on atmospheric pCO2 and
ocean biogeochemistry, J. Geophys. Res., 34, L20605,
https://doi.org/10.1029/2007GL031301, 2007. a, b
Menviel, L. and Joos, F.: Toward explaining the Holocene carbon dioxide and
carbon isotope records: Results from transient ocean carbon cycle-climate
simulations, Paleoceanography, 27, PA1207, https://doi.org/10.1029/2011PA002224, 2012. a, b, c
Menviel, L., Joos, F., and Ritz, S.: Simulating atmospheric CO2, 13C
and the marine carbon cycle during the Last Glacial-Interglacial cycle:
possible role for a deepening of the mean remineralization depth and an
increase in the oceanic nutrient inventory, Quaternary Sci. Rev., 56,
46–68, 2012. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x
Menviel, L., Timmermann, A., Friedrich, T., and England, M. H.: Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing, Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, 2014. a
Menviel, L., Mouchet, A., Meissner, K. J., Joos, F., and England, M. H.: Impact
of oceanic circulation changes on atmospheric δ13CO2, Global
Biogeochem. Cy., 29, 1944–1961, 2015. a
Menviel, L., Spence, P., Skinner, L. C., Tachikawa, K., Friedrich, T., and Yu,
L. M. J.: Enhanced Mid-depth Southward Transport in the Northeast Atlantic at
the Last Glacial Maximum Despite a Weaker AMOC, Paleoceanogr.
Paleoclim., 35, PA003793, https://doi.org/10.1029/2019PA003793, 2020. a, b, c
Millero, F. J.: Influence of pressure on chemical processes in the sea, in:
Chemical Oceanography, 2nd edn, Vol. 8, Academic Press, New York, 1983. a
Monnin, E., Steig, E., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer,
B., Stocker, T., Morse, D., Barnola, J., Bellier, B., Raynaud, D., and
Fischer, H.: Evidence for substantial accumulation rate variability in
Antarctica during the Holocene, through synchronization of CO2 in the
Taylor Dome, Dome C and DML ice cores, Earth Planet. Sci. Lett.,
224, 45–54, 2004. a, b
Morrison, A., Hogg, A., and Ward, M.: Sensitivity of the Southern Ocean
overturning circulation to surface buoyancy forcing, Geophys. Res.
Lett., 38, L14602, https://doi.org/10.1029/2011GL048031, 2011. a
Morse, J. W. and Berner, R. A.: Dissolution kinetics of calcium carbonate in
sea water. II: A kinetic origin for the lysocline, Am. J. Sci., 272, 840–851, https://doi.org/10.2475/ajs.272.9.840, 1972. a
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M., Rickaby, R. E. M., Edwards, N. R., and Elderfield, H.: A synthesis of marine sediment core δ13C data over the last 150 000 years, Clim. Past, 6, 645–673, https://doi.org/10.5194/cp-6-645-2010, 2010. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
O'Neill, C. M., Hogg, A. McC., Ellwood, M. J., Opdyke, B. N., and Eggins, S. M.: [simple carbon project] model v2.2 (Version V2.2), Zenodo, https://doi.org/10.5281/zenodo.4430066, 2021. a
Qin, B., Li, T., Xiong, Z., Algeo, T., and Jia, Q.: Deep-Water Carbonate Ion
Concentrations in the Western Tropical Pacific Since the Mid-Pleistocene: A
Major Perturbation During the Mid-Brunhes, J. Geophys. Res.-Oceans, 123, 6876–6892, https://doi.org/10.1029/2018JC014084, 2018. a, b, c
Reimer, P., Baillie, M., Bard, E., Bayliss, A., Beck, J., Blackwell, P.,
Ramsey, C. B., Buck, C., Burr, G., Edwards, R., Friedrich, M., Grootes, P.,
Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kaiser, K.,
Kromer, B., McCormac, F., Manning, S., Reimer, R., Richards, D., Southon, J.,
Talamo, S., Turney, C., van der Plicht, J., and Weyhenmeyer, C.: IntCal09 and
Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP.,
Radiocarbon, 51, 1111–50, 2009. a, b, c
Ridgwell, A.: An end to the ”rain ratio” reign?, Geochem. Geophys. Geosyst.,
4, 1051, https://doi.org/10.1029/2003GC000512, 2003. a
Ridgwell, A. J.: Glacial-interglacial perturbations in the global carbon cycle,
Ph.D. thesis, University of East Anglia, Norwich, UK, 2001. a
Ronge, T., Tiedemann, R., Lamy, F., Kohler, P., Alloway, B., Pol-Holz, R. D.,
Pahnke, K., Southon, J., and Wacker, L.: Radiocarbon constraints on the
extent and evolution of the South Pacific glacial carbon pool, Nat.
Commun., 7, 11487, https://doi.org/10.1038/ncomms11487, 2016. a, b
Rubino, M., Etheridge, D., Trudinger, C., Allison, C., Battle, M., Langenfelds,
R., Steele, L., Curran, M., Bender, M., White, J., Jenk, T., Blunier, T., and
Francey, R.: A revised 1000 year atmospheric δ13C-CO2 record
from Law Dome and South Pole, Antarctica, J. Geophys. Res.,
118, 8482–8499, 2013. a, b
Schneider, R., Schmitt, J., Köhler, P., Joos, F., and Fischer, H.: A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception, Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, 2013. a, b, c, d, e, f, g, h, i
Siani, E., Michel, E., Pol-Holz, R. D., DeVries, T., Lamy, F., Carel, M.,
Isguder, G., Dewilde, F., and Lourantou, A.: Carbon isotope records reveal
precise timing of enhanced Southern Ocean upwelling during the last
deglaciation, Nat. Commun., 4, 1–9, https://doi.org/10.1038/ncomms3758, 2013. a, b, c, d
Skinner, L. and Shackleton, N. J.: Rapid transient changes in northeast
Atlantic deep water ventilation age across Termination I, Paleoceanography,
19, PA2005, https://doi.org/10.1029/2003PA000983, 2004. a
Skinner, L., Waelbroeck, C., Scrivner, A., and Fallon, S.: Radiocarbon evidence
for alternating northern and southern sources of ventilation of the deep
Atlantic carbon pool during the last deglaciation, P. Natl. Acad. Sci., 111, 5480–5484, 2014. a
Skinner, L., Primeau, F., Freeman, E., de la Fuente, M., Goodwin, P. A.,
Gottschalk, J., Huang, E., McCave, I. N., Noble, T. L., and Scrivner, A. E.:
Radiocarbon constraints on the glacial ocean circulation and its impact on
atmospheric CO2, Nat. Commun., 8, 16010,
https://doi.org/10.1038/ncomms16010, 2017. a, b, c, d, e, f, g, h, i
Stott, L., Southon, J., Timmermann, A., and Koutavas, A.: Radiocarbon age
anomaly at intermediate water depth in the Pacific Ocean during the last
deglaciation, Paleoceanography, 24, PA2223,
https://doi.org/10.1029/2008PA001690, 2009. a
Strutz, T.: Data Fitting and Uncertainty. A practical introduction to weighted
least squares and beyond., vol. 2 of Wiesbaden, Springer Vieweg,
2016. a
Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., Dutay, J.-C., Alkama, R., Kageyama, M., Michel, E., and Paillard, D.: Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum, Clim. Past, 5, 695–706, https://doi.org/10.5194/cp-5-695-2009, 2009. a
Takahashi, T., Sutherland, S., Feely, R., and Cosca, C.: Decadal variation of
the surface water PCO2 in the western and central equatorial Pacific,
Science, 302, 852–856, 2003. a
Tamburini, F. and Föllmi, K. B.: Phosphorus burial in the ocean over glacial-interglacial time scales, Biogeosciences, 6, 501–513, https://doi.org/10.5194/bg-6-501-2009, 2009. a
Toggweiler, J. and Sarmiento, J.: Glacial to interglacial changes in
atmospheric carbon dioxide: The critical role of ocean surface water in high
latitudes, in: The Carbon Cycle and Atmospheric CO2: Natural Variations
Archean to Present, Geophysical Monograph Series, American Geophysical Union,
32, 163–184, 1985. a
Toggweiler, J. R.: Variation of atmospheric CO2 by ventilation of the
ocean's deepest water, Paleoceanography, 14, 571–588, 1999. a
Toggweiler, J. R.: Origin of the 100,000-year time scale in Antarctic
temperatures and atmospheric CO2, Paleoceanography, 23, PA2211,
https://doi.org/10.1029/2006PA001405, 2008. a, b, c
Treat, C., Kleinen, T., Broothaerts, N., Dalton, A., Dommain, R., Douglas, T.,
Drexler, J., Finkelstein, S., Grosse, G., Hope, G., Hutchings, J., Jones, M.,
Kuhry, P., Lacourse, T., Lähteenoja, O., Loisel, J., Notebaert, B.,
Payne, R., Peteet, D., Sannel, A., Stelling, J., Strauss, J., Swindles, G.,
Talbot, J., Tarnocai, C., Verstraeten, G., C.J. Williams, Z. X., Yu, Z.,
Väliranta, M., Hättestrand, M., Alexanderson, H., and Brovkin, V.:
Widespread global peatland establishment and persistence over the last
130,000 y, P. Natl. Acad. Sci., 116, 4822–4827, 2019. a, b, c, d, e
Vecsei, A. and Berger, W.: Increase of atmospheric CO2 during deglaciation:
Constraints on the coral reef hypothesis from patterns of deposition, Global
Biogeochem. Cy., 18, GB1035, https://doi.org/10.1029/2003GB002147, 2004. a
Weeding, B. and Trull, W.: Hourly oxygen and total gas tension measurements at
the Southern Ocean time series site reveal winter ventilation and spring net
community production, J. Geophys. Res.-Oceans, 119, 348–358,
2004. a
Winckler, G., Anderson, R., Jaccard, S., and Marcantonio, F.: Ocean dynamics,
not dust, have controlled equatorial Pacific productivity over the past
500,000 years, P. Natl. Acad. Sci., 113, 6119–6124, 2016. a
Wolff, E., Barbante, C., Becagli, S., Bigler, M., Boutron, C., Castellano, E.,
de Angelis, M., Federer, U., Fischer, H., Fundel, F., Hansson, M., Hutterli,
M., Jonsell, U., Karlin, T., Kaufmann, P., Lambert, F., Littot, G., Mulvaney,
R., Roöthlisberger, R., Ruth, U., Severi, M., Siggaard-Andersen, M.,
Sime, L., Steffensen, J., Stocker, T., Traversi, R., Twarloh, B., Udisti, R.,
Wagenbach, D., and Wegner, A.: Changes in environment over the last 800,000
years from chemical analysis of the EPICA Dome C ice core, Quaternary Sci.
Rev., 29, 285–95, 2010. a, b, c, d, e, f, g
Yamamoto, A., Abe-Ouchi, A., Ohgaito, R., Ito, A., and Oka, A.: Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust, Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, 2019. a
Yu, J., Broecker, W., Elderfield, H., Jin, Z., McManus, J., and Zhang, F.: Loss of Carbon from the Deep Sea Since the Last Glacial Maximum, Science, 330, 1084–1087, 2010. a
Yu, J., Menviel, L., Jin, Z., Thornalley, D., Foster, G., Rohling, E., McCave,
I., McManus, J., Dai, Y., Ren, H., He, F., Zhang, F., Chen, P., and Roberts,
A.: More efficient North Atlantic carbon pump during the Last Glacial
Maximum, Nat. Commun., 10, 1–11,
https://doi.org/10.1038/s41467-019-10028-z, 2019. a
Zeebe, R. E.: LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4, Geosci. Model Dev., 5, 149–166, https://doi.org/10.5194/gmd-5-149-2012, 2012. a, b
Short summary
We undertake a model–data study of the last glacial–interglacial cycle of atmospheric CO2, spanning 0–130 ka. We apply a carbon cycle box model, constrained with glacial–interglacial observations, and solve for optimal model parameter values against atmospheric and ocean proxy data. The results indicate that the last glacial drawdown in atmospheric CO2 was delivered mainly by slowing ocean circulation, lower sea surface temperatures and also increased Southern Ocean biological productivity.
We undertake a model–data study of the last glacial–interglacial cycle of atmospheric CO2,...