Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
El Niño–Southern Oscillation and internal sea surface temperature variability in the tropical Indian Ocean since 1675
Maike Leupold
CORRESPONDING AUTHOR
Energy and Mineral Resources Group (EMR), Geological Institute, RWTH Aachen University,
52062 Aachen, Germany
Miriam Pfeiffer
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Takaaki K. Watanabe
Department of Natural History Sciences, Faculty of Science, Hokkaido University,
Sapporo 060-0810, Japan
Lars Reuning
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Dieter Garbe-Schönberg
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Chuan-Chou Shen
High-Precision Mass Spectrometry and Environment Change Laboratory
(HISPEC), Department of
Geosciences, National Taiwan University, Taipei
10617, Taiwan
Research Center for Future Earth, National Taiwan University, Taipei LC6L73, Taiwan
Global Change Research Center, National Taiwan University, Taipei
10617, Taiwan
Geert-Jan A. Brummer
Department of Ocean Systems, Royal Netherlands Institute for Sea
Research (NIOZ), and
Utrecht University, 1790 Den Burg, The Netherlands
Related authors
No articles found.
Anne L. Kruijt, Robin van Dijk, Olivier Sulpis, Luc Beaufort, Guillaume Lassus, Geert-Jan Brummer, A. Daniëlle van der Burg, Ben A. Cala, Yasmina Ourradi, Katja T. C. A. Peijnenburg, Matthew P. Humphreys, Sonia Chaabane, Appy Sluijs, and Jack J. Middelburg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4234, https://doi.org/10.5194/egusphere-2025-4234, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We measured the three main types of plankton that produce calcium carbonate in the ocean, at the same time and location. While coccolithophores were the biggest contributors, we found that planktonic gastropods, not foraminifera, were the second largest contributor. This challenges the current view and improves our understanding of how these organisms influence oceans’ carbon cycling.
Saori Ito, Takaaki K. Watanabe, Atsuko Yamazaki, Chuan-Chou Shen, Taro Komagoe, and Tsuyoshi Watanabe
EGUsphere, https://doi.org/10.21203/rs.3.rs-3861020/v3, https://doi.org/10.21203/rs.3.rs-3861020/v3, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents the first coral-based reconstruction of North Pacific Gyre Oscillation (NPGO)/Victoria Mode (VM)-related temperature variability from the Northwestern Pacific, extending back to 1798 Common Era. This new record identifies both historical and recent phases of NPGO/VM-related temperature changes. Our statistical analysis confirms a strong linkage between surface temperature anomalies in the Central Pacific and interannual to decadal NPGO/VM variability over the past 200 years.
Benjamin F. Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past, 21, 405–417, https://doi.org/10.5194/cp-21-405-2025, https://doi.org/10.5194/cp-21-405-2025, 2025
Short summary
Short summary
It is known that coral reefs were absent in the central Indo-Pacific during the Early Pliocene. This study uses a new temperature record based on TEX86H biomarkers from the Coral Sea between 11–2 Ma to show a 2 °C cooling in the central Indo-Pacific during the Late Miocene Cooling (7–5.4 Ma). This cooling triggered changes in terrestrial input, ocean circulation, and temperature. These multiple stressors could have caused reef collapses across the central Indo-Pacific.
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki K. Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan A. Brummer, and Sri Yudawati Cahyarini
Clim. Past, 21, 211–237, https://doi.org/10.5194/cp-21-211-2025, https://doi.org/10.5194/cp-21-211-2025, 2025
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the south-eastern tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1856–1918. We explain this with greater warming in the north-eastern Indian Ocean relative to the south-east, which strengthens surface winds and coastal upwelling in the eastern Indian Ocean, leading to greater cooling south of the Equator.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Cited articles
Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J., and Hantoro, W.
S.: Coral reef death during the 1997 Indian Ocean Dipole linked to
Indonesian wildfires, Science, 301, 952–955,
https://doi.org/10.1126/science.1083841, 2003.
Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., and Mudelsee, M.:
Recent intensification of tropical climate variability in the Indian Ocean,
Nat. Geosci., 1, 849–853, https://doi.org/10.1038/ngeo357, 2008.
Abram, N. J., Dixon, B. C., Rosevear, M. G., Plunkett, B., Gagan, M. K.,
Hantoro, W. S., and Phipps, S. J.: Optimized coral reconstructions of the
Indian Ocean Dipole: An assessment of location and length considerations,
Paleoceanography, 30, 1391–1405, https://doi.org/10.1002/2015PA002810, 2015.
Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P.,
Kaufman, D. S., and Steig, E. J.: Early onset of industrial-era warming
across the oceans and continents, Nature, 536, 411–418,
https://doi.org/10.1038/nature19082, 2016.
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B.,
England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu, T.-L., Shen, C.-C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of Indo-Pacific climate variability over the last millennium, Nature, 579, 385–392, https://doi.org/10.1038/s41586-020-2084-4, 2020.
An, S. I. and Jin, F. F.: Nonlinearity and asymmetry of ENSO, J. Climate,
17, 2399–2412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2, 2004.
Ashok, K., Guan, Z., and Yamagata, T.: A look at the relationship between
the ENSO and the Indian Ocean dipole, J. Meteorol. Soc. Jpn. Ser. II, 81,
41–56, https://doi.org/10.2151/jmsj.81.41, 2003.
Baker, A. C., Glynn, P. W., and Riegl, B.: Climate change and coral reef
bleaching: An ecological assessment of long-term impacts, recovery trends
and future outlook, Estuar. Coast. Shelf. S., 80, 435–471,
https://doi.org/10.1016/j.ecss.2008.09.003, 2008.
Brönnimann, S., Xoplaki, E., Casty, C., Pauling, A., and Luterbacher,
J.: ENSO influence on Europe during the last centuries, Clim. Dynam.,
28, 181–197, https://doi.org/10.1007/s00382-006-0175-z, 2007.
Burgers, G. and Stephenson, D. B.: The “normality” of El Niño,
Geophys. Res. Lett., 26, 1027–1030, https://doi.org/10.1029/1999GL900161,
1999.
Casey, K. S., Brandon, T. B., Cornillon, P., and Evans, R.: The Past, Present
and Future of the AVHRR Pathfinder SST Program, in: Oceanography from Space,
edited by: Barale, V., Gower, J. F. R., and Alberotanza, L., Springer,
Dordrecht, NL, 273–287,
https://doi.org/10.1007/978-90-481-8681-5_16, 2010.
Charles, C. D., Hunter, D. E., and Fairbanks, R. G.: Interaction between the
ENSO and the Asian monsoon in a coral record of tropical climate, Science,
277, 925–928, https://doi.org/10.1126/science.277.5328.925, 1997.
Charles, C. D., Cobb, K. M., Moore, M. D., and Fairbanks, R. G.:
Monsoon-tropical ocean interaction in a network of coral records spanning
the 20th century, Mar. Geol., 201, 207–222,
https://doi.org/10.1016/S0025-3227(03)00217-2, 2003.
Cobb, K. M., Charles, C. D., and Hunter, D. E.: A central tropical Pacific
coral demonstrates Pacific, Indian, and Atlantic decadal climate
connections, Geophys. Res. Lett., 28, 2209–2212,
https://doi.org/10.1029/2001gl012919, 2001.
Cobb, K. M., Charles, C. D., Cheng, H., and Edwards, R. L.: El
Niño/Southern Oscillation and tropical Pacific climate during the last
millennium, Nature, 424, 271–276, https://doi.org/10.1038/nature01779,
2003.
Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E.,
Cheng, H., and Charles, C. D.: Highly variable El Niño–Southern
Oscillation throughout the Holocene, Science, 339, 67–70,
https://doi.org/10.1126/science.1228246, 2013.
Cole, J. E., Fairbanks, R. G., and Shen, G. T.: Recent variability in the
Southern Oscillation: Isotopic results from a Tarawa Atoll coral, Science,
260, 1790–1793, https://doi.org/10.1126/science.260.5115.1790, 1993.
Cole, J. E., Dunbar, R. B., McClanahan, T. R., and Muthiga, N. A.: Tropical
Pacific forcing of decadal SST variability in the western Indian Ocean over
the past two centuries, Science, 287, 617–619,
https://doi.org/10.1126/science.287.5453.617, 2000.
de Villiers, S., Greaves, M., and Elderfield, H.: An intensity ratio
calibration method for the accurate determination of Mg∕Ca and Sr∕Ca of
marine carbonates by ICP-AES, Geochem. Geophy. Geosy., 3, 1001,
https://doi.org/10.1029/2001gc000169, 2002.
Dilmahamod, A. F., Hermes, J. C., and Reason, C. J. C.: Chlorophyll – a
variability in the Seychelles–Chagos Thermocline Ridge: Analysis of a
coupled biophysical model, J. Marine Syst., 154, 220–232,
https://doi.org/10.1016/j.jmarsys.2015.10.011, 2016.
Eddy, J. A.: The Maunder Minimum, Science, 192, 1189–1202,
https://doi.org/10.1126/science.192.4245.1189, 1976.
El Niño and La Niña Years and Intensities: available at: https://www.ggweather.com/enso/oni.htm, last access: 18 October 2018.
Freund, M. B., Henley, B. J., Karoly, D. J., McGregor, H. V., Abram, N. J.,
and Dommenget, D.: Higher frequency of Central Pacific El Niño events in
recent decades relative to past centuries, Nat. Geosci., 12, 450–455,
https://doi.org/10.1038/s41561-019-0353-3, 2019.
Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E.,
Barlow, M., and Hoell, A.: Warming of the Indian Ocean threatens eastern and
southern African food security but could be mitigated by agricultural
development, P. Natl. Acad. Sci. USA, 105, 11081–11086,
https://doi.org/10.1073/pnas.0708196105, 2008.
GraphPad QuickCalcs: t test Calculator, available at:
https://www.graphpad.com/quickcalcs/ttest1/, last access: 9 April 2019.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Grothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu,
Y., Cheng, H., Edwards, R. L., Southon, J. R., Santos, G. M., Deocampo, D. M., Lynch‐Stieglitz, J., Chen, T., Sayani, H. R., Thompson, D. M., Conroy, J. L., Moore, A. L., Townsend, K., Hagos, M., O'Connor, G., and Toth, L. T.: Enhanced El Niño–Southern Oscillation
variability in recent decades, Geophys. Res. Lett., 46, e2019GL083906,
https://doi.org/10.1029/2019GL083906, 2019.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W.,
and Demenocal, P.: Interlaboratory study for coral Sr∕Ca and other
element/Ca ratio measurements, Geochem. Geophy. Geosy., 14, 3730–3750,
https://doi.org/10.1002/ggge.20230, 2013.
Hennekam, R., Zinke, J., van Sebille, E., ten Have, M., Brummer, G.-J. A.,
and Reichart, G.-J.: Cocos (Keeling) corals reveal 200 years of
multidecadal modulation of southeast Indian Ocean hydrology by Indonesian
throughflow, Paleoceanography, 33, 48–60.
https://doi.org/10.1002/2017PA003181, 2018.
Hermes, J. C. and Reason, C. J. C.: Annual cycle of the South Indian Ocean
(Seychelles–Chagos) thermocline ridge in a regional ocean model, J. Geophys.
Res.-Oceans, 113, C04035, https://doi.org/10.1029/2007jc004363, 2008.
Hermes, J. C. and Reason, C. J. C.: The sensitivity of the
Seychelles–Chagos thermocline ridge to large-scale wind anomalies, ICES J.
Mar. Sci., 66, 1455–1466, 2009.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: 238U/235U
systematics in terrestrial uranium-bearing minerals, Science, 335,
1610–1614, https://doi.org/10.1093/icesjms/fsp074, 2012.
IRI/LDEO: Climate Data Library, available at: https://iridl.ldeo.columbia.edu/, last access: 17 September 2018.
Izumo, T., Lengaigne, M., Vialard, J., Luo, J. J., Yamagata, T., and Madec,
G.: Influence of Indian Ocean Dipole and Pacific recharge on following
year's El Niño: interdecadal robustness, Clim. Dynam., 42, 291–310,
https://doi.org/10.1007/s00382-012-1628-1, 2014.
Jayakumar, A. and Gnanaseelan, C.: Anomalous intraseasonal events in the
thermocline ridge region of Southern Tropical Indian Ocean and their
regional impacts, J. Geophys. Res.-Oceans, 117, C03021,
https://doi.org/10.1029/2011jc007357, 2012.
Krishnan, R., Ramesh, K. V., Samala, B. K., Meyers, G., Slingo, J. M., and
Fennessy, M. J.: Indian Ocean-monsoon coupled interactions and impending
monsoon droughts, Geophys. Res. Lett., 33, L08711,
https://doi.org/10.1029/2006gl025811, 2006.
Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran,
M., Bhalla, R. S., and Badiger, S.: Non-stationary and non-linear influence
of ENSO and Indian Ocean Dipole on the variability of Indian monsoon
rainfall and extreme rain events, Clim. Dynam., 45, 175–184,
https://doi.org/10.1007/s00382-014-2288-0, 2015.
Lawman, A. E., Quinn, T. M., Partin, J. W., Thirumalai, K., Taylor, F.,
Wu, C.-C., Yu, T.-L., Gorman, M. K., and Shen, C.-C.: A century of reduced ENSO variability during
the Medieval Climate Anomaly, Paleoceanography, 35, e2019PA003742,
https://doi.org/10.1029/2019PA003742, 2020.
Leupold, M., Pfeiffer, M., Garbe-Schönberg, D., and Sheppard, C.:
Reef-scale-dependent response of massive Porites corals from the central
Indian Ocean to prolonged thermal stress–evidence from coral Sr∕Ca
measurements, Geochem. Geophy. Geosy., 20, 1468–1484, https://doi.org/10.1029/2018GC007796, 2019.
Li, J., Xie, S. P., Cook, E. R., Huang, G., D'arrigo, R., Liu, F., and
Zheng, X. T.: Interdecadal modulation of El Niño amplitude during the
past millennium, Nat. Clim. change, 1, 114–118.,
https://doi.org/10.1038/nclimate1086, 2011.
Luo, J. J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R.,
and Yamagata, T.: Interaction between El Niño and extreme Indian ocean
dipole, J. Climate, 23, 726–742, https://doi.org/10.1175/2009jcli3104.1,
2010.
Marshall, J. F. and McCulloch, M. T.: Evidence of El Niño and the
Indian Ocean Dipole from Sr∕Ca derived SST's for modern corals at Christmas
Island, eastern Indian Ocean, Geophys. Res. Lett., 28, 3453–3456., 2001.
McCreary, J. P., Kundu, P. K., and Molinari, R. L.: A numerical
investigation of dynamics, thermodynamics and mixed-layer processes in the
Indian Ocean, Prog. Oceanogr., 31, 181–244,
https://doi.org/10.1016/0079-6611(93)90002-u, 1993.
Nakamura, N., Kayanne, H., Iijima, H., McClanahan, T. R., Behera, S. K., and
Yamagata, T.: Footprints of IOD and ENSO in the Kenyan coral record,
Geophys. Res. Lett., 38, L24708, https://doi.org/10.1029/2011gl049877, 2011.
NCEI: National Centers for Environmental Information, avaialble at: http://www.ncdc.noaa.gov/data-access/paleoclimatology-data, last access: 4 January 2021.
Pfeiffer, M. and Dullo, W. C.: Monsoon-induced cooling of the western
equatorial Indian Ocean as recorded in coral oxygen isotope records from the
Seychelles covering the period of 1840–1994 AD, Quaternary Sci. Rev.,
25, 993–1009, https://doi.org/10.1016/j.quascirev.2005.11.005, 2006.
Pfeiffer, M., Dullo, W. C., and Eisenhauer, A.: Variability of the
Intertropical Convergence Zone recorded in coral isotopic records from the
central Indian Ocean (Chagos Archipelago), Quaternary Res., 61, 245–255,
https://doi.org/10.1016/j.yqres.2004.02.009, 2004.
Pfeiffer, M., Timm, O., Dullo, W. C., and Garbe-Schönberg, D.: Paired coral Sr∕Ca and δ18O records from the Chagos Archipelago: Late twentieth century warming affects rainfall variability in the tropical
Indian Ocean, Geology, 34, 1069–1072, https://doi.org/10.1130/g23162a.1, 2006.
Pfeiffer, M., Dullo, W. C., Zinke, J., and Garbe-Schönberg, D.: Three
monthly coral Sr∕Ca records from the Chagos Archipelago covering the period
of 1950–1995 AD: reproducibility and implications for quantitative
reconstructions of sea surface temperature variations, Int. J. Earth Sci.,
98, 53–66, https://doi.org/10.1007/s00531-008-0326-z, 2009.
Pfeiffer, M., Zinke, J., Dullo, W. C., Garbe-Schönberg, D., Latif, M.,
and Weber, M. E.: Indian Ocean corals reveal crucial role of World War II
bias for twentieth century warming estimates, Sci. Rep.-UK, 7, 14434,
https://doi.org/10.1038/s41598-017-14352-6, 2017.
Quinn, W. H.: The large-scale ENSO event, the El Niño and other
important regional features, Bulletin de l'Institut Français d'Études Andines, 22, 13–34, 1993.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An improved in situ and satellite SST analysis for climate, J. Climate,
15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2, 2002.
Roxy, M. K., Ritika, K., Terray, P., and Masson, S.: The curious case of
Indian Ocean warming, J. Climate, 27, 8501–8509,
https://doi.org/10.1175/JCLI-D-14-00471.1, 2014.
Roxy, M. K., Gnanaseelan, C., Parekh, A., Chowdary, J. S., Singh, S., Modi,
A., Kakatkar, R., Mohapatra, S., and Dhara, C.: Indian Ocean Warming, in:
Assessment of Climate Change over the Indian Region, edited by: Krishnan,
R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., and
Chakraborty, S., Springer, Singapore, 191–206, https://doi.org/10.1007/978-981-15-4327-2, 2020.
Sagar, N., Hetzinger, S., Pfeiffer, M., Masood Ahmad, S., Dullo, W. C., and
Garbe-Schönberg, D.: High-resolution Sr∕Ca ratios in a Porites lutea
coral from Lakshadweep Archipelago, southeast Arabian Sea: An example from a
region experiencing steady rise in the reef temperature, J. Geophys.
Res.-Oceans, 121, 252–266, https://doi.org/10.1002/2015jc010821, 2016.
Saji, N. H. and Yamagata, T.: Structure of SST and surface wind variability
during Indian Ocean dipole mode events: COADS observations, J. Climate,
16, 2735–2751, https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2, 2003.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A
dipole mode in the tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999.
Sayani, H. R., Cobb, K. M., DeLong, K., Hitt, N. T., and Druffel, E. R.:
Intercolony δ18O and Sr∕Ca variability among Porites spp.
corals at Palmyra Atoll: Toward more robust coral-based estimates of
climate, Geochem. Geophy. Geosy., 20, 5270–5284, https://doi.org/10.1029/2019gc008420,
2019.
Schrag, D. P.: Rapid analysis of high-precision Sr∕Ca ratios in corals and other marine carbonates, Paleoceanography, 14, 97–102,
https://doi.org/10.1029/1998pa900025, 1999.
Shen, C. C., Cheng, H., Edwards, R. L., Moran, S. B., Edmonds, H. N., Hoff,
J. A., and Thomas, R. B.: Measurement of attogram quantities of 231 Pa in
dissolved and particulate fractions of seawater by isotope dilution thermal
ionization mass spectroscopy, Anal. Chem., 75, 1075–1079,
https://doi.org/10.1021/ac026247r, 2003.
Shen, C. C., Wu, C. C., Cheng, H., Edwards, R. L., Hsieh, Y. T., Gallet, S., and Hori, M.: High-precision and high-resolution carbonate 230Th dating
by MC-ICP-MS with SEM protocols, Geochim. Cosmochim. Ac., 99, 71–86,
https://doi.org/10.1016/j.gca.2012.09.018, 2012.
Sheppard, C. R. C., Seaward, M. R. D., Klaus, R., and Topp, J. M. W.: The
Chagos Archipelago: an introduction, in: Ecology of the Chagos Archipelago,
edited by: Shepard, C. R. C. and Seaward, M. R. D., Westbury Academic &
Scientific Publishing, Otley, UK, 1–20, ISBN 10:1841030031, 1999.
Sheppard, C. R. C., Ateweberhan, M., Bowen, B. W., Carr, P., Chen, C. A., Clubbe, C., Craig, M. T., Ebinghaus, R., Eble, J., Fitzsimmons, N., Gaither, M. R., Gan, C.‐H., Gollock, M., Guzman, N., Graham, N. A. J., Harris, A., Jones, R., Keshavmurthy, S., Koldewey, H., Lundin, C. G., Mortimer, J. A., Obura, D., Pfeiffer, M., Price, A. R. G., Purkis, S., Raines, P., Readman, J. W., Riegl, B., Rogers, A., Schleyer, M., Seaward, M. R. D., Sheppard, A. L. S., Tamelander, J., Turner, J. R., Visram, S., Vogler, C., Vogt, S., Wolschke, H., Yang, J. M.‐C., Yang, S.‐Y., and Yesson, C.: Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest no‐take marine protected area, Aquat. Conserv., 22, 232–261, https://doi.org/10.1002/aqc.1248, 2012.
Sheppard, C. R. C., Bowen, B. W., Chen, A. C., Craig, M. T., Eble, J.,
Fitzsimmons, N., and Koldewey, H.: British Indian Ocean Territory (the
Chagos Archipelago): setting, connections and the marine protected area, in:
Coral Reefs of the United Kingdom Overseas Territories, Springer, Dordrecht,
NL, 223–240, https://doi.org/10.1007/978-94-007-5965-7, 2013.
Smodej, J., Reuning, L., Wollenberg, U., Zinke, J., Pfeiffer, M., and Kukla,
P. A.: Two-dimensional X-ray diffraction as a tool for the rapid,
nondestructive detection of low calcite quantities in aragonitic corals,
Geochem. Geophy. Geosy., 16, 3778–3788,
https://doi.org/10.1002/2015gc006009, 2015.
Storz, D. and Gischler, E.: Coral extension rates in the NW Indian Ocean I:
reconstruction of 20th century SST variability and monsoon current strength,
Geo-Mar. Lett., 31, 141–154, https://doi.org/10.1007/s00367-010-0221-z, 2011.
Storz, D., Gischler, E., Fiebig, J., Eisenhauer, A., and
Garbe-Schönberg, D.: Evaluation of oxygen isotope and Sr∕Ca ratios from
a Maldivian scleractinian coral for reconstruction of climate variability in
the northwestern Indian Ocean, Palaios, 28, 42–55,
https://doi.org/10.2110/palo.2012.p12-034r, 2013.
Timm, O., Pfeiffer, M., and Dullo, W. C.: Nonstationary ENSO-precipitation
teleconnection over the equatorial Indian Ocean documented in a coral from
the Chagos Archipelago, Geophys. Res. Lett., 32, L02701,
https://doi.org/10.1029/2004gl021738, 2005.
Vialard, J., Duvel, J. P., Mcphaden, M. J., Bouruet-Aubertot, P., Ward, B.,
Key, E., Bourras, D., Weller, R., Minnett, P., Weill, A., Cassou, C., Eymard, L., Fristedt, T., Basdevant, C., Dandonneau, Y., Duteil, O., Izumo, T., de Boyer Montégut, C., Masson, S., Marsac, F., Menkes, C., and Kennan, S.: Cirene: air–sea interactions in the Seychelles–Chagos
thermocline ridge region, B. Am. Meteorol. Soc., 90, 45–61,
https://doi.org/10.1175/2008bams2499.1, 2009.
Watanabe, T. K., Watanabe, T., Yamazaki, A., Pfeiffer, M., and Claereboudt,
M. R.: Oman coral δ18O seawater record suggests that Western
Indian Ocean upwelling uncouples from the Indian Ocean Dipole during the
global-warming hiatus, Sci. Rep.-UK, 9, 1887,
https://doi.org/10.1038/s41598-018-38429-y, 2019.
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled
ocean–atmosphere dynamics in the Indian Ocean during 1997–98, Nature,
401, 356–360, https://doi.org/10.1038/43848, 1999.
Wieners, C. E., Dijkstra, H. A., and de Ruijter, W. P.: The Influence of the
Indian Ocean on ENSO Stability and Flavor, J. Climate, 30, 2601–2620,
https://doi.org/10.1175/jcli-d-16-0516.1, 2017.
Wilson, R., Cook, E., D'Arrigo, R., Riedwyl, N., Evans, M. N., Tudhope, A.,
and Allan, R.: Reconstructing ENSO: the influence of method, proxy data,
climate forcing and teleconnections, J. Quaternary Sci., 25, 62–78,
https://doi.org/10.1002/jqs.1297, 2010.
Zinke, J., Dullo, W.-C., Heiss, G. A., and Eisenhauer, A.: ENSO and Indian
Ocean subtropical dipole variability is recorded in a coral record off
southwest Madagascar for the period 1659 to 1995, Earth Planet. Sc. Lett.,
228, 177–194, https://doi.org/10.1016/j.epsl.2004.09.028, 2004.
Zinke, J., Pfeiffer, M., Timm, O., Dullo, W.-C., Kroon, D., and Thomassin,
B. A.: Mayotte coral reveals hydrological changes in the western Indian
Ocean between 1881 and 1994, Geophys. Res. Lett., 35, L23707,
https://doi.org/10.1029/2008gl035634, 2008.
Zinke, J., Rountrey, A., Feng, M., Xie, S. P., Dissard, D., Rankenburg, K.,
Lough, J., and McCulloch, M. T.: Corals record long-term Leeuwin Current
variability including Ningaloo Niño/Niña since 1795, Nat. Commun.,
5, 3607, https://doi.org/10.1038/ncomms4607, 2014.
Zinke, J., Hoell, A., Lough, J. M., Feng, M., Kuret, A. J., Clarke, H.,
Ricca, V., Rankenburg, K., and McCulloch, M. T.: Coral record of
southeastern Indian Ocean marine heatwaves with intensified Western Pacific
temperature gradient, Nat. Commun., 6, 8562,
https://doi.org/10.1038/ncomms9562, 2015.
Zinke, J., Reuning, L., Pfeiffer, M., Wassenburg, J. A., Hardman, E., Jhangeer-Khan, R., Davies, G. R., Ng, C. K. C., and Kroon, D.: A sea surface temperature reconstruction for the southern Indian Ocean trade wind belt from corals in Rodrigues Island (19° S, 63° E), Biogeosciences, 13, 5827–5847, https://doi.org/10.5194/bg-13-5827-2016, 2016.