Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
El Niño–Southern Oscillation and internal sea surface temperature variability in the tropical Indian Ocean since 1675
Maike Leupold
CORRESPONDING AUTHOR
Energy and Mineral Resources Group (EMR), Geological Institute, RWTH Aachen University,
52062 Aachen, Germany
Miriam Pfeiffer
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Takaaki K. Watanabe
Department of Natural History Sciences, Faculty of Science, Hokkaido University,
Sapporo 060-0810, Japan
Lars Reuning
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Dieter Garbe-Schönberg
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Chuan-Chou Shen
High-Precision Mass Spectrometry and Environment Change Laboratory
(HISPEC), Department of
Geosciences, National Taiwan University, Taipei
10617, Taiwan
Research Center for Future Earth, National Taiwan University, Taipei LC6L73, Taiwan
Global Change Research Center, National Taiwan University, Taipei
10617, Taiwan
Geert-Jan A. Brummer
Department of Ocean Systems, Royal Netherlands Institute for Sea
Research (NIOZ), and
Utrecht University, 1790 Den Burg, The Netherlands
Related authors
No articles found.
Benjamin Fredericks Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-28, https://doi.org/10.5194/cp-2024-28, 2024
Revised manuscript under review for CP
Short summary
Short summary
It is known that there was a lack of coral reefs in the Central Indo-Pacific during the Pliocene. The cause of this is unknown. This study uses a new SST record biased on biomarkers from the Coral Sea between 11–2 Ma to demonstrate a 2-degree cooling in the Central Indo-Pacific as part of the Late Miocene Cooling. When combined with other impacts associated with this event, this might explain the collapse of coral reefs. The new data shows the importance of SST changes in Coral Reef loss.
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Preprint under review for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Maxim V. Portnyagin, Vera V. Ponomareva, Egor A. Zelenin, Lilia I. Bazanova, Maria M. Pevzner, Anastasia A. Plechova, Aleksei N. Rogozin, and Dieter Garbe-Schönberg
Earth Syst. Sci. Data, 12, 469–486, https://doi.org/10.5194/essd-12-469-2020, https://doi.org/10.5194/essd-12-469-2020, 2020
Short summary
Short summary
Tephra is fragmented material produced by explosive volcanic eruptions. Geochemically characterized tephra layers are excellent time marker horizons and samples of magma composition. TephraKam is database of the ages and chemical composition of volcanic glass in tephra from the Kamchatka volcanic arc (northwestern Pacific). TephraKam enables the identification of tephra sources, correlation and dating of natural archives, and reconstruction of spatiotemporal evolution of volcanism in Kamchatka.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Ryu Uemura, Yudai Kina, Chuan-Chou Shen, and Kanako Omine
Clim. Past, 16, 17–27, https://doi.org/10.5194/cp-16-17-2020, https://doi.org/10.5194/cp-16-17-2020, 2020
Short summary
Short summary
The oxygen isotopic ratio of water in fluid inclusions in speleothems is an important proxy for the changes in past hydroclimate and temperatures. This isotopic ratio, however, may be affected by isotopic exchange between the water and the host calcite. Here we evaluate this exchange reaction based on a laboratory experiment. We demonstrated that the exchange was detectable but not significant for temperature reconstruction, likely because the reaction occurred only with a thin calcite layer.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-484, https://doi.org/10.5194/bg-2018-484, 2018
Revised manuscript not accepted
Short summary
Short summary
This paper shows the differences of nutrient release after dry and wet Saharan dust deposition in the tropical North Atlantic Ocean at 12° N. Incubation experiments were conducted along an east-west transect. Large differences were observed between both deposition types with wet deposition being the dominant source of phosphate, silicate, and iron. Both deposition types suggest that Saharan dust particles might be incorporated into marine snow aggregates and act as ballast mineral.
Xiuyang Jiang, Yaoqi He, Xiaoyan Wang, Jinguo Dong, Zhizhong Li, and Chuan-Chou Shen
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-144, https://doi.org/10.5194/cp-2017-144, 2017
Manuscript not accepted for further review
Short summary
Short summary
Facilitated by a robust chronology with closely spaced U-Th ages, replicated sub-decadal-resolved δ18O records of two stalagmites from Sanxing Cave, Southwest China, express Asian Summer Monsoon (ASM) history from 79.0 ± 0.2 to 75.7 ± 0.2 thousand years before present (kyr BP, before AD 1950) to reveal detailed structure of MIS 5a/4 transition and Chinese Interstadial (CIS) 21.
Catarina V. Guerreiro, Karl-Heinz Baumann, Geert-Jan A. Brummer, Gerhard Fischer, Laura F. Korte, Ute Merkel, Carolina Sá, Henko de Stigter, and Jan-Berend W. Stuut
Biogeosciences, 14, 4577–4599, https://doi.org/10.5194/bg-14-4577-2017, https://doi.org/10.5194/bg-14-4577-2017, 2017
Short summary
Short summary
Our study provides insights into the factors governing the spatio-temporal variability of coccolithophores in the equatorial North Atlantic and illustrates how this supposedly oligotrophic and stable open-ocean region actually reveals significant ecological variability. We provide evidence for Saharan dust and the Amazon River acting as fertilizers for phytoplankton and highlight the the importance of the thermocline depth for coccolithophore productivity in the lower photic zone.
Laura F. Korte, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Rick Hennekam, Johannes A. van Hateren, Dirk Jong, Chris I. Munday, Stefan Schouten, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 6023–6040, https://doi.org/10.5194/acp-17-6023-2017, https://doi.org/10.5194/acp-17-6023-2017, 2017
Short summary
Short summary
We collected Saharan dust at the Mauritanian coast as well as in the deep the North Atlantic Ocean, along a transect at 12 °N, using an array of moored sediment traps. We demonstrated that the lithogenic particles collected in the ocean are from the same source as dust collected on the African coast. With increasing distance from the source, lithogenic elements associated with clay minerals become more important relative to quartz which is settling out faster. Seasonality is prominent, but weak.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Michèlle van der Does, Laura F. Korte, Chris I. Munday, Geert-Jan A. Brummer, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 16, 13697–13710, https://doi.org/10.5194/acp-16-13697-2016, https://doi.org/10.5194/acp-16-13697-2016, 2016
Short summary
Short summary
We studied seasonal and spatial variations in particle size of Saharan dust deposition along a transect in the Atlantic Ocean, using an array of moored submarine sediment traps. We show a downwind decrease in particle size, but seasonal changes are also prominent. In addition, the dust is much coarser than previously suggested and incorporated into climate models.
Heitor Evangelista, Ilana Wainer, Abdelfettah Sifeddine, Thierry Corrège, Renato C. Cordeiro, Saulo Lamounier, Daniely Godiva, Chuan-Chou Shen, Florence Le Cornec, Bruno Turcq, Claire E. Lazareth, and Ching-Yi Hu
Biogeosciences, 13, 2379–2386, https://doi.org/10.5194/bg-13-2379-2016, https://doi.org/10.5194/bg-13-2379-2016, 2016
Short summary
Short summary
Recent Southern Hemisphere (SH) atmospheric circulation, predominantly driven by stratospheric ozone depletion over Antarctica, has caused changes in climate across the extratropics. We present evidence that the Brazilian coast may have been impacted from both wind and sea surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air–sea interactions and seem to record this process.
Qing Wang, Houyun Zhou, Ke Cheng, Hong Chi, Chuan-Chou Shen, Changshan Wang, and Qianqian Ma
Clim. Past, 12, 871–881, https://doi.org/10.5194/cp-12-871-2016, https://doi.org/10.5194/cp-12-871-2016, 2016
Short summary
Short summary
The upper part of stalagmite ky1 (from top to 42.769 mm depth), consisting of 678 laminae, was collected from a cave in northern China, located in the East Asia monsoon area. The time of deposition ranges from AD 1217±20 to 1894±20. The analysis shows that both the variations in the thickness of the laminae themselves and the fluctuating degree of variation in the thickness of the laminae of stalagmite ky1 have obviously staged characteristics and synchronized with climate.
Dana Felicitas Christine Riechelmann, Jens Fohlmeister, Rik Tjallingii, Klaus Peter Jochum, Detlev Konrad Richter, Geert-Jan A. Brummer, and Denis Scholz
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-18, https://doi.org/10.5194/cp-2016-18, 2016
Revised manuscript not accepted
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. Steinhardt, C. Cléroux, L. J. de Nooijer, G.-J. Brummer, R. Zahn, G. Ganssen, and G.-J. Reichart
Biogeosciences, 12, 2411–2429, https://doi.org/10.5194/bg-12-2411-2015, https://doi.org/10.5194/bg-12-2411-2015, 2015
Short summary
Short summary
In this paper we present, for the first time, results from single-chamber Mg/Ca analyses combined with single-shell δ18O and δ13C for four planktonic foraminiferal species from a sediment trap in the Mozambique Channel. Eddy-induced hydrographic variability is reflected in test carbonate chemistry of these different species. A species-specific depth-resolved mass balance model confirms distinctive migration and calcification patterns for each species as a function of hydrography.
L. Lo, C.-C. Shen, K.-Y. Wei, G. S. Burr, H.-S. Mii, M.-T. Chen, S.-Y. Lee, and M.-C. Tsai
Clim. Past, 10, 2253–2261, https://doi.org/10.5194/cp-10-2253-2014, https://doi.org/10.5194/cp-10-2253-2014, 2014
Short summary
Short summary
1. We have reconstructed new meridional thermal and precipitation stacked records in the Indo-Pacific Warm Pool (IPWP) during the last termination.
2. Meridional thermal gradient variations in the IPWP show tight links to the Northern Hemisphere millennial timescales event.
3. Anomalous warming in the south IPWP region could induce the southward shifting of the Intertropical Convergence Zone (ITCZ) in the IPWP during the Heinrich 1 and Younger Dryas events.
C. R. Maupin, J. W. Partin, C.-C. Shen, T. M. Quinn, K. Lin, F. W. Taylor, J. L. Banner, K. Thirumalai, and D. J. Sinclair
Clim. Past, 10, 1319–1332, https://doi.org/10.5194/cp-10-1319-2014, https://doi.org/10.5194/cp-10-1319-2014, 2014
T.-Y. Li, C.-C. Shen, L.-J. Huang, X.-Y. Jiang, X.-L. Yang, H.-S. Mii, S.-Y. Lee, and L. Lo
Clim. Past, 10, 1211–1219, https://doi.org/10.5194/cp-10-1211-2014, https://doi.org/10.5194/cp-10-1211-2014, 2014
C. van den Bogaard, B. J. L. Jensen, N. J. G. Pearce, D. G. Froese, M. V. Portnyagin, V. V. Ponomareva, and V. Wennrich
Clim. Past, 10, 1041–1062, https://doi.org/10.5194/cp-10-1041-2014, https://doi.org/10.5194/cp-10-1041-2014, 2014
Related subject area
Subject: Teleconnections | Archive: Marine Archives | Timescale: Centennial-Decadal
Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708
C. A. Grove, J. Zinke, F. Peeters, W. Park, T. Scheufen, S. Kasper, B. Randriamanantsoa, M. T. McCulloch, and G.-J. A. Brummer
Clim. Past, 9, 641–656, https://doi.org/10.5194/cp-9-641-2013, https://doi.org/10.5194/cp-9-641-2013, 2013
Cited articles
Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J., and Hantoro, W.
S.: Coral reef death during the 1997 Indian Ocean Dipole linked to
Indonesian wildfires, Science, 301, 952–955,
https://doi.org/10.1126/science.1083841, 2003.
Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., and Mudelsee, M.:
Recent intensification of tropical climate variability in the Indian Ocean,
Nat. Geosci., 1, 849–853, https://doi.org/10.1038/ngeo357, 2008.
Abram, N. J., Dixon, B. C., Rosevear, M. G., Plunkett, B., Gagan, M. K.,
Hantoro, W. S., and Phipps, S. J.: Optimized coral reconstructions of the
Indian Ocean Dipole: An assessment of location and length considerations,
Paleoceanography, 30, 1391–1405, https://doi.org/10.1002/2015PA002810, 2015.
Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P.,
Kaufman, D. S., and Steig, E. J.: Early onset of industrial-era warming
across the oceans and continents, Nature, 536, 411–418,
https://doi.org/10.1038/nature19082, 2016.
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B.,
England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu, T.-L., Shen, C.-C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of Indo-Pacific climate variability over the last millennium, Nature, 579, 385–392, https://doi.org/10.1038/s41586-020-2084-4, 2020.
An, S. I. and Jin, F. F.: Nonlinearity and asymmetry of ENSO, J. Climate,
17, 2399–2412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2, 2004.
Ashok, K., Guan, Z., and Yamagata, T.: A look at the relationship between
the ENSO and the Indian Ocean dipole, J. Meteorol. Soc. Jpn. Ser. II, 81,
41–56, https://doi.org/10.2151/jmsj.81.41, 2003.
Baker, A. C., Glynn, P. W., and Riegl, B.: Climate change and coral reef
bleaching: An ecological assessment of long-term impacts, recovery trends
and future outlook, Estuar. Coast. Shelf. S., 80, 435–471,
https://doi.org/10.1016/j.ecss.2008.09.003, 2008.
Brönnimann, S., Xoplaki, E., Casty, C., Pauling, A., and Luterbacher,
J.: ENSO influence on Europe during the last centuries, Clim. Dynam.,
28, 181–197, https://doi.org/10.1007/s00382-006-0175-z, 2007.
Burgers, G. and Stephenson, D. B.: The “normality” of El Niño,
Geophys. Res. Lett., 26, 1027–1030, https://doi.org/10.1029/1999GL900161,
1999.
Casey, K. S., Brandon, T. B., Cornillon, P., and Evans, R.: The Past, Present
and Future of the AVHRR Pathfinder SST Program, in: Oceanography from Space,
edited by: Barale, V., Gower, J. F. R., and Alberotanza, L., Springer,
Dordrecht, NL, 273–287,
https://doi.org/10.1007/978-90-481-8681-5_16, 2010.
Charles, C. D., Hunter, D. E., and Fairbanks, R. G.: Interaction between the
ENSO and the Asian monsoon in a coral record of tropical climate, Science,
277, 925–928, https://doi.org/10.1126/science.277.5328.925, 1997.
Charles, C. D., Cobb, K. M., Moore, M. D., and Fairbanks, R. G.:
Monsoon-tropical ocean interaction in a network of coral records spanning
the 20th century, Mar. Geol., 201, 207–222,
https://doi.org/10.1016/S0025-3227(03)00217-2, 2003.
Cobb, K. M., Charles, C. D., and Hunter, D. E.: A central tropical Pacific
coral demonstrates Pacific, Indian, and Atlantic decadal climate
connections, Geophys. Res. Lett., 28, 2209–2212,
https://doi.org/10.1029/2001gl012919, 2001.
Cobb, K. M., Charles, C. D., Cheng, H., and Edwards, R. L.: El
Niño/Southern Oscillation and tropical Pacific climate during the last
millennium, Nature, 424, 271–276, https://doi.org/10.1038/nature01779,
2003.
Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E.,
Cheng, H., and Charles, C. D.: Highly variable El Niño–Southern
Oscillation throughout the Holocene, Science, 339, 67–70,
https://doi.org/10.1126/science.1228246, 2013.
Cole, J. E., Fairbanks, R. G., and Shen, G. T.: Recent variability in the
Southern Oscillation: Isotopic results from a Tarawa Atoll coral, Science,
260, 1790–1793, https://doi.org/10.1126/science.260.5115.1790, 1993.
Cole, J. E., Dunbar, R. B., McClanahan, T. R., and Muthiga, N. A.: Tropical
Pacific forcing of decadal SST variability in the western Indian Ocean over
the past two centuries, Science, 287, 617–619,
https://doi.org/10.1126/science.287.5453.617, 2000.
de Villiers, S., Greaves, M., and Elderfield, H.: An intensity ratio
calibration method for the accurate determination of Mg∕Ca and Sr∕Ca of
marine carbonates by ICP-AES, Geochem. Geophy. Geosy., 3, 1001,
https://doi.org/10.1029/2001gc000169, 2002.
Dilmahamod, A. F., Hermes, J. C., and Reason, C. J. C.: Chlorophyll – a
variability in the Seychelles–Chagos Thermocline Ridge: Analysis of a
coupled biophysical model, J. Marine Syst., 154, 220–232,
https://doi.org/10.1016/j.jmarsys.2015.10.011, 2016.
Eddy, J. A.: The Maunder Minimum, Science, 192, 1189–1202,
https://doi.org/10.1126/science.192.4245.1189, 1976.
El Niño and La Niña Years and Intensities: available at: https://www.ggweather.com/enso/oni.htm, last access: 18 October 2018.
Freund, M. B., Henley, B. J., Karoly, D. J., McGregor, H. V., Abram, N. J.,
and Dommenget, D.: Higher frequency of Central Pacific El Niño events in
recent decades relative to past centuries, Nat. Geosci., 12, 450–455,
https://doi.org/10.1038/s41561-019-0353-3, 2019.
Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E.,
Barlow, M., and Hoell, A.: Warming of the Indian Ocean threatens eastern and
southern African food security but could be mitigated by agricultural
development, P. Natl. Acad. Sci. USA, 105, 11081–11086,
https://doi.org/10.1073/pnas.0708196105, 2008.
GraphPad QuickCalcs: t test Calculator, available at:
https://www.graphpad.com/quickcalcs/ttest1/, last access: 9 April 2019.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Grothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu,
Y., Cheng, H., Edwards, R. L., Southon, J. R., Santos, G. M., Deocampo, D. M., Lynch‐Stieglitz, J., Chen, T., Sayani, H. R., Thompson, D. M., Conroy, J. L., Moore, A. L., Townsend, K., Hagos, M., O'Connor, G., and Toth, L. T.: Enhanced El Niño–Southern Oscillation
variability in recent decades, Geophys. Res. Lett., 46, e2019GL083906,
https://doi.org/10.1029/2019GL083906, 2019.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W.,
and Demenocal, P.: Interlaboratory study for coral Sr∕Ca and other
element/Ca ratio measurements, Geochem. Geophy. Geosy., 14, 3730–3750,
https://doi.org/10.1002/ggge.20230, 2013.
Hennekam, R., Zinke, J., van Sebille, E., ten Have, M., Brummer, G.-J. A.,
and Reichart, G.-J.: Cocos (Keeling) corals reveal 200 years of
multidecadal modulation of southeast Indian Ocean hydrology by Indonesian
throughflow, Paleoceanography, 33, 48–60.
https://doi.org/10.1002/2017PA003181, 2018.
Hermes, J. C. and Reason, C. J. C.: Annual cycle of the South Indian Ocean
(Seychelles–Chagos) thermocline ridge in a regional ocean model, J. Geophys.
Res.-Oceans, 113, C04035, https://doi.org/10.1029/2007jc004363, 2008.
Hermes, J. C. and Reason, C. J. C.: The sensitivity of the
Seychelles–Chagos thermocline ridge to large-scale wind anomalies, ICES J.
Mar. Sci., 66, 1455–1466, 2009.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: 238U/235U
systematics in terrestrial uranium-bearing minerals, Science, 335,
1610–1614, https://doi.org/10.1093/icesjms/fsp074, 2012.
IRI/LDEO: Climate Data Library, available at: https://iridl.ldeo.columbia.edu/, last access: 17 September 2018.
Izumo, T., Lengaigne, M., Vialard, J., Luo, J. J., Yamagata, T., and Madec,
G.: Influence of Indian Ocean Dipole and Pacific recharge on following
year's El Niño: interdecadal robustness, Clim. Dynam., 42, 291–310,
https://doi.org/10.1007/s00382-012-1628-1, 2014.
Jayakumar, A. and Gnanaseelan, C.: Anomalous intraseasonal events in the
thermocline ridge region of Southern Tropical Indian Ocean and their
regional impacts, J. Geophys. Res.-Oceans, 117, C03021,
https://doi.org/10.1029/2011jc007357, 2012.
Krishnan, R., Ramesh, K. V., Samala, B. K., Meyers, G., Slingo, J. M., and
Fennessy, M. J.: Indian Ocean-monsoon coupled interactions and impending
monsoon droughts, Geophys. Res. Lett., 33, L08711,
https://doi.org/10.1029/2006gl025811, 2006.
Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran,
M., Bhalla, R. S., and Badiger, S.: Non-stationary and non-linear influence
of ENSO and Indian Ocean Dipole on the variability of Indian monsoon
rainfall and extreme rain events, Clim. Dynam., 45, 175–184,
https://doi.org/10.1007/s00382-014-2288-0, 2015.
Lawman, A. E., Quinn, T. M., Partin, J. W., Thirumalai, K., Taylor, F.,
Wu, C.-C., Yu, T.-L., Gorman, M. K., and Shen, C.-C.: A century of reduced ENSO variability during
the Medieval Climate Anomaly, Paleoceanography, 35, e2019PA003742,
https://doi.org/10.1029/2019PA003742, 2020.
Leupold, M., Pfeiffer, M., Garbe-Schönberg, D., and Sheppard, C.:
Reef-scale-dependent response of massive Porites corals from the central
Indian Ocean to prolonged thermal stress–evidence from coral Sr∕Ca
measurements, Geochem. Geophy. Geosy., 20, 1468–1484, https://doi.org/10.1029/2018GC007796, 2019.
Li, J., Xie, S. P., Cook, E. R., Huang, G., D'arrigo, R., Liu, F., and
Zheng, X. T.: Interdecadal modulation of El Niño amplitude during the
past millennium, Nat. Clim. change, 1, 114–118.,
https://doi.org/10.1038/nclimate1086, 2011.
Luo, J. J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R.,
and Yamagata, T.: Interaction between El Niño and extreme Indian ocean
dipole, J. Climate, 23, 726–742, https://doi.org/10.1175/2009jcli3104.1,
2010.
Marshall, J. F. and McCulloch, M. T.: Evidence of El Niño and the
Indian Ocean Dipole from Sr∕Ca derived SST's for modern corals at Christmas
Island, eastern Indian Ocean, Geophys. Res. Lett., 28, 3453–3456., 2001.
McCreary, J. P., Kundu, P. K., and Molinari, R. L.: A numerical
investigation of dynamics, thermodynamics and mixed-layer processes in the
Indian Ocean, Prog. Oceanogr., 31, 181–244,
https://doi.org/10.1016/0079-6611(93)90002-u, 1993.
Nakamura, N., Kayanne, H., Iijima, H., McClanahan, T. R., Behera, S. K., and
Yamagata, T.: Footprints of IOD and ENSO in the Kenyan coral record,
Geophys. Res. Lett., 38, L24708, https://doi.org/10.1029/2011gl049877, 2011.
NCEI: National Centers for Environmental Information, avaialble at: http://www.ncdc.noaa.gov/data-access/paleoclimatology-data, last access: 4 January 2021.
Pfeiffer, M. and Dullo, W. C.: Monsoon-induced cooling of the western
equatorial Indian Ocean as recorded in coral oxygen isotope records from the
Seychelles covering the period of 1840–1994 AD, Quaternary Sci. Rev.,
25, 993–1009, https://doi.org/10.1016/j.quascirev.2005.11.005, 2006.
Pfeiffer, M., Dullo, W. C., and Eisenhauer, A.: Variability of the
Intertropical Convergence Zone recorded in coral isotopic records from the
central Indian Ocean (Chagos Archipelago), Quaternary Res., 61, 245–255,
https://doi.org/10.1016/j.yqres.2004.02.009, 2004.
Pfeiffer, M., Timm, O., Dullo, W. C., and Garbe-Schönberg, D.: Paired coral Sr∕Ca and δ18O records from the Chagos Archipelago: Late twentieth century warming affects rainfall variability in the tropical
Indian Ocean, Geology, 34, 1069–1072, https://doi.org/10.1130/g23162a.1, 2006.
Pfeiffer, M., Dullo, W. C., Zinke, J., and Garbe-Schönberg, D.: Three
monthly coral Sr∕Ca records from the Chagos Archipelago covering the period
of 1950–1995 AD: reproducibility and implications for quantitative
reconstructions of sea surface temperature variations, Int. J. Earth Sci.,
98, 53–66, https://doi.org/10.1007/s00531-008-0326-z, 2009.
Pfeiffer, M., Zinke, J., Dullo, W. C., Garbe-Schönberg, D., Latif, M.,
and Weber, M. E.: Indian Ocean corals reveal crucial role of World War II
bias for twentieth century warming estimates, Sci. Rep.-UK, 7, 14434,
https://doi.org/10.1038/s41598-017-14352-6, 2017.
Quinn, W. H.: The large-scale ENSO event, the El Niño and other
important regional features, Bulletin de l'Institut Français d'Études Andines, 22, 13–34, 1993.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An improved in situ and satellite SST analysis for climate, J. Climate,
15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2, 2002.
Roxy, M. K., Ritika, K., Terray, P., and Masson, S.: The curious case of
Indian Ocean warming, J. Climate, 27, 8501–8509,
https://doi.org/10.1175/JCLI-D-14-00471.1, 2014.
Roxy, M. K., Gnanaseelan, C., Parekh, A., Chowdary, J. S., Singh, S., Modi,
A., Kakatkar, R., Mohapatra, S., and Dhara, C.: Indian Ocean Warming, in:
Assessment of Climate Change over the Indian Region, edited by: Krishnan,
R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., and
Chakraborty, S., Springer, Singapore, 191–206, https://doi.org/10.1007/978-981-15-4327-2, 2020.
Sagar, N., Hetzinger, S., Pfeiffer, M., Masood Ahmad, S., Dullo, W. C., and
Garbe-Schönberg, D.: High-resolution Sr∕Ca ratios in a Porites lutea
coral from Lakshadweep Archipelago, southeast Arabian Sea: An example from a
region experiencing steady rise in the reef temperature, J. Geophys.
Res.-Oceans, 121, 252–266, https://doi.org/10.1002/2015jc010821, 2016.
Saji, N. H. and Yamagata, T.: Structure of SST and surface wind variability
during Indian Ocean dipole mode events: COADS observations, J. Climate,
16, 2735–2751, https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2, 2003.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A
dipole mode in the tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999.
Sayani, H. R., Cobb, K. M., DeLong, K., Hitt, N. T., and Druffel, E. R.:
Intercolony δ18O and Sr∕Ca variability among Porites spp.
corals at Palmyra Atoll: Toward more robust coral-based estimates of
climate, Geochem. Geophy. Geosy., 20, 5270–5284, https://doi.org/10.1029/2019gc008420,
2019.
Schrag, D. P.: Rapid analysis of high-precision Sr∕Ca ratios in corals and other marine carbonates, Paleoceanography, 14, 97–102,
https://doi.org/10.1029/1998pa900025, 1999.
Shen, C. C., Cheng, H., Edwards, R. L., Moran, S. B., Edmonds, H. N., Hoff,
J. A., and Thomas, R. B.: Measurement of attogram quantities of 231 Pa in
dissolved and particulate fractions of seawater by isotope dilution thermal
ionization mass spectroscopy, Anal. Chem., 75, 1075–1079,
https://doi.org/10.1021/ac026247r, 2003.
Shen, C. C., Wu, C. C., Cheng, H., Edwards, R. L., Hsieh, Y. T., Gallet, S., and Hori, M.: High-precision and high-resolution carbonate 230Th dating
by MC-ICP-MS with SEM protocols, Geochim. Cosmochim. Ac., 99, 71–86,
https://doi.org/10.1016/j.gca.2012.09.018, 2012.
Sheppard, C. R. C., Seaward, M. R. D., Klaus, R., and Topp, J. M. W.: The
Chagos Archipelago: an introduction, in: Ecology of the Chagos Archipelago,
edited by: Shepard, C. R. C. and Seaward, M. R. D., Westbury Academic &
Scientific Publishing, Otley, UK, 1–20, ISBN 10:1841030031, 1999.
Sheppard, C. R. C., Ateweberhan, M., Bowen, B. W., Carr, P., Chen, C. A., Clubbe, C., Craig, M. T., Ebinghaus, R., Eble, J., Fitzsimmons, N., Gaither, M. R., Gan, C.‐H., Gollock, M., Guzman, N., Graham, N. A. J., Harris, A., Jones, R., Keshavmurthy, S., Koldewey, H., Lundin, C. G., Mortimer, J. A., Obura, D., Pfeiffer, M., Price, A. R. G., Purkis, S., Raines, P., Readman, J. W., Riegl, B., Rogers, A., Schleyer, M., Seaward, M. R. D., Sheppard, A. L. S., Tamelander, J., Turner, J. R., Visram, S., Vogler, C., Vogt, S., Wolschke, H., Yang, J. M.‐C., Yang, S.‐Y., and Yesson, C.: Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest no‐take marine protected area, Aquat. Conserv., 22, 232–261, https://doi.org/10.1002/aqc.1248, 2012.
Sheppard, C. R. C., Bowen, B. W., Chen, A. C., Craig, M. T., Eble, J.,
Fitzsimmons, N., and Koldewey, H.: British Indian Ocean Territory (the
Chagos Archipelago): setting, connections and the marine protected area, in:
Coral Reefs of the United Kingdom Overseas Territories, Springer, Dordrecht,
NL, 223–240, https://doi.org/10.1007/978-94-007-5965-7, 2013.
Smodej, J., Reuning, L., Wollenberg, U., Zinke, J., Pfeiffer, M., and Kukla,
P. A.: Two-dimensional X-ray diffraction as a tool for the rapid,
nondestructive detection of low calcite quantities in aragonitic corals,
Geochem. Geophy. Geosy., 16, 3778–3788,
https://doi.org/10.1002/2015gc006009, 2015.
Storz, D. and Gischler, E.: Coral extension rates in the NW Indian Ocean I:
reconstruction of 20th century SST variability and monsoon current strength,
Geo-Mar. Lett., 31, 141–154, https://doi.org/10.1007/s00367-010-0221-z, 2011.
Storz, D., Gischler, E., Fiebig, J., Eisenhauer, A., and
Garbe-Schönberg, D.: Evaluation of oxygen isotope and Sr∕Ca ratios from
a Maldivian scleractinian coral for reconstruction of climate variability in
the northwestern Indian Ocean, Palaios, 28, 42–55,
https://doi.org/10.2110/palo.2012.p12-034r, 2013.
Timm, O., Pfeiffer, M., and Dullo, W. C.: Nonstationary ENSO-precipitation
teleconnection over the equatorial Indian Ocean documented in a coral from
the Chagos Archipelago, Geophys. Res. Lett., 32, L02701,
https://doi.org/10.1029/2004gl021738, 2005.
Vialard, J., Duvel, J. P., Mcphaden, M. J., Bouruet-Aubertot, P., Ward, B.,
Key, E., Bourras, D., Weller, R., Minnett, P., Weill, A., Cassou, C., Eymard, L., Fristedt, T., Basdevant, C., Dandonneau, Y., Duteil, O., Izumo, T., de Boyer Montégut, C., Masson, S., Marsac, F., Menkes, C., and Kennan, S.: Cirene: air–sea interactions in the Seychelles–Chagos
thermocline ridge region, B. Am. Meteorol. Soc., 90, 45–61,
https://doi.org/10.1175/2008bams2499.1, 2009.
Watanabe, T. K., Watanabe, T., Yamazaki, A., Pfeiffer, M., and Claereboudt,
M. R.: Oman coral δ18O seawater record suggests that Western
Indian Ocean upwelling uncouples from the Indian Ocean Dipole during the
global-warming hiatus, Sci. Rep.-UK, 9, 1887,
https://doi.org/10.1038/s41598-018-38429-y, 2019.
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled
ocean–atmosphere dynamics in the Indian Ocean during 1997–98, Nature,
401, 356–360, https://doi.org/10.1038/43848, 1999.
Wieners, C. E., Dijkstra, H. A., and de Ruijter, W. P.: The Influence of the
Indian Ocean on ENSO Stability and Flavor, J. Climate, 30, 2601–2620,
https://doi.org/10.1175/jcli-d-16-0516.1, 2017.
Wilson, R., Cook, E., D'Arrigo, R., Riedwyl, N., Evans, M. N., Tudhope, A.,
and Allan, R.: Reconstructing ENSO: the influence of method, proxy data,
climate forcing and teleconnections, J. Quaternary Sci., 25, 62–78,
https://doi.org/10.1002/jqs.1297, 2010.
Zinke, J., Dullo, W.-C., Heiss, G. A., and Eisenhauer, A.: ENSO and Indian
Ocean subtropical dipole variability is recorded in a coral record off
southwest Madagascar for the period 1659 to 1995, Earth Planet. Sc. Lett.,
228, 177–194, https://doi.org/10.1016/j.epsl.2004.09.028, 2004.
Zinke, J., Pfeiffer, M., Timm, O., Dullo, W.-C., Kroon, D., and Thomassin,
B. A.: Mayotte coral reveals hydrological changes in the western Indian
Ocean between 1881 and 1994, Geophys. Res. Lett., 35, L23707,
https://doi.org/10.1029/2008gl035634, 2008.
Zinke, J., Rountrey, A., Feng, M., Xie, S. P., Dissard, D., Rankenburg, K.,
Lough, J., and McCulloch, M. T.: Corals record long-term Leeuwin Current
variability including Ningaloo Niño/Niña since 1795, Nat. Commun.,
5, 3607, https://doi.org/10.1038/ncomms4607, 2014.
Zinke, J., Hoell, A., Lough, J. M., Feng, M., Kuret, A. J., Clarke, H.,
Ricca, V., Rankenburg, K., and McCulloch, M. T.: Coral record of
southeastern Indian Ocean marine heatwaves with intensified Western Pacific
temperature gradient, Nat. Commun., 6, 8562,
https://doi.org/10.1038/ncomms9562, 2015.
Zinke, J., Reuning, L., Pfeiffer, M., Wassenburg, J. A., Hardman, E., Jhangeer-Khan, R., Davies, G. R., Ng, C. K. C., and Kroon, D.: A sea surface temperature reconstruction for the southern Indian Ocean trade wind belt from corals in Rodrigues Island (19° S, 63° E), Biogeosciences, 13, 5827–5847, https://doi.org/10.5194/bg-13-5827-2016, 2016.