Articles | Volume 17, issue 4
https://doi.org/10.5194/cp-17-1547-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1547-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Million-year-scale alternation of warm–humid and semi-arid periods as a mid-latitude climate mode in the Early Jurassic (late Sinemurian, Laurasian Seaway)
Thomas Munier
CORRESPONDING AUTHOR
Biogéosciences, UMR 6282, uB/CNRS, Université Bourgogne
Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
ISTeP, UMR 7193, SU/CNRS, Sorbonne Université, 4 Place Jussieu,
75005 Paris, France
Jean-François Deconinck
Biogéosciences, UMR 6282, uB/CNRS, Université Bourgogne
Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
Pierre Pellenard
Biogéosciences, UMR 6282, uB/CNRS, Université Bourgogne
Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
Stephen P. Hesselbo
Camborne School of Mines and the Environment and Sustainability
Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE,
UK
James B. Riding
British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
Clemens V. Ullmann
Camborne School of Mines and the Environment and Sustainability
Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE,
UK
Cédric Bougeault
Biogéosciences, UMR 6282, uB/CNRS, Université Bourgogne
Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
Mathilde Mercuzot
Géosciences Rennes, UMR 6118, UR/CNRS, Université Rennes 1,
Campus de Beaulieu, CS 74205 35042 Rennes CEDEX, France
Anne-Lise Santoni
Biogéosciences, UMR 6282, uB/CNRS, Université Bourgogne
Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
Émilia Huret
Agence Nationale pour la gestion des déchets radioactifs, Centre de Meuse/Haute-Marne, RD 960, 55290 Bure, France
Philippe Landrein
Agence Nationale pour la gestion des déchets radioactifs, Centre de Meuse/Haute-Marne, RD 960, 55290 Bure, France
Related authors
No articles found.
Teuntje P. Hollaar, Claire M. Belcher, Micha Ruhl, Jean-François Deconinck, and Stephen P. Hesselbo
Biogeosciences, 21, 2795–2809, https://doi.org/10.5194/bg-21-2795-2024, https://doi.org/10.5194/bg-21-2795-2024, 2024
Short summary
Short summary
Fires are limited in year-round wet climates (tropical rainforests; too wet), and in year-round dry climates (deserts; no fuel). This concept, the intermediate-productivity gradient, explains the global pattern of fire activity. Here we test this concept for climate states of the Jurassic (~190 Myr ago). We find that the intermediate-productivity gradient also applies in the Jurassic despite the very different ecosystem assemblages, with fires most frequent at times of high seasonality.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Teuntje P. Hollaar, Stephen P. Hesselbo, Jean-François Deconinck, Magret Damaschke, Clemens V. Ullmann, Mengjie Jiang, and Claire M. Belcher
Clim. Past, 19, 979–997, https://doi.org/10.5194/cp-19-979-2023, https://doi.org/10.5194/cp-19-979-2023, 2023
Short summary
Short summary
Palaeoclimatological reconstructions aid our understanding of current and future climate change. In the Pliensbachian (Early Jurassic) a climatic cooling event occurred globally. We show that this cooling event has a significant impact on the depositional environment of the Cardigan Bay basin but that the 405 kyr eccentricity cycle remained the dominant control on terrestrial and marine depositional processes.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
Clemens Vinzenz Ullmann and Philip A. E. Pogge von Strandmann
Biogeosciences, 14, 89–97, https://doi.org/10.5194/bg-14-89-2017, https://doi.org/10.5194/bg-14-89-2017, 2017
Short summary
Short summary
This study documents how much control growth rate has on the chemical composition of fossil shell material. Using a series of chemical analyses of the fossil hard part of a belemnite, an extinct marine predator, a clear connection between the rate of calcite formation and its magnesium and strontium contents was found. These findings provide further insight into biomineralization processes and help better understand chemical signatures of fossils as proxies for palaeoenvironmental conditions.
S. P. Hesselbo, C. J. Bjerrum, L. A. Hinnov, C. MacNiocaill, K. G. Miller, J. B. Riding, B. van de Schootbrugge, and the Mochras Revisited Science Team
Sci. Dril., 16, 81–91, https://doi.org/10.5194/sd-16-81-2013, https://doi.org/10.5194/sd-16-81-2013, 2013
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Pre-Cenozoic
Development of longitudinal dunes under Pangaean atmospheric circulation
Palaeoclimate evolution across the Cretaceous–Palaeogene boundary in the Nanxiong Basin (SE China) recorded by red strata and its correlation with marine records
Hiroki Shozaki and Hitoshi Hasegawa
Clim. Past, 18, 1529–1539, https://doi.org/10.5194/cp-18-1529-2022, https://doi.org/10.5194/cp-18-1529-2022, 2022
Short summary
Short summary
Atmospheric circulation in the supercontinent of Pangaea is thought to have been significantly different from today. We present the spatial distribution of palaeowind directions recorded in Lower Jurassic aeolian sandstones in the western US. This reveals the development of longitudinal dunes formed by a combination of westerly, northwesterly, and northeasterly palaeowinds. The reconstructed palaeowind pattern at ~19–27°N is consistent with the model-generated surface wind pattern in Pangaea.
Mingming Ma, Xiuming Liu, and Wenyan Wang
Clim. Past, 14, 287–302, https://doi.org/10.5194/cp-14-287-2018, https://doi.org/10.5194/cp-14-287-2018, 2018
Short summary
Short summary
Significant climate changes and biotic turnovers occurred across the Cretaceous–Paleogene boundary (KTB) interval. It is of great significance to carry out research on palaeoclimate evolution across the KTB in terrestrial basins because we lack many KTB records in this part of the world. Here we provide a new terrestrial record from the Nanxiong Basin (SE China) and compare it with marine records to provide reliable terrestrial records for future investigation of ocean–land climate interactions.
Cited articles
Ader, M. and Javoy, M.: Diagenèse précoce en milieu sulfuré
réducteur: une étude isotopique dans le Jurassique basal du Bassin
parisien, Comptes Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science, 327, 803–809, https://doi.org/10.1016/S1251-8050(99)80054-8, 1998.
Anderson, T. F.: Self-diffusion of carbon and oxygen in calcite by isotope
exchange with carbon dioxide, J. Geophys. Res., 74, 3918–3932, https://doi.org/10.1029/JB074i015p03918, 1969.
Barbarand, J., Bour I., Pagel, M., Quesnel, F., Delcambre, B., Dupuis, C., and Yans, J.: Post-Paleozoic evolution of the northern Ardenne Massif
constrained by apatite fission-track thermochronology and geological data,
BSGF – Earth Sci. Bull., 189, 16, https://doi.org/10.1051/bsgf/2018015, 2018.
Beccaletto, L., Hanot, F., Serrano, O., and Marc, S.: Overview of the subsurface structural pattern of the Paris Basin (France): Insights from the
reprocessing and interpretation of regional seismic lines, Mar. Petrol. Geol., 28, 861–879, https://doi.org/10.1016/j.marpetgeo.2010.11.006, 2011.
Bjerrum, C. J., Surlyk, F., Callomon, J. H., and Slingerland, R. L.: Numerical paleoceanographic study of the Early Jurassic Transcontinental Laurasian Seaway, Paleoceanography, 16, 390–404, https://doi.org/10.1029/2000PA000512, 2001.
Blaise, T., Barbarand, J., Kars, M., Ploquin, F., Aubourg, C., Brigaud, B.,
Cathelineau, M., El Albani, A., Gautheron, C., Izart, A., Janots, D.,
Michels, R., Pagel, M., Pozzi, J. P., Boiron, M. C., and Landrein, P.:
Reconstruction of low temperature (<100 ∘C) burial in
sedimentary basins: a comparison of geothermometer in the intracontinental
Paris Basin, Mar. Petrol. Geol., 53, 71–87,
https://doi.org/10.1016/j.marpetgeo.2013.08.019, 2014.
Bougeault, C., Pellenard, P., Deconinck, J. F., Hesselbo, S. P., Dommergues,
J. L., Bruneau, L., Cocquerez, T., Laffont, R., Huret, E., and Thibault, N.:
Climatic and palaeoceanographic changes during the Pliensbachian (Early
Jurassic) inferred from clay mineralogy and stable isotope (CO) geochemistry
(NW Europe), Global Planet. Change, 149, 139–152,
https://doi.org/10.1016/j.gloplacha.2017.01.005, 2017.
Brittain, J. M., Higgs, K. T., and Riding, J. B.: The palynology of the Pabay Shale Formation (Lower Jurassic) of SW Raasay, northern Scotland, Scot. J. Geol., 46, 67–75, https://doi.org/10.1144/0036-9276/01-391, 2010.
Bucefalo Palliani, R. and Riding, J. B.: A palynological investigation of the
Lower and lowermost Middle Jurassic strata (Sinemurian to Aalenian) from
North Yorkshire, UK, P. Yorks. Geol. Soc., 53, 1–16, https://doi.org/10.1144/pygs.53.1.1, 2000.
Chamley, H.: Clay Sedimentology, Springer Verlag, Berlin, 623 pp., ISBN 978-3-642-85918-8, 1989.
Chandler, M. A., Rind, D., and Ruedy, R.: Pangean climate during the Early
Jurassic: GCM simulations and the sedimentary record of paleoclimate,
Geol. Soc. Am. Bull., 104, 543–559,
https://doi.org/10.1130/0016-7606(1992)104<0543:PCDTEJ>2.3.CO;2, 1992.
Coe, A. L. and Hesselbo, S. P.: Discussion of Hallam (1999). “Evidence of
sea-level fall in sequence stratigraphy: examples from the Jurassic”,
Geology, 28, 95–96, 2000.
Copestake, P. and Johnson, B.: Lower Jurassic Foraminifera from the Llanbedr
(Mochras Farm) Borehole, North/Wales, UK, Monograph of the
Palaeontographical Society, London, 167, 1–403, 2014.
Corcoran, D. and Clayton, G.: Interpretation of vitrinite reflectance profiles in the central Irish Sea area: Implications for the timing of organic maturation, J. Petrol. Geol., 22, 261–286,
https://doi.org/10.1111/j.1747-5457.1999.tb00987.x, 1999.
Damborenea, S. E., Echevarria, J., and Ros-Franch, S.: Southern Hemisphere
Palaeobiogeography of Triassic-Jurassic Marine Bivalves, Springer Briefs
Seaways and Landbridges: Southern Hemisphere Biogeographic Connections
Through Time, Springer Science & Business Media, Berlin, https://doi.org/10.1007/978-94-007-5098-2_1, 2013.
Danisch, J., Kabiri, L., Nutz, A., and Bodin, S.: Chemostratigraphy of Late
Sinemurian–Early Pliensbachian shallow-to deep-water deposits of the
Central High Atlas Basin: Paleoenvironmental implications, J. Afr. Earth Sci., 153, 239–249, https://doi.org/10.1016/j.jafrearsci.2019.03.003, 2019.
Davies, J. H. F. L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., and
Schaltegger, U.: End-Triassic mass extinction started by intrusive CAMP
activity, Nat. Commun., 8, 15596, https://doi.org/10.1038/ncomms15596, 2017.
Debrabant, P., Chamley, H., Deconinck, J. F., Récourt, P., and Trouiller,
A.: Clay sedimentology, mineralogy and chemistry of Mesozoic sediments
drilled in the northern Paris Basin, Sci. Dril., 3, 138–152, 1992.
Deconinck, J. F.: Identification de l'origine détritique ou
diagénétique des assemblages argileux: le cas des alternances
marne-calcaire du Crétacé inférieur subalpin, Bulletin de la
Société Géologique de France, 3, 139–145,
https://doi.org/10.2113/gssgfbull.III.1.139, 1987 (in French).
Deconinck, J. F. and Chamley, H.: Diversity of smectite origins in Late
Cretaceous sediments: example of chalks from northern France, Clay Miner., 30, 365–379, https://doi.org/10.1180/claymin.1995.030.4.09, 1995.
Deconinck, J. F. and Debrabant, P.: Diagenèse des argiles dans le domaine
subalpin: rôles respectifs de la lithologie, de l'enfouissement et de
la surcharge tectonique, Revue de Géologie Dynamique et de
Géographie Physique, 26, 321–330, 1985.
Deconinck, J. F., Hesselbo, S. P., and Pellenard, P.: Climatic and sea-level
control of Jurassic (Pliensbachian) clay mineral sedimentation in the
Cardigan Bay Basin, Llanbedr (Mochras Farm) borehole, Wales, Sedimentology,
66, 2769–2783, https://doi.org/10.1111/sed.12610, 2019.
Dellisanti, F., Pini, G. A., and Baudin, F.: Use of Tmax as a thermal
maturity indicator in orogenic successions and comparison with clay mineral
evolution, Clay Miner., 45, 115–130, https://doi.org/10.1180/claymin.2010.045.1.115, 2010.
Dera, G., Pucéat, E., Pellenard, P., Neige, P., Delsate, D., Joachimski,
M. M., Reisberg, L., and Martinez, M.: Water mass exchange and variations in
seawater temperature in the NW Tethys during the Early Jurassic: evidence
from neodymium and oxygen isotopes of fish teeth and belemnites, Earth
Planet. Sc. Lett., 286, 198–207, https://doi.org/10.1016/j.epsl.2009.06.027, 2009a.
Dera, G., Pellenard, P., Neige, P., Deconinck, J. F., Pucéat, E.,
and Dommergues, J. L.: Distribution of clay minerals in Early Jurassic
Peritethyan seas: palaeoclimatic significance inferred from multiproxy
comparisons, Palaeogeogr. Palaeocl., 271, 39–51, https://doi.org/10.1016/j.palaeo.2008.09.010, 2009b.
Dera, G., Brigaud, B., Monna, F., Laffont, R., Pucéat, E., Deconinck, J. F., Pellenard, P., Joachimski, M. M., and Durlet, C.: Climatic ups and downs in a disturbed Jurassic world, Geology, 39, 215–218, https://doi.org/10.1130/G31579.1, 2011.
Dera, G., Prunier, J., Smith, P. L., Haggart, J. W., Popov, E., Guzhov, A.,
Rogov, M., Delsate, D., Thies, D., Cuny, G., Pucéat, E., Charbonnier,
G., and Bayon, G.: Nd isotope constraints on ocean circulation, paleoclimate,
and continental drainage during the Jurassic breakup of Pangea, Gondwana
Res., 27, 1599–1615, https://doi.org/10.1016/j.gr.2014.02.006, 2015.
Disnar, J. R., Le Strat, P., Farjanel, G., and Fikri, A.: Sédimentation de la matière organique dans le nord-est du Bassin de Paris : conséquences sur le dépôt des argilites carbonées du Toarcien inférieur (Organic matter sedimentation in the northeast of the Paris Basin: consequences on the deposition of the lower Toarcian black shales), Chem. Geol., 131, 15–35, https://doi.org/10.1016/0009-2541(96)00021-6, 1996 (in French).
Dobson, M. R. and Whittington, R. J.: The geology of Cardigan Bay, P. Geologist. Assoc., 98, 331–353, https://doi.org/10.1016/S0016-7878(87)80074-3, 1987.
Duarte, L. V., Comas-Rengifo, M. J., Silva, R. L., Paredes, R., and Goy, A.: Carbon isotope stratigraphy and ammonite biochronostratigraphy across the
Sinemurian–Pliensbachian boundary in the western Iberian margin, B. Geosci., 89, 719–736, https://doi.org/10.3140/bull.geosci.1476, 2014.
Fauconnier, D.: Jurassic palynology from a borehole in the Champagne area,
France-correlation of the lower Callovian-middle Oxfordian using sequence
stratigraphy, Rev. Palaeobot. Palyno., 87, 15–26,
https://doi.org/10.1016/0034-6667(94)00142-7, 1995.
Franceschi, M., Corso, J. D., Cobianchi, M., Roghi, G., Penasa, L., Picotti,
V., and Preto, N.: Tethyan carbonate platform transformations during the
Early Jurassic (Sinemurian–Pliensbachian, Southern Alps): Comparison with
the Late Triassic Carnian Pluvial Episode, GSA Bulletin, 131, 1255–1275,
https://doi.org/10.1130/B31765.1, 2019.
Gibbs, R. J.: Clay mineral segregation in the marine environment, J. Sediment. Petrol., 47, 237–243, https://doi.org/10.1306/212F713A-2B24-11D7-8648000102C1865D, 1977.
Godet, A., Bodin, S., Adatte, T., and Föllmi, K. B.: Platform-induced
clay-mineral fractionation along a northern Tethyan basin-platform transect:
implications for the interpretation of Early Cretaceous climate change (Late
Hauterivian-Early Aptian), Cretaceous Res., 29, 830–847,
https://doi.org/10.1016/j.cretres.2008.05.028, 2008.
Gómez, J. J., Comas-Rengifo, M. J., and Goy, A.: Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain), Clim. Past, 12, 1199–1214, https://doi.org/10.5194/cp-12-1199-2016, 2016.
Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart,
G., Friedenberg, R., Garcia, J. P., Gaulier, J. M., Gaumet, F., Grosdoy, B.,
Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C.,
Serrano, O., and Grandjean, G.: Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints, Geodin. Acta, 13, 189–245,
https://doi.org/10.1080/09853111.2000.11105372, 2000.
Hallam, A.: Evidence of sea-level fall in sequence stratigraphy: Examples
from the Jurassic, Geology, 27, 343–346,
https://doi.org/10.1130/0091-7613(1999)027<0343:EOSLFI>2.3.CO;2, 1999.
Hallam, A.: Evidence of sea-level fall in sequence stratigraphy: Examples
from the Jurassic: Comment and Reply: REPLY, Geology, 28, 96,
https://doi.org/10.1130/0091-7613(2000)28<96:EOSFIS>2.0.CO;2, 2000.
Han, G., Préat, A., Chamley, H., Deconinck, J. F., and Mansy, J. L.: Palaeozoic clay mineral sedimentation and diagenesis in the Dinant and Avesnes basins (Belgium, France): relationships with variscan tectonism, Sediment. Geol., 136, 217–238, https://doi.org/10.1016/S0037-0738(00)00103-2, 2000.
Haq, B. U.: Jurassic Sea level Variations: A Reappraisal, GSA today, 28,
4–10, https://doi.org/10.1130/GSATG359A.1, 2018.
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P. C.,
and Vail, P. R.: Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. Mesozoic and Cenozoic Sequence Stratigraphy of European
Basins, SEPM Spec. P. No. 60, 3–13, 1998.
Hesselbo, S. P.: Sequence stratigraphy and inferred relative sea-level change
from the onshore British Jurassic, P. Geologist. Assoc., 119, 19–34, https://doi.org/10.1016/S0016-7878(59)80069-9, 2008.
Hesselbo, S. P., Meister, C., and Gröcke, D. R.: A potential global stratotype for the Sinemurian–Pliensbachian boundary (lower Jurassic), Robin Hood's Bay, UK: ammonite faunas and isotope stratigraphy, Geol. Mag., 137, 601–607, 2000.
Hesselbo, S. P., Deconinck, J. F., Huggett, J. M., and Morgans-Bell, H. S.: Late Jurassic palaeoclimatic change from clay mineralogy and gamma-ray
spectrometry of the Kimmeridge Clay, Dorset, UK, J. Geol. Soc., 166, 1123–1133, https://doi.org/10.1144/0016-76492009-070, 2009.
Hesselbo, S. P., Bjerrum, C. J., Hinnov, L. A., MacNiocaill, C., Miller, K. G., Riding, J. B., van de Schootbrugge, B., and the Mochras Revisited Science Team: Mochras borehole revisited: a new global standard for Early Jurassic earth history, Sci. Dril., 16, 81–91, https://doi.org/10.5194/sd-16-81-2013, 2013.
Hesselbo, S. P., Hudson, A. J. L., Huggett, J. M., Leng, M. J., Riding, J. B., and Ullmann, C. V.: Palynological, geochemical, and mineralogical characteristics of the Early Jurassic Liasidium Event in the Cleveland Basin, Yorkshire, UK, Newsl. Stratigr., 53, 191–211,
https://doi.org/10.1127/nos/2019/0536, 2020.
Hillier, S., Wilson, M. J., and Merriman, R. J.: Clay mineralogy of the Old Red Sandstone and Devonian sedimentary rocks of Wales, Scotland and
England, Clay Miner., 41, 433–471, https://doi.org/10.1180/0009855064110203, 2006.
Holford, S. P., Green, P. F., and Turner, J. P.: Palaeothermal and compaction
studies in the Mochras borehole (NW Wales) reveal early Cretaceous and
Neogene exhumation and argue against regional Palaeogene uplift in the
southern Irish Sea, J. Geol. Soc., 162, 829–840,
https://doi.org/10.1144/0016-764904-118, 2005.
Hudson, J. D.: Stable isotopes and limestone lithification, J. Geol. Soc., 133, 637–660, https://doi.org/10.1144/gsjgs.133.6.0637, 1977.
Hurst, A.: The implications of clay mineralogy to palaeoclimate and
provenance during the Jurassic in NE Scotland, Scot. J. Geol., 21, 143–160, https://doi.org/10.1144/sjg21020143, 1985.
Jacquin, T., Dardeau, G., Durlet, C., de Graciansky, P.-C., and Hantzpergue, P.: The North-Sea cycle: an overview of 2nd-order transgressive/regressive
facies cycles in western Europe, in: Mesozoic and Cenozoic Sequence
Stratigraphy of European Basins, edited by: de Graciansky, P. C., Hardenbol, J., Jacquin, T., Vail, P. R., and Farley, M. B., SEPM Spec. P., 60, 445–466,
1998.
Jeans, C. V.: Clay mineralogy of the Jurassic strata of the British Isles,
Clay Miner., 41, 187–307, https://doi.org/10.1180/0009855064110198, 2006.
Jeans, C. V., Mitchell, J. G., Fisher, M. J., Wray, D. S., and Hall, I. R.: Age, origin and climatic signal of English Mesozoic clays based on K/Ar
signatures, Clay Miner., 36, 515–539, https://doi.org/10.1180/0009855013640006, 2001.
Jenkyns, H. C. and Weedon, G. P.: Chemostratigraphy (CaCO3, TOC, δ13Corg) of Sinemurian (Lower Jurassic) black shales from the Wessex Basin, Dorset and palaeoenvironmental implications, Newsl. Stratigr., 46, 1–21, https://doi.org/10.1127/0078-0421/2013/0029, 2013.
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., and Parkinson, D. N.: Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography, J. Geol. Soc., 159, 351–378, https://doi.org/10.1144/0016-764901-130, 2002.
Jones, C. E., Jenkyns, H. C., and Hesselbo, S. P.: Strontium isotopes in Early Jurassic seawater, Geochim. Cosmochim. Ac., 58, 1285–1301,
https://doi.org/10.1016/0016-7037(94)90382-4, 1994.
Kemp, S. J., Merriman, R. J., and Bouch, J. E.: Clay mineral reaction progress – the maturity and burial history of the Lias Group of England and Wales, Clay Miner., 40, 43–61, https://doi.org/10.1180/0009855054010154, 2005.
Korte, C. and Hesselbo, S. P.: Shallow-marine carbon- and oxygen-isotope and
elemental records indicate icehouse-greenhouse cycles during the Early
Jurassic, Paleoceanography, 26, PA4219, https://doi.org/10.1029/2011PA002160, 2011.
Korte, C., Hesselbo, S. P., Ullmann, C. V., Dietl, G., Ruhl, M., Schweigert,
G., and Thibault, N.: Jurassic climate mode governed by ocean gateway, Nat.
Commun., 6, 1–7, https://doi.org/10.1038/ncomms10015, 2015.
Korte, C., Ruhl, M., Pálfy, J., Ullmann, C. V., and Hesselbo, S. P.: Chemostratigraphy across the Triassic–Jurassic boundary, in: Chemostratigraphy Across Major Chronological Boundaries, edited by: Sial, A. N., Gaucher, C., Ramkumar, M., and Ferreira, V. P., The American Geophysical Union, Geophysical Monograph 240, 183–210, 2019.
Lang, W. D.: The Coinstone of the Charmouth Lias, Proceedings of the Dorset
Natural History and Archaeological Society, 67, 145–149, 1945.
Lanson, B., Sakharov, B. A., Claret, F., and Drits, V. A.: Diagenetic
smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray
diffraction results using the multi-specimen method, Am. J. Sci., 309, 476–516, https://doi.org/10.2475/06.2009.03, 2009.
Lefrançois, A., Deconinck, J. F., Mansy, J. L., and Proust, J. N.: Structure, sédimentologie et minéralogie des argiles des formations de Beaulieu et d'Hydrequent (Dévonien supérieur du Bas-Boulonnais), Annales de la Société géologique du Nord, 2, 123–134, 1993 (in French).
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., and McKenzie, J. A.: Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary
diagenesis, Geochim. Cosmochim. Ac., 66, 3573–3584,
https://doi.org/10.1016/S0016-7037(02)00968-7, 2002.
Levert, J. and Ferry, S.: Diagenèse argileuse complexe dans le
mésozoïque subalpin révélée par cartographie des
proportions relatives d'argiles selon des niveaux isochrones, Bulletin de la
Société Géologique de France, 4, 1029–1038,
https://doi.org/10.2113/gssgfbull.IV.6.1029, 1988 (in French).
Marshall, J. D.: Climatic and oceanographic isotopic signals from the
carbonate rock record and their preservation, Geol. Mag., 129, 143–160, https://doi.org/10.1017/S0016756800008244, 1992.
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., and De Min, A.: Extensive 200-million-year-old continental flood basalts of the
Central Atlantic Magmatic Province, Science, 284, 616–618,
https://doi.org/10.1126/science.284.5414.616, 1999.
Masetti, D., Figus, B., Jenkyns, H. C., Barattolo, F., Mattioli, E., and
Posenato, R.: Carbon-isotope anomalies and demise of carbonate platforms in
the Sinemurian (Early Jurassic) of the Tethyan region: evidence from the
Southern Alps (Northern Italy), Geol. Mag., 154, 625-650,
https://doi.org/10.1017/S0016756816000273, 2017.
McHone, J. G.: Non-plume magmatism and rifting during the opening of the
central Atlantic Ocean, Tectonophysics, 316, 287–296,
https://doi.org/10.1016/S0040-1951(99)00260-7, 2000.
Mercuzot, M., Pellenard, P., Durlet, C., Bougeault, C., Meister, C.,
Dommergues, J. L., Thibault, N., Baudin, F., Mathieu, O., Bruneau, L., Huret,
E., and El Hmidi, K.: Carbon-isotope events during the Pliensbachian (Lower
Jurassic) on the African and European margins of the NW Tethyan Realm,
Newsl. Stratigr., 53, 41–69, https://doi.org/10.1127/nos/2019/0502, 2020.
Merriman, R. J.: Clay mineral assemblages in British Lower Palaeozoic
mudrocks, Clay Miner., 41, 473–512, https://doi.org/10.1180/0009855064110204, 2006.
Meyers, P. A.: Preservation of elemental and isotopic source identification
of sedimentary organic matter, Chem. Geol., 114, 289–302,
https://doi.org/10.1016/0009-2541(94)90059-0, 1994.
Moore, D. M. and Reynolds, R. C.: X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York, 378 pp., ISBN 0 19 508713 5, 1997.
Moreau, M. G., Bucher, H., Bodergat, A. M., and Guex, J.: Pliensbachian
magnetostratigraphy: new data from Paris Basin (France), Earth Planet. Sc. Lett., 203, 755–767, https://doi.org/10.1016/S0012-821X(02)00898-1, 2002.
Müller, A., Parting, H., and Thorez, J.: Caractères
sédimentologiques et minéralogiques des couches de passage du Trias
au Lias sur la bordure nord-est du Bassin de Paris, Annales de la Société géologique de Belgique, 96, 671–707, 1973 (in French).
Osete, M. L., Gómez, J. J., Pavón-Carrasco, F. J., Villalaín, J. J., Palencia-Ortas, A., Ruiz-Martínez, V. C., and Heller, F.: The
evolution of Iberia during the Jurassic from palaeomagnetic data, Tectonophysics, 502, 105–120, https://doi.org/10.1016/j.tecto.2010.05.025, 2011.
Page, K. N.: The Lower Jurassic of Europe: its subdivision and correlation, Geol. Surv. Den. Greenl., 1, 23–59, https://doi.org/10.34194/geusb.v1.4646, 2003.
Pellenard, P. and Deconinck, J. F.: Mineralogical variability of Callovo-Oxfordian clays from the Paris Basin and the Subalpine Basin, C. R.
Geosci., 338, 854–866, https://doi.org/10.1016/j.crte.2006.05.008, 2006.
Peti, L., Thibault, N., Clémence, M. E., Korte, C., Dommergues, J. L.,
Bougeault, C., Pellenard, P., Jelby, M. E., and Ullmann, C. V.: Sinemurian–Pliensbachian calcareous nannofossil biostratigraphy and organic
carbon isotope stratigraphy in the Paris Basin: calibration to the ammonite
biozonation of NW Europe, Palaeogeogr. Palaeocl., 468, 142–161, https://doi.org/10.1016/j.palaeo.2016.12.004, 2017.
Petschick, R.: MacDiff 4.2.2, available at: http://servermac.geologie.uni-frankfurt.de/Staff/Homepages/Petschick/classicsoftware.html (last access: 20 June 2021), 2000.
Plancq, J., Mattioli, E., Pittet, B., Baudin, F., Duarte, L. V., Boussaha,
M., and Grossi, V.: A calcareous nannofossil and organic geochemical study of
marine palaeoenvironmental changes across the Sinemurian/Pliensbachian
(early Jurassic, ∼191 Ma) in Portugal, Palaeogeogr. Palaeocl., 449, 1–12, https://doi.org/10.1016/j.palaeo.2016.02.009, 2016.
Poças Ribeiro, N., Mendonça Filho, J. G., Duarte, L. V., Silva, R. L., Mendonça, J. O., and Silva, T. F.: Palynofacies and organic geochemistry of the Sinemurian carbonate deposits in the western Lusitanian Basin (Portugal): Coimbra and Água de Madeiros formations, Int. J. Coal Geol., 111, 37–52, https://doi.org/10.1016/j.coal.2012.12.006, 2013.
Porter, S. J., Selby, D., Suzuki, H., and Gröcke, D.: Opening of a trans
Pangaean marine corridor during the Early Jurassic: insights from osmium
isotopes across the Sinemurian–Pliensbachian GSSP, Robin Hood's Bay, UK,
Palaeogeogr. Palaeocl., 375, 50–58,
https://doi.org/10.1016/j.palaeo.2013.02.012, 2013.
Price, G. D., Baker, S. J., van de Velde, J., and Clémence, M. E.:
High-resolution carbon cycle and seawater temperature evolution during the
Early Jurassic (Sinemurian-Early Pliensbachian), Geochem. Geophy. Geosy., 17, 3917–3928, https://doi.org/10.1002/2016GC006541, 2016.
Riding, J. B., Leng, M. J., Kender, S., Hesselbo, S. P., and Feist-Burkhardt, S.: Isotopic and palynological evidence for a new early Jurassic environmental perturbation, Palaeogeogr. Palaeocl., 374, 16–27, https://doi.org/10.1016/j.palaeo.2012.10.019, 2013.
Raucsik, B. and Varga, A.: Climato-environmental controls on clay mineralogy of the Hettangian–Bajocian successions of the Mecsek Mountains, Hungary: an
evidence for extreme continental weathering during the early Toarcian oceanic anoxic event, Palaeogeogr. Palaeocl., 265, 1–13, https://doi.org/10.1016/j.palaeo.2008.02.004, 2008.
Robaszynski, F., Pomerol, B., Masure, E., Bellier, J. P., and Deconinck, J. F.: Stratigraphy and stage boundaries in a type-section of the Late Cretaceous chalk from the East Paris basin: The “Craie 700” Provins boreholes, Cretaceous Res., 26, 157–169, https://doi.org/10.1016/j.cretres.2004.10.003, 2005.
Ruffell, A., McKinley, J. M., and Worden, R. H.: Comparison of clay mineral
stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW
Europe, Philos. T. Roy. Soc. A, 360, 675–693, https://doi.org/10.1098/rsta.2001.0961, 2002.
Ruhl, M., Hesselbo, S. P., Hinnov, L., Jenkyns, H. C., Xu, W., Riding J. B.,
Storm M., Minisini D., Ullmann C. V., and Leng, M. J.: Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations, Earth Planet. Sc. Lett., 455, 149–165,
https://doi.org/10.1016/j.epsl.2016.08.038, 2016.
Schöllhorn, I., Adatte, T., Van de Schootbrugge, B., Houben, A.,
Charbonnier, G., Janssen, N., and Föllmi, K. G.: Climate and environmental response to the break-up of Pangea during the Early Jurassic
(Hettangian-Pliensbachian); the Dorset coast (UK) revisited, Global Planet. Change, 185, 103096, https://doi.org/10.1016/j.gloplacha.2019.103096, 2020a.
Schöllhorn, I., Adatte, T., Charbonnier, G., Mattioli, E., Spangenberg,
J. E., and Föllmi, K. G.: Pliensbachian environmental perturbations and their potential link with volcanic activity: Swiss and British geochemical
records, Sediment. Geol., 406, 105665, https://doi.org/10.1016/j.sedgeo.2020.105665, 2020b.
Shaw, H. F.: Clay mineralogy of Carboniferous sandstone reservoirs, onshore
and offshore UK, Clay Miner., 41, 417–432,
https://doi.org/10.1180/0009855064110202, 2006.
Spears, D. A.: Clay mineralogy of onshore UK Carboniferous mudrocks, Clay
Miner., 41, 395–416, https://doi.org/10.1180/0009855064110201, 2006.
Stoll, H. M. and Schrag, D. P.: High-resolution stable isotope records from
the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a
greenhouse planet?, Geol. Soc. Am. Bull., 112, 308–319,
https://doi.org/10.1130/0016-7606(2000)112<308:HSIRFT>2.0.CO;2, 2000.
Storm, M. S., Hesselbo, S. P., Jenkyns, H. C., Ruhl, M., Ullmann, C. V., Xu, W., Leng, M. J., Riding, J. B., and Gorbanenko, O.: Orbital pacing and secular evolution of the Early Jurassic carbon cycle, P. Natl. Acad. Sci. USA, 117, 3974–3982, https://doi.org/10.1073/pnas.1912094117, 2020.
Suan, G., van de Schootbrugge, B., Adatte, T., Fiebig, J., and Oschmann, W.: Calibrating the magnitude of the Toarcian carbon cycle perturbation, Paleoceanography, 30, 495–509, https://doi.org/10.1002/2014PA002758, 2015.
Šucha, V., Kraust, I., Gerthofferova, H., Peteš, J., and Serekova, M.: Smectite to illite conversion in bentonites and shales of the East Slovak
Basin, Clay Miner., 28, 243–253, https://doi.org/10.1180/claymin.1993.028.2.06, 1993.
Tappin, D. R., Chadwick, R. A., Jackson, A. A., Wingfield, R. T. R., and Smith, N. J. P.: Geology of Cardigan Bay and the Bristol Channel, United Kingdom offshore regional report, British Geological Survey, HMSO, 107 pp, ISBN 0 11 884506 3, 1994.
Thierry, J., Barrier, E., Abbate, E., et al.: Middle Toarcian, in: Atlas Peri-Tethys Paleogeographical Maps, edited by: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.-F., Cadet, J. P., Crasquin, S., and Sandulescu, M., CGMW, Paris, vol. IXX.CCGM/CGMW, map 8, 2000.
Tucker, R. M. and Arter, G.: The tectonic evolution of the North Celtic Sea and Cardigan Bay basins with special reference to basin inversion,
Tectonophysics, 137, 291–307, https://doi.org/10.1016/0040-1951(87)90324-6, 1987.
Ullmann, C. V., Boyle, R., Duarte, L. V., Hesselbo, S. P., Kasemann, S. A.,
Klein, T., Lenton, T. M., Piazza, V., and Aberhan, M.: Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted
brachiopods, Sci. Rep., 10, 6549, https://doi.org/10.1038/s41598-020-63487-6, 2020.
Ullmann, C. V., Szűcs, D., Jiang, M., Hudson, A. J., and Hesselbo, S. P.: Geochemistry of macrofossil, bulk rock, and secondary calcite in the Early Jurassic strata of the Llanbedr (Mochras Farm) drill core, Cardigan Bay Basin, Wales, UK, Journal of the Geological Society, accepted, 2021.
van de Schootbrugge, B., Bailey, T. R., Rosenthal, Y., Katz, M. E., Wright,
J. D., Miller, K. G., Feist-Burkhardt, S., and Falkowski, P. G.: Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean, Paleobiology, 31, 73–97,
https://doi.org/10.1666/0094-8373(2005)0312.0.CO;2, 2005.
van de Schootbrugge, B., Richoz, S., Pross, J., Luppold, F. W., Hunze, S.,
Wonik, T., Blau, J., Meister, C., Van der Weijst, C. M. H., Suan, G., Fraguas, A., Fiebig, J., Herrle, J. O., Guex, J., Little, C. T. S., Wignall, P. B., Püttmann, W., and Oschmann, W.: The Schandelah Scientific Drilling Project: A 25-million-year record of Early Jurassic palaeo-environmental change from northern Germany, Newsl. Stratigr., 52, 249–296, https://doi.org/10.1127/nos/2018/0259, 2019.
Wall, D.: Microplankton, pollen, and spores from the Lower Jurassic in Britain, Micropaleontology, 11, 151–190, 1965.
Wood, A. and Woodland, A. W.: Borehole at Mochras, west of Llanbedr,
Merionethshire, Nature, 219, 1352, https://doi.org/10.1038/2191352a0, 1968.
Woodland, A. W. (Ed.): The Llanbedr (Mochras Farm) Borehole, Institute of
Geological Sciences, London, Report No. 71/18, 115 pp., 1971.
Xu, W., Ruhl, M., Jenkyns, H. C., Leng, M. J., Huggett, J. M., Minisini, J. M., Ullmann, C. V., Riding, J. B., Weijers, J. W. H., Storm, M. S., and Hesselbo, S. P.: Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK) Earth Planet. Sc. Lett., 484, 396–411, https://doi.org/10.1016/j.epsl.2017.12.037, 2018.
Yang, Z., Moreau, M. G., Bucher, H., Dommergues, J. L., and Trouiller, A.:
Hettangian and Sinemurian magnetostratigraphy from Paris Basin, J. Geophys. Res., 101, 8025–8042, https://doi.org/10.1029/95JB03717, 1996.
Short summary
Clay minerals are witnesses of alteration conditions in continental environments. Lacking high-resolution data on clay minerals, this work highlights wet and semi-arid cycles at mid-latitude in the upper Sinemurian. The higher proportion of kaolinite in the upper part of the obtusum zone and in the oxynotum zone indicates an increase in hydrolysis conditions in a warmer period confirmed by carbon isotopes.
Clay minerals are witnesses of alteration conditions in continental environments. Lacking...