Articles | Volume 17, issue 4
https://doi.org/10.5194/cp-17-1607-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1607-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aptian–Albian clumped isotopes from northwest China: cool temperatures, variable atmospheric pCO2 and regional shifts in the hydrologic cycle
Department of Geology, The University of Kansas, Lawrence, KS,
USA
Marina B. Suarez
Department of Geology, The University of Kansas, Lawrence, KS,
USA
Department of Geological Sciences, University of Texas, San
Antonio, TX, USA
Jessica Uglesich
Department of Geological Sciences, University of Texas, San
Antonio, TX, USA
Hailu You
Key Laboratory of Vertebrate Evolution and Human Origins, Institute
of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of
Sciences, Beijing, PR China
Chinese Academy of Science Center for Excellence in Life and
Paleoenvironment, Beijing, PR China
College of Earth and Planetary Sciences, University of Chinese
Academy of Sciences, Beijing, PR China
Daqing Li
Institute of Vertebrate Paleontology and College of Life Science
and Technology, Gansu Agricultural University, Lanzhou, PR China
Peter Dodson
Department of Biomedical Sciences, The University of Pennsylvania,
Philadelphia, PA, USA
Related subject area
Subject: Carbon Cycle | Archive: Terrestrial Archives | Timescale: Pre-Cenozoic
Early Jurassic climate and atmospheric CO2 concentration in the Sichuan paleobasin, southwestern China
Xianghui Li, Jingyu Wang, Troy Rasbury, Min Zhou, Zhen Wei, and Chaokai Zhang
Clim. Past, 16, 2055–2074, https://doi.org/10.5194/cp-16-2055-2020, https://doi.org/10.5194/cp-16-2055-2020, 2020
Short summary
Short summary
This work presents the observation of the Early Jurassic terrestrial climate from the Sichuan paleobasin, southeastern China. Results manifest a (semi)arid climate in the study area, where the climate pattern is similar to the Colorado Plateau. The estimated atmospheric carbon dioxide concentration is 980–2610 ppmV with a mean of 1660 ppmV. The change of carbon dioxide concentration is compatible with the excursions of stable isotopes and seawater temperature from the coeval marine sediments.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model:
procedures, data sources and analysis, NOAA Technical Memorandum, United States Department of Commerce, Boulder, Colorado, USA, 2009.
Amiot, R., Lécuyer, C., Buffetaut, E., Fluteau, F., Legendre, S., and
Martineau, F.: Latitudinal temperature gradient during the Cretaceous Upper
Campanian–Middle Maastrichtian: δ18O record of continental
vertebrates, Earth Planet. Sc. Lett., 226, 255–272,
https://doi.org/10.1016/j.epsl.2004.07.015, 2004.
Amiot, R., Wang, X., Zhou, Z., Wang, X., Buffetaut, E., Lecuyer, C., Ding,
Z., Fluteau, F., Hibino, T., Kusuhashi, N., Mo, J., Suteethorn, V., Wang,
Y., Xu, X., and Zhang, F.: Oxygen isotopes of East Asian dinosaurs reveal
exceptionally cold Early Cretaceous climates, P. Natl. Acad. Sci. USA, 108,
5179–5183, https://doi.org/10.1073/pnas.1011369108, 2011.
Ando, A., Kakegawa, T., Takashima, R., and Saito, T.: New perspective on
Aptian carbon isotope stratigraphy: data from δ13C records of
terrestrial organic matter, Geology, 30, 227–230, 2002.
Aucour, A.-M., Gomez, B., Sheppard, S. M. F., and Thévenard, F.:
δ13C and stomatal number variability in the Cretaceous conifer Frenelopsis, Palaeogeogr. Palaeocl., 257, 462–473,
10.1016/j.palaeo.2007.10.027, 2008.
Barron, E. J.: A warm, equable Cretaceous: The nature of the problem,
Earth-Sci. Rev., 19, 305–338, 1983.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler, A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E., Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M., Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., Elliott, B., Fetrow, A. C., Fiebig, J., Goldberg, S., Hermoso, M., Huntington, K. W., Hyland, E., Ingalls, M., Jaggi, M., John, C. M., Jost, A. B., Katz, S., Kelson, J., Kluge, T., Kocken, I. J., Laskar, A., Leutert, T. J., Liang, D., Lucarelli, J., Mackey, T. J., Mangenot, X., Meinicke, N., Modestou, S. E., Müller, I. A., Murray, S., Neary, A., Packard, N., Passey, B. H., Pelletier, E., Petersen, S., Piasecki, A., Schauer, A., Snell, K. E., Swart, P. K., Tripati, A., Upadhyay, D., Vennemann, T., Winkelstern, I., Yarian, D., Yoshida, N., Zhang, N., and Ziegler, M.: InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards, Geochem. Geophy. Geos., 22, e2020GC009588, https://doi.org/10.1029/2020GC009588, 2021.
Birkeland, P. W., Miller, D. C., Patterson, P. E., Price, A. B., and Shroba,
R. R.: Soil-geomorphic relationships near Rocky Flats, Boulder and Golden,
Colorado area, with a stop at the pre-fountain formation paleosol of
Wahlstrom (1948), Geologic Society of America Field Trip, 22, 13–13, 1999.
Bonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C.,
Vasconcelos, C., Agrinier, P., Katz, A., Passey, B. H., Ferry, J. M., and
Bourrand, J.-J.: Calibration of the dolomite clumped isotope thermometer
from 25 to 350 ∘C, and implications for a universal calibration
for all (Ca, Mg, Fe)CO3 carbonates, Geochim. Cosmochim. Ac., 200,
255–279, https://doi.org/10.1016/j.gca.2016.11.028, 2017.
Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H. C., Schouten, S., and Sinninghe Damsté, J. S.: Climate variability and ocean fertility during the Aptian Stage, Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, 2015.
Bralower, T. J., CoBabe, E., Clement, B., Sliter, W. V., Osburn, C. L., and
Longoria, J.: The record of global change in mid-Cretaceous
(Barremian-Albian) sections from the Sierra Madre, Northeastern Mexico,
J. Foramin. Res., 29, 418–437, 1999.
Brand, W. A., Assonov, S. S., and Coplen, T. B.: Correction for the 17O
interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report), Pure Appl.
Chem., 82, 1719–1733, https://doi.org/10.1351/pac-rep-09-01-05, 2010.
Breecker, D. O., Sharp, Z. D., and McFadden, L. D.: Seasonal bias in the
formation and stable isotopic composition of pedogenic carbonate in modern
soils from central New Mexico, USA, Geol. Soc. Am. Bull.,
121, 630–640, https://doi.org/10.1130/b26413.1, 2009.
Breecker, D. O., Sharp, Z. D., and McFadden, L. D.: Atmospheric CO2
concentrations during ancient greenhouse climates were similar to those
predicted for A.D. 2100, P. Natl. Acad. Sci. USA, 107, 576–580,
https://doi.org/10.1073/pnas.0902323106, 2010.
Burgener, L., Hyland, E., Huntington, K. W., Kelson, J. R., and Sewall, J.
O.: Revisiting the equable climate problem during the Late Cretaceous
greenhouse using paleosol carbonate clumped isotope temperatures from the
Campanian of the Western Interior Basin, USA, Palaeogeogr. Palaeocl., 516, 244–267,
https://doi.org/10.1016/j.palaeo.2018.12.004, 2019.
Carmichael, M. J., Lunt, D. J., Huber, M., Heinemann, M., Kiehl, J., LeGrande, A., Loptson, C. A., Roberts, C. D., Sagoo, N., Shields, C., Valdes, P. J., Winguth, A., Winguth, C., and Pancost, R. D.: A model–model and data–model comparison for the early Eocene hydrological cycle, Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, 2016.
Cazenave, S., Chapoulie, R., and Villeneuve, G.: Cathodoluminescence of
synthetic and natural calcite: the effects of manganese and iron on orange
emission, Miner. Petrol., 78, 243–253, 2003.
Cerling, T. E.: Carbon dioxide in the atmosphere: Evidence from Cenozoic and
Mesozoic paleosols, Am. J. Sci., 291, 377–400, https://doi.org/10.2475/ajs.291.4.377, 1991.
Cerling, T. E. and Quade, J.: Stable Carbon and Oxygen Isotopes in Soil
Carbonates, Climate Change in Continental Isotopic Records, Geophysical Monograph 78, American Geophysical Union, Washington, D.C., USA, 1993.
Chen, J. and Yang, H.: Geological development of the northwest China basins
during the Mesozoic and Ceonzoic, Phanerozoic Geology of Northwest China, Science Press, Beijing, PR China, 39–62,
1996.
Chumakov, N. M.: Climatic zones and climate of the Cretaceous period, in:
Climate in the epochs of major biospheric transformations, edited by:
Semikhatov, M. A. and Chumakov, N. M., Transactions of the Geological Institute of the Russian Academy of Sciences, 550, 105–123, 2004.
Chumakov, N. M., Zharkov, M. A., Herman, A. B., D'oludenko, M. P.,
Kalandadze, N. N., Lebedev, E. L., Ponomarenko, A. G., and Rautian, A. S.:
Climatic belts of the mid-Cretaceous time, Stratigr. Geo.
Correl.+, 3, 42–63, 1995.
Cotton, J. M. and Sheldon, N. D.: New constraints on using paleosols to
reconstruct atmospheric pCO2, Geol. Soc. Am. Bull., 124,
1411–1423, https://doi.org/10.1130/b30607.1, 2012.
Daëron, M., Blamart, D., Peral, M., and Affek, H. P.: Absolute isotopic
abundance ratios and the accuracy of Δ47 measurements, Chem.
Geol., 442, 83–96, https://doi.org/10.1016/j.chemgeo.2016.08.014, 2016.
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M.:
Defining an absolute reference frame for “clumped” isotope studies of CO2, Geochim. Cosmochim. Ac., 75, 7117–7131, https://doi.org/10.1016/j.gca.2011.09.025,
2011.
Driese, S. D. and Mora, C. I.: Physico-chemical environment of pedogenic
carbonate formation in Devonian vertic palaesols, central Appalachians, USA,
Sedimentology, 40, 199–216, 1993.
Du, B., Sun, B., Zhang, M., Yang, G., Xing, L., Tang, F., and Bai, Y.:
Atmospheric palaeo-CO2 estimates based on the carbon isotope and stomatal data of Cheirolepidiaceae from the Lower Cretaceous of the Jiuquan Basin, Gansu Province, Cretaceous Res., 62, 142–153,
https://doi.org/10.1016/j.cretres.2015.07.020, 2016.
Du, B., Lei, X., Zhang, M., Wang, S., Li, A., Du, Z., and Xing, W.: Late
Early Cretaceous climate and pCO2 estimates in the Liupanshan Basin,
Northwest China, Palaeogeogr. Palaeocl., 503,
26–39, https://doi.org/10.1016/j.palaeo.2018.04.023, 2018.
Ekart, D. D., Cerling, T. E., Montanez, I. P., and Tabor, N., J,: A 400
million year carbon isotope record of pedogenic carbonate: Implications for
paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805–827, 1999.
Fernandez, A., Müller, I. A., Rodríguez-Sanz, L., van Dijk, J.,
Looser, N., and Bernasconi, S. M.: A Reassessment of the Precision of
Carbonate Clumped Isotope Measurements: Implications for Calibrations and
Paleoclimate Reconstructions, Geochem. Geophy. Geosy., 18,
4375–4386, https://doi.org/10.1002/2017gc007106, 2017.
Fletcher, B. J., Beerling, D. J., Brentnall, S. J., and Royer, D. L.: Fossil
bryophytes as recorders of ancient CO2levels: Experimental evidence and a Cretaceous case study, Global Biogeochem. Cy., 19, GB3012,
https://doi.org/10.1029/2005gb002495, 2005.
Floegel, S.: On the influence of precessional Milankovitch cycles on the
Late Cretaceous climate system: comparison of GCM – results, geochemical, and
sedimentary proxies for the Western Interior Seaway of North America,
Faculty of Mathematics and Natural Sciences, Christian-Albrecht's-
University, Kiel, Germany, 236 pp., 2001.
Föllmi, K. B.: Early Cretaceous life, climate and anoxia, Cretaceous Res., 35, 230–257, https://doi.org/10.1016/j.cretres.2011.12.005, 2012.
Franks, P. J., Royer, D. L., Beerling, D. J., Van de Water, P. K., Cantrill,
D. J., Barbour, M. M., and Berry, J. A.: New constraints on atmospheric
CO2concentration for the Phanerozoic, Geophys. Res. Lett., 41,
4685–4694, https://doi.org/10.1002/2014gl060457, 2014.
Friedman, I. and O'Neil, J. R.: Compilation of stable isotope fractionation
factors of geochemical interest, in: Data of Geochemistry, 6th edn., edited by: Fleischer, M., US Government Printing Office, Washington, D.C., USA, 1977.
Gallagher, T. M. and Sheldon, N. D.: Combining soil water balance and
clumped isotopes to understand the nature and timing of pedogenic carbonate
formation, Chem. Geol., 435, 79–91, https://doi.org/10.1016/j.chemgeo.2016.04.023,
2016.
Global Network of Isotopes in Precipitation (GNIP): https://www.iaea.org/services/networks/gnip, last access: 24 January 2020.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A.,
Schrag, D., and Eiler, J. M.: 13C–18O bonds in carbonate minerals: A new
kind of paleothermometer, Geochim. Cosmochim. Ac., 70, 1439–1456,
https://doi.org/10.1016/j.gca.2005.11.014, 2006.
Habermann, D., Neuser, R. D., and Richter, D. K.: Quantitative High
Resolution Spectral Analysis of Mn2+ in Sedimentary Calcite, in:
Cathodoluminescence in Geosciences, Springer, Berlin, Heidelberg, Germany, 331–358, 2000.
Harper, D. T., Suarez, M. B., Uglesich, J., You, H., Li, D., and Dodson, P.:
Data and Code for Aptian-Albian clumped isotopes from northwest China: Cool
temperatures, variable atmospheric pCO2 and regional shifts in hydrologic cycle, Open Science Framework [data set], https://doi.org/10.17605/OSF.IO/CZJ68, 2021.
Hasegawa, H., Imsamut, S., Charusiri, P., Tada, R., Horiuchi, Y., and
Hisada, K.-I.: `Thailand was a desert' during the mid-Cretaceous:
Equatorward shift of the subtropical high-pressure belt indicated by eolian
deposits (Phu Thok Formation) in the Khorat Basin, northeastern Thailand,
Island Arc, 19, 605–621, https://doi.org/10.1111/j.1440-1738.2010.00728.x, 2010.
Hasegawa, H., Tada, R., Jiang, X., Suganuma, Y., Imsamut, S., Charusiri, P., Ichinnorov, N., and Khand, Y.: Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse, Clim. Past, 8, 1323–1337, https://doi.org/10.5194/cp-8-1323-2012, 2012.
Haworth, M., Heath, J., and McElwain, J. C.: Differences in the response
sensitivity of stomatal index to atmospheric CO2 among four genera of
Cupressaceae conifers, Ann. Bot., 105, 411–418, https://doi.org/10.1093/aob/mcp309, 2010.
Hay, W. W.: Toward understanding Cretaceous climate – An updated review,
Sci. China Earth Sci., 60, 5–19, https://doi.org/10.1007/s11430-016-0095-9, 2016.
Heimhofer, U., Hochuli, P. A., Burla, S., Andersen, N., and Weissert, H.:
Terrestrial carbon-isotope records from coastal deposits (Algarve,
Portugal): a tool for chemostratitgraphic correlation on an intrabasinal and
global scale, Terra Nova, 15, 8–13, 2003.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J.,
Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E.,
Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto Jr., T. M.,, Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and
Williams, B.: The geological record of ocean acidification, Science, 335,
1058–1063, https://doi.org/10.1126/science.1208277, 2012.
Jenkyns, H. C.: Transient cooling episodes during Cretaceous Oceanic Anoxic
Events with special reference to OAE 1a (Early Aptian), Philos. Trans. A Math. Phys. Eng. Sci., 376, 20170073, https://doi.org/10.1098/rsta.2017.0073, 2018.
Kelson, J. R., Huntington, K. W., Breecker, D. O., Burgener, L. K.,
Gallagher, T. M., Hoke, G. D., and Petersen, S. V.: A proxy for all seasons?
A synthesis of clumped isotope data from Holocene soil carbonates,
Quaternary Sci. Rev., 234, 106259, https://doi.org/10.1016/j.quascirev.2020.106259, 2020.
Kuang, H. W., Liu, Y. Q., Liu, Y. X., Peng, N., Xu, H., and Dong, C.:
Stratigraphy and depositional palaeogeography of the Early Cretaceous basins
in Da Hinggan Mountains–Mongolia orogenic belt and its neighboring areas,
Geological Bulletin of China, 32, 1063–1084, 2013.
Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., and Ehleringer,
J. R.: A stable isotope aridity index for terrestrial environments, P. Natl. Acad. Sci. USA, 103, 11201–11205, https://doi.org/10.1073/pnas.0604719103, 2006.
Li, X., Xu, W., Liu, W., Zhou, Y., Wang, Y., Sun, Y., and Liu, L.: Climatic
and environmental indications of carbon and oxygen isotopes from the Lower
Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest
China, Palaeogeogr. Palaeocl., 385, 171–189,
https://doi.org/10.1016/j.palaeo.2013.03.011, 2013.
Lin, W., Chen, Y., Faure, M., and Wang, Q.: Tectonic implications of new
Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula,
NE China, J. Geophys. Res.-Sol. Ea., 108, 2313,
https://doi.org/10.1029/2002jb002169, 2003.
Ludvigson, G. A., Joeckel, R. M., Gonzalez, L. A., Gulbranson, E. L.,
Rasbury, E. T., Hunt, G. J., Kirkland, J. I., and Madsen, S.: Correlation of
Aptian-Albian Carbon Isotope Excursions in Continental Strata of the
Cretaceous Foreland Basin, Eastern Utah, U.S.A, J. Sediment.
Res., 80, 955–974, https://doi.org/10.2110/jsr.2010.086, 2010.
Ludvigson, G. A., Joeckel, R. M., Murphy, L. R., Stockli, D. F.,
González, L. A., Suarez, C. A., Kirkland, J. I., and Al-Suwaidi, A.: The
emerging terrestrial record of Aptian-Albian global change, Cretaceous Res., 56, 1–24, https://doi.org/10.1016/j.cretres.2014.11.008, 2015.
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M.,
and Müller, R. D.: Global plate boundary evolution and kinematics since
the late Paleozoic, Global Planet. Change, 146, 226–250,
https://doi.org/10.1016/j.gloplacha.2016.10.002, 2016.
Menegatti, A. P., Weissert, H., Brown, R. S., Tyson, R. V., Farrimond, P.,
Strasser, A., and Caron, M.: High-resolution δ13C stratigraphy
through the Early Aptian “Livello selli” of the Alpine tethys,
Paleoceanography, 13, 530–545, https://doi.org/10.1029/98pa01793, 1998.
Mielnick, P. C. and Dugas, W. A.: Soil CO2 flux in a tallgrass prairie,
Soil Biology and Biochemistry, 32, 221–228, 2000.
Mintz, J. S., Driese, S. G., Breecker, D. O., and Ludvigson, G. A.:
Influence of Changing Hydrology on Pedogenic Calcite Precipitation in
Vertisols, Dance Bayou, Brazoria County, Texas, U.S.A.: Implications for
Estimating Paleoatmospheric PCO2, J. Sediment. Res., 81,
394–400, https://doi.org/10.2110/jsr.2011.36, 2011.
Mutterlose, J., Bornemann, A., and Herrle, J.: The Aptian – Albian cold
snap: Evidence for “mid” Cretaceous icehouse interludes, Neues Jahrb. Geol. P.-A., 252, 217–225,
https://doi.org/10.1127/0077-7749/2009/0252-0217, 2009.
Nordt, L. C. and Driese, S. D.: New weathering index improves paleorainfall
estimates from Vertisols, Geology, 38, 407–410, https://doi.org/10.1130/g30689.1, 2010.
Passalia, M. G.: Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina, Palaeogeogr. Palaeocl., 273, 17–24, 2009.
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J. M.:
High-temperature environments of human evolution in East Africa based on
bond ordering in paleosol carbonates, P. Natl. Acad. Sci. USA, 107,
11245–11249, https://doi.org/10.1073/pnas.1001824107, 2010.
Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington,
K. W., John, C. M., Kelson, J. R., Bernasconi, S. M., Colman, A. S., Kluge,
T., Olack, G. A., Schauer, A. J., Bajnai, D., Bonifacie, M., Breitenbach, S.
F. M., Fiebig, J., Fernandez, A. B., Henkes, G. A., Hodell, D., Katz, A.,
Kele, S., Lohmann, K. C., Passey, B. H., Peral, M. Y., Petrizzo, D. A.,
Rosenheim, B. E., Tripati, A., Venturelli, R., Young, E. D., and
Winkelstern, I. Z.: Effects of Improved 17O Correction on Interlaboratory
Agreement in Clumped Isotope Calibrations, Estimates of Mineral-Specific
Offsets, and Temperature Dependence of Acid Digestion Fractionation,
Geochem. Geophy. Geosy., 20, 3495–3519, https://doi.org/10.1029/2018gc008127, 2019.
Poulsen, C. J., Pollard, D., and White, T. S.: General circulation model
simulation of the δ18O content of continental precipitation in the
middle Cretaceous: A model-proxy comparison, Geology, 35, 199–202, https://doi.org/10.1130/g23343a.1, 2007.
Retallack, G. J.: Colour guide to paleosols, John Wiley and Sons Ltd., Chichester, UK, 1997.
Retallack, G. J.: Refining a pedogenic-carbonate CO2 paleobarometer to
quantify a middle Miocene greenhouse spike, Palaeogeogr. Palaeocl., 281, 57–65, https://doi.org/10.1016/j.palaeo.2009.07.011,
2009.
Romanek, C. S., Grossman, E. L., and Morse, J. W.: Carbon isotopic
fractionation in synthetic aragonite and calcite: effects of temperature and
precipitation rate, Geochim. Cosmochim. Ac., 56, 419–430, 1992.
Rozanski, K., Luis, A., and Roberto, G.: Isotopic patterns in modern global
precipitation, in: Climate Change in Continental Isotopic Records, edited
by: Swart, P. K., Lohmann, K. C., Mckenzie, J., and Savin, S., Geophysical
Monograph Series, American Geophysical Union, Washington, D.C., USA, 1993.
Schauble, E. A., Ghosh, P., and Eiler, J. M.: Preferential formation of
13C–18O bonds in carbonate minerals, estimated using first-principles
lattice dynamics, Geochim. Cosmochim. Ac., 70, 2510–2529,
https://doi.org/10.1016/j.gca.2006.02.011, 2006.
Schauer, A. J., Kelson, J., Saenger, C., and Huntington, K. W.: Choice of
(17) O correction affects clumped isotope (Delta47) values of CO2 measured with mass spectrometry, Rapid Commun. Mass Spectrom., 30, 2607–2616, https://doi.org/10.1002/rcm.7743, 2016.
Sheldon, N. D. and Tabor, N. J.: Quantitative paleoenvironmental and
paleoclimatic reconstruction using paleosols, Earth-Sci. Rev., 95,
1–52, https://doi.org/10.1016/j.earscirev.2009.03.004, 2009.
Spicer, R. A. and Corfield, R. M.: A review of terrestrial and marine
climates in the Cretaceous with implications for modelling the “Greenhouse
Earth”, Geol. Mag., 129, 169–180, 1992.
Suarez, C. A., Gonzalez, L. A., Ludvigson, G. A., Kirkland, J. I., Cifelli,
R. L., and Kohn, M. J.: Multi-Taxa Isotopic Investigation of Paleohydrology
In the Lower Cretaceous Cedar Mountain Formation, Eastern Utah, U.S.A.:
Deciphering Effects Of the Nevadaplano Plateau On Regional Climate, J. Sediment. Res., 84, 975–987, https://doi.org/10.2110/jsr.2014.76, 2014.
Suarez, M. B., González, L. A., and Ludvigson, G. A.: Quantification of
a greenhouse hydrologic cycle from equatorial to polar latitudes: The
mid-Cretaceous water bearer revisited, Palaeogeogr. Palaeocl., 307, 301–312, https://doi.org/10.1016/j.palaeo.2011.05.027, 2011a.
Suarez, M. B., Passey, B. H., and Kaakinen, A.: Paleosol carbonate multiple
isotopologue signature of active East Asian summer monsoons during the late
Miocene and Pliocene, Geology, 39, 1151–1154, https://doi.org/10.1130/g32350.1, 2011b.
Suarez, M. B., Milder, T., Peng, N., Suarez, C. A., You, H., Li, D., and
Dodson, P.: Chemostratigraphy of the Lower Cretaceous dinosaur-bearing
Xiagou and Zhonggou Formations, Yujingzi Basin, Northwest China, J.
Vertebr. Paleontol., 38, 12–21, https://doi.org/10.1080/02724634.2018.1510412, 2018.
Tabor, C. R., Poulsen, C. J., Lunt, D. J., Rosenbloom, N. A., Otto-Bliesner,
B. L., Markwick, P. J., Brady, E. C., Farnsworth, A., and Feng, R.: The
cause of Late Cretaceous cooling: A multimodel-proxy comparison, Geology,
44, 963–966, 2016.
Tabor, N. J. and Myers, T. S.: Paleosols as Indicators of Paleoenvironment
and Paleoclimate, Annu. Rev. Earth Pl. Sc., 43,
333–361, https://doi.org/10.1146/annurev-earth-060614-105355, 2015.
Torsvik, T. H., VanderVoo, R., Preeden, U., MacNiocaill, C., Steinberger,
B., Doubrovine, P. V., vanHinsbergen, D. J. J., Domeier, M., Gaina, C.,
Tovher, E., Meert, J. G., McCausland, P. J., and Cocks, L. R. M.:
Phanerozoic polar wander, paleogeography and dynamics, Earth-Sci. Rev., 114, 325–368, 2012.
van Hinsbergen, D. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A Paleolatitude Calculator for Paleoclimate Studies, PLoS One, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
Vickers, M. L., Price, G. D., Jerrett, R. M., Sutton, P., Watkinson, M. P.,
and FitzPatrick, M.: The duration and magnitude of Cretaceous cool events:
Evidence from the northern high latitudes, GSA Bulletin, 131, 1979–1994,
https://doi.org/10.1130/b35074.1, 2019.
Vincent, S. J. and Allen, M. B.: Evolution of the Minle and Chaoshui Bains,
China: Implications for Mesozoic strike-slip basin formation in Central
Asia, GSA Bulletin, 111, 725–742, 1999.
Wallmann, K.: Controls on the Cretaceous and Cenozoic evolution of seawater
composition, atmospheric CO2 and climate, Geochim. Cosmochim. Ac.,
65, 3005–3025, 2001.
White, T. S., González, L. A., Ludvigson, G. A., and Poulsen, C. J.:
Middle Cretaceous greenhouse hydrologic cycle of North America, Geology, 29,
363–366, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451,
279–283, https://doi.org/10.1038/nature06588, 2008.
Zeebe, R. E.: LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4, Geosci. Model Dev., 5, 149–166, https://doi.org/10.5194/gmd-5-149-2012, 2012.
Zheng, D., Wang, H., Li, S., Wang, B., Jarzembowski, E. A., Dong, C., Fang,
Y., Teng, X., Yu, T., Yang, L., Li, Y., Zhao, X., Xue, N., Chang, S.-C., and
Zhang, H.: Synthesis of a chrono- and biostratigraphical framework for the
Lower Cretaceous of Jiuquan, NW China: Implications for major evolutionary
events, Earth-Sci. Rev., 213, 103474, https://doi.org/10.1016/j.earscirev.2020.103474, 2021.
Zhou, J. and Chafetz, H. S.: Biogenic caliches in Texas: The role of
organisms and effect of climate, Sediment. Geol., 222, 207–225,
https://doi.org/10.1016/j.sedgeo.2009.09.003, 2009.
Zhou, J., Poulsen, C. J., Pollard, D., and White, T. S.: Simulation of
modern and middle Cretaceous marine δ18O with an ocean-atmosphere
general circulation model, Paleoceanography, 23, PA3223,
https://doi.org/10.1029/2008pa001596, 2008.
Short summary
This study investigates the coupling of climate and the carbon and hydrologic cycles in Asia ~ 113 million years ago to provide a more complete continental perspective on a dynamic climate interval associated with global ocean anoxic events. We find relatively cool conditions and a close coupling between the amount of CO2 in the atmosphere, air temperature and rainfall in Asia. To quantify these shifts, chemical measurements from continental soils which formed during this interval are utilized.
This study investigates the coupling of climate and the carbon and hydrologic cycles in Asia...