Articles | Volume 17, issue 3
https://doi.org/10.5194/cp-17-1227-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1227-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhanced terrestrial runoff during Oceanic Anoxic Event 2 on the North Carolina Coastal Plain, USA
Christopher M. Lowery
CORRESPONDING AUTHOR
Institute for Geophysics, University of Texas, Austin, TX, USA
Jean M. Self-Trail
United States Geological Survey, Reston, VA, USA
Craig D. Barrie
GeoMark Research, LTD, Houston, TX, USA
Related authors
No articles found.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pre-Cenozoic
Precessional pacing of tropical ocean carbon export during the Late Cretaceous
Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Alexander Hueter, Stefan Huck, Stéphane Bodin, Ulrich Heimhofer, Stefan Weyer, Klaus P. Jochum, and Adrian Immenhauser
Clim. Past, 15, 1327–1344, https://doi.org/10.5194/cp-15-1327-2019, https://doi.org/10.5194/cp-15-1327-2019, 2019
Short summary
Short summary
In this multi-proxy study we present and critically discuss the hypothesis that during the early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the central Tethys and triggered significant changes in reefal ecosystems. Data shown here shed light on the driving mechanisms that control poorly understood faunal patterns during OAE 1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses.
Cited articles
Aleman Gonzalez, W. B., Self-Trail, J. M., Harris, W. B., Moore, J. P., and
Farrell, K. M.: Depositional sequence stratigraphy of Turonian to Santonian
sediments, Cape Fear arch, North Carolina Coastal Plain, USA, Stratigraphy, 17, 293–314, 2020.
Applin, P. L. and Applin, E. R.: Regional subsurface stratigraphy and
structure of Florida and southern Georgia, Am. Assoc. Petr. Geol. B., 28, 1673–1753, 1944.
Applin, P. L. and Applin, E. R.: Regional subsurface stratigraphy, structure,
and correlation of middle and early Upper Cretaceous rocks in Alabama,
Georgia, and north Florida, U.S. Geological Survey Oil and Gas Investigations Chart, OC-26, 3 sheets, United States Government Printing Office, Washington, DC, USA, 1947.
Applin, P. L. and Applin, E. R.: The Gulf Series in the subsurface in
northern Florida and southern Georgia, U.S. Geological Survey Professional Paper 524-G, United States Government Printing Office, Washington, DC, USA, 40 pp., 1967.
Arthur, M. A., Schlanger, S. T., and Jenkyns, H. C.: The Cenomanian–Turonian
Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter
production and preservation, Geological Society, London, Special Publications, 26, 401–420, 1987.
Berner, R. A.: Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton, NJ, USA, 241 pp., 1980.
Blättler, C. L., Jenkyns, H. C., Reynard, L. M., and Henderson, G. M.:
Significant increases in global weathering during Oceanic Anoxic Events 1a
and 2 indicated by calcium isotopes, Earth Planet. Sc. Lett., 309, 77–88, 2011.
Bowman, A. R. and Bralower, T. J.: Paleoceanographic significance of
high-resolution carbon isotope records across the Cenomanian–Turonian
boundary in the Western Interior and New Jersey coastal plain, USA, Mar. Geol., 217, 305–321, 2005.
Bown, P. R. and Young, J. R.: Techniques, in: Calcareous Nannofossil Biostratigraphy, edited by: Bown, P. R., Kluwer Academic, London, UK, 16–28, 1998.
Burdige, D. J.: Preservation of organic matter in marine sediments: controls,
mechanisms, and an imbalance in sediment organic carbon budgets?, Chem. Rev., 107, 467–485, 2007.
Burnett, J. A.: Upper Cretaceous, in: Calcareous Nannofossil Biostratigraphy, edited by: Bown, P. R., Kluwer Academic Publishing, Dordrecht, the Netherlands, 132–199, 1998.
Caron, M., Dall'Agnolo, S., Accarie, H., Barrera, E., Kauffman, E. G.,
Amédro, F., and Robaszynski, F.: High-resolution stratigraphy of the
Cenomanian–Turonian boundary interval at Pueblo (USA) and wadi Bahloul
(Tunisia): stable isotope and bio-events correlation, Geobios, 39, 171–200, 2006.
Cooke, C. W.: Geology of the Coastal Plain of South Carolina, U.S. Geological Survey Bulletin 867, United States Government Printing Office, Washington, DC, USA, 196 pp., 1936.
Corbett, M. J., Watkins, D. K., and Pospichal, J. J.: A quantitative analysis of calcareous nannofossil bioevents of the Late Cretaceous (Late
Cenomanian-Coniacian) Western Interior Seaway and their reliability in
established zonation schemes, Mar. Micropaleontol., 109, 30–45, 2014.
Dorf, E.: Critical analysis of Cretaceous stratigraphy and paleobotany of
Atlantic Coastal Plain, AAPG Bull., 36, 2161–2184, 1952.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late
Cretaceous oceans – a 55 my record of Earth's temperature and carbon
cycle, Geology, 40, 107–110, 2012.
Gale, A.: Correlation, age and significance of Turonian Chalk hardgrounds in
southern England and northern France: The roles of tectonics, eustasy,
erosion and condensation, Cretaceous Res., 103, 104164, https://doi.org/10.1016/J.CRETRES.2019.06.010, 2019.
Gale, A. S. and Christensen, W. K.: Occurrence of the belemnite Actinocamax
plenus in the Cenomanian of SE France and its significance, B. Geol. Soc. Denmark, 43, 68–77,
1996.
Gohn, G. S.: Revised nomenclature, definitions, and correlations for the
Cretaceous formations in USGS-Clubhouse Crossroads #1, Dorchester County,
South Carolina, U.S. Geological Survey Professional Paper 1518, , United States Government Printing Office, Washington, DC, USA, 39 pp. 1992.
Gohn, G. S.: Ostracode biostratigraphy of the Upper Cretaceous marine
sediments in the New Jersey Coastal Plain, in: Contributions to the paleontology of New Jersey. Geological Association of New Jersey Annual Field Conference, 12th Annual Meeting, 27–28 October 1995, Wayne, NJ, USA, edited by: Baker, J. E. B., 12, 87–101, 1995.
Hattner, J. G. and Wise Jr., S. W.: Upper Cretaceous calcareous nannofossil
biostratigraphy of South Carolina, South Carolina Geology, 24, 41–117, 1980.
Hazel, J. E., Bybell, L. M., Christopher, R. A., Frederiksen, N. O., May, F.
E., McLean, D. M., Poore, R. Z., Smith, C. C., Sohl, N. F., Valentine, P.
C., and Witmer, R. J.: Biostratigraphy of the deep corehole (Clubhouse
Crossroads corehole 1) near Charleston, South Carolina, in: Studies related to the Charleston, South Carolina earthquake of 1886 – A preliminary report, edited by: Rankin, D. W., U.S. Geological Survey Professional Paper 1028, , United States Government Printing Office, Washington, DC, USA, 71–89, 1977.
Heron Jr., S. D.: History of terminology and correlations of the basal
Cretaceous formations of the Carolinas, South Carolina Division of Geology Bulletin, 2, 77–88, 1958.
Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., and Pearce, M.
A.: Black shale deposition, atmospheric CO2 drawdown, and cooling during the
Cenomanian-Turonian Oceanic Anoxic Event, Paleoceanography, 26, PA3201, https://doi.org/10.1029/2010PA002081, 2011.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy. Geosy., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Kennedy, W. J., Walaszczyk, I., and Cobban, W. A.: The global boundary
stratotype section and point for the base of the Turonian stage of the
Cretaceous: Pueblo, Colorado, USA, Episodes, 28, 93–104, 2005.
Kolonic, S., Wagner, T., Forster, A., Sinninghe Damsté, J. S.,
Walsworth-Bell, B., Erba, E., Turgeon, S., Brumsack, H. J., Chellai, E. H.,
Tsikos, H., and Kuhnt, W.: Black shale deposition on the northwest African
Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling
and global organic carbon burial, Paleoceanography, 20, PA1006, https://doi.org/10.1029/2003PA000950, 2005.
Kuypers, M. M., Lourens, L. J., Rijpstra, W. I. C., Pancost, R. D.,
Nijenhuis, I. A., and Damsté, J. S. S.: Orbital forcing of organic carbon
burial in the proto-North Atlantic during oceanic anoxic event 2, Earth Planet. Sci. Lett., 228,
465–482, 2004.
Leckie, R. M., Yuretich, R. F., West, O. L., Finkelstein, D., and Schmidt,
M.: Paleoceanography of the southwestern Western Interior Sea during the time
of the Cenomanian–Turonian boundary (Late Cretaceous), in: Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA, edited by: Dean, W. D. and Arthur, M. A., SEPM Concepts in Sedimentology and Stratigraphy no. 6, Tulsa, OK, USA, 101–126, 1998.
Leckie, R. M., Bralower, T. J., and Cashman, R.: Oceanic anoxic events and
plankton evolution: Biotic response to tectonic forcing during the
mid-Cretaceous, Paleoceanography, 17, 13-1–13-29, https://doi.org/10.1029/2001PA000623, 2002.
Lowery, C. M., Corbett, M. J., Leckie, R. M., Watkins, D., Romero, A. M.,
and Pramudito, A.: Foraminiferal and nannofossil paleoecology and
paleoceanography of the Cenomanian–Turonian Eagle Ford Shale of southern
Texas, Palaeogeogr. Palaeocl., 413, 49–65, 2014.
Lowery, C. M., Cunningham, R., Barrie, C. D., Bralower, T., and Snedden, J.
W.: The northern Gulf of Mexico during OAE2 and the relationship between
water depth and black shale development, Paleoceanography, 32, 1316–1335, 2017.
McAnena, A., Flögel, S., Hofmann, P. Herrle, J. O., Griesand, A., Pross,
J., Talbot, H. M., Rethemeyer, J., Wallmann, K., and Wagner, T.: Atlantic
cooling associated with a marine biotic crisis during the mid-Cretaceous
period, Nat. Geosci., 6, 558–561, 2013.
Meyers, P. A.: Preservation of elemental and isotopic source identification
of sedimentary organic matter, Chem. Geol., 114, 289–302, 1994.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic,
paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213–250, 1997.
Meyers, P. A.: Applications of organic geochemistry to paleolimnological
reconstructions: a summary of examples from the Laurentian Great
Lakes, Org. Geochem., 34, 261–289, 2003.
Meyers, S. R., Siewert, S. E., Singer, B. S., Sageman, B. B., Condon, D. J.,
Obradovich, J. D., Jicha, B.R., and Sawyer, D. A.: Intercalibration of
radioisotopic and astrochronologic time scales for the Cenomanian–Turonian
boundary interval, Western Interior Basin, USA, Geology, 40, 7–10, 2012.
Miller, K. G. Sugarman, P. J., Browning, J. V., Olsson, R. K., Pekar, S. F.,
Reilly, T. J., Cramer, B. S., Aubry, M.-P., Lawrence, R. P., Curran, J.,
Stewart, M., Metzger, J. M., Uptegrove, J., Bukry, D., Burckle, L. H.,
Wright, J. D., Feigenson, M. D., Brenner, G. J., and Dalton, R. F.:
Bass River site, in: Proc. ODP, Init. Repts., edited by: Miller, K. G., Sugarman, P. J., Browning, J. V., Aubry, M.-P., Brenner, G. J., Dalton, R. F., Feigenson, M. D., Lawrence, R. P., Metzger, J. M., Olsson, R. K., Pekar, S. F., Reilly, T. J., Stewart, M., Uptegrove, J., and Wright, J. D., 174AX: College Station, TX (Ocean Drilling Program), 5–43,
https://doi.org/10.2973/odp.proc.ir.174ax.1998, 1998.
Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Olsson, R. K.,
Feigenson, M. D., and Hernandez, J. C.: Upper Cretaceous sequences and
sea-level history, New Jersey Coastal Plain, GSA Bulletin, 116, 368–393, 2004.
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients
as the dominant control on the spread of anoxia and euxinia across the
Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data
comparison, Paleoceanography, 27, PA4209, https://doi.org/10.1029/2012PA002351, 2012.
O'Connor, L. K., Jenkyns, H. C., Robinson, S. A., Remmelzwaal, S. R.,
Batenburg, S. J., Parkinson, I. J., and Gale, A. S.: A Re-evaluation of the
Plenus Cold Event, and the Links Between CO2, Temperature, and Seawater
Chemistry During OAE 2, Paleoceanogr. Paleocl., 35, e2019PA003631, https://doi.org/10.1029/2019PA003631, 2020.
Ostrander, C. M., Owens, J. D., and Nielsen, S. G.: Constraining the rate of
oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event
(OAE-2: ∼ 94 Ma), Sci. Adv., 3, e1701020, https://doi.org/10.1126/sciadv.1701020, 2017.
Owens, J. D., Lyons, T. W., Hardisty, D. S., Lowery, C. M., Lu, Z., Lee, B.,
and Jenkyns, H. C.: Patterns of local and global redox variability during the
Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in
carbonates and shales from central Italy, Sedimentology, 64, 168–185, 2017.
Owens, J. D., Lyons, T. W., and Lowery, C. M.: Quantifying the missing sink
for global organic carbon burial during a Cretaceous oceanic anoxic
event, Earth Planet. Sc. Lett., 499, 83–94, 2018.
Petters, S. W.: Upper Cretaceous subsurface stratigraphy of Atlantic Coastal
Plain of New Jersey, AAPG Bull. 60, 87–107, 1976.
Petters, S. W.: Upper Cretaceous planktonic foraminifera from the subsurface
of the Atlantic Coastal Plain of New Jersey, J. Foramin. Res., 7, 165–187, 1977.
Pogge Von Strandmann, P. A., Jenkyns, H. C., and Woodfine, R. G.: Lithium
isotope evidence for enhanced weathering during Oceanic Anoxic Event 2, Nat. Geosci., 6, 668–672, 2013.
Pratt, L. M. and Threlkeld, C. N.: Stratigraphic significance of
13C/12C ratios in mid-Cretaceous rocks of the Western Interior,
USA, in: The Mesozoic of Middle North America, edited by: Stott, D. F. and Glass, D. J., Canadian Society of Petroleum Geologists Memoir, 9, 305–312, 1984.
Richards, H. G.: Subsurface stratigraphy of Atlantic Coastal Plain between New Jersey and Georgia, Am. Assoc. Petr. Geol. B., 29, 885–955, 1945.
Sageman, B. B., Meyers, S. R., and Arthur, M. A.: Orbital time scale and new
C-isotope record for Cenomanian–Turonian boundary
stratotype, Geology, 34, 125–128, 2006.
Schlanger, S. O. and Jenkyns, H. C.: Cretaceous oceanic anoxic events:
causes and consequences, Geol. Mijnbouw, 55, 179–184, 1976.
Scholle, P. A. and Arthur, M. A.: Carbon isotope fluctuations in Cretaceous
pelagic limestones: potential stratigraphic and petroleum exploration
tool, AAPG Bull., 64, 67–87, 1980.
Seefelt, E. L., Self-Trail, J. M., and Schultz, A. P.: Comparison of three
preservation techniques for slowing dissolution of calcareous nannofossils
in organic-rich sediments, Micropaleontology, 61, 149–164, 2015.
Self-Trail, J. M. and Bybell, L. M.: Cretaceous and Paleogene calcareous
nannofossil biostratigraphy of New Jersey, in:
Contributions to the paleontology of New Jersey, Geological Association of
New Jersey Annual Field Conference, 12th Annual Meeting,
27–28 October 1995, Wayne, NJ, USA, edited by: Baker, J. E. B., 12, 102–139, 1995.
Self-Trail, J. M. and Seefelt, E. L.: Rapid dissolution of calcareous
nannofossils: a case study from freshly cored sediments of the south-eastern
Atlantic Coastal Plain, Journal of Nannoplankton Research, 27, 149–157, 2005.
Self-Trail, J. M., Barrie, C. D., and Lowery, C. M.: Isotope, organic carbon,
and biostratigraphic data for the Hope Plantation (BE-110) and Smith
Elementary School (CR-675) cores, North Carolina, USGS Data Release [data set], https://doi.org/10.5066/P9V0U1NF, 2021.
Shamrock, J. L. and Self-Trail, J. M.: Quantification of a pretreatment
procedure for organic-rich calcareous nannofossil samples, Journal of Nannoplankton Research, 36, 65–75, 2016.
Shamrock, J. L., Munoz, E. J., and Carter, J. H.: An improved sample preparation technique for calcareous nannofossils in organic-rich mudstones, Journal of Nannoplankton Research, 35, 101–110, 2015.
Sikora, P. J. and Olsson, R. K.: A paleoslope model of late Albian to early
Turonian foraminifera of the western Atlantic margin and North Atlantic
basin, Mar. Micropaleontol., 18, 25–72, 1991.
Sissinghi, W.: Biostratigraphy of Cretaceous calcareous nanoplankton, Geol. Mijnbouw, 56, 37–65, 1977.
Slattery, J. S., Cobban, W. A., McKinney, K. C., Harries, P. J., and
Sandness, A. L.: Early Cretaceous to Paleocene paleogeography of the Western
Interior Seaway: the interaction of eustasy and tectonism, Wyoming Geological Association Guidebook, 2015, 22–60, 2015.
Snedden, J. W., Virdell, J., Whiteaker, T. L., and Ganey-Curry, P.: A
basin-scale perspective on Cenomanian–Turonian (Cretaceous) depositional
systems, greater Gulf of Mexico (USA), Interpretation, 4, SC1–SC22, 2015.
Snow, L. J., Duncan, R. A., and Bralower, T. J.: Trace element abundances in
the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and
their relationship to Caribbean plateau construction and oxygen anoxic event
2, Paleoceanography, 20, PA3005, https://doi.org/10.1029/2004PA001093, 2005.
Sohl, N. F. and Owens, J. P.: Cretaceous stratigraphy of the Carolina
coastal plain, The geology of the Carolinas, Carolina Geological Survey, Winston-Salem, NC, USA, 191–220, 1991.
Spangler, W. B.: Subsurface geology of Atlantic coastal plain of North
Carolina, AAPG Bull., 34, 100–132, 1950.
Stephenson, L. W.: The Cretaceous formations, in: The Coastal Plain
of North Carolina, edited by: Clark, W. B., Miller, B. L., Stephenson, L. W., Johnson, B. L., and Parker, H. N., North Carolina Geologic and Economic Survey, 3, 73–171, 1912.
Tarduno, J. A., Sliter, W. V., Kroenke, L., Leckie, M., Mayer, H., Mahoney,
J. J., Musgrave, R., Sotery, M., and Winterer, E. L.: Rapid formation of
Ontong Java Plateau by Aptian mantle plume
volcanism, Science, 254, 399–403, 1991.
Thornburg, J.: “Temporal variations in the paleopedology and
paleoclimatology of the Early Cretaceous Potomac Group, Hope Plantation
core, Bertie County, North Carolina”, unpublished Masters Thesis, Temple
University, Philadelphia, PA, USA, 2008.
Tibert, N. E. and Leckie, R. M.: High-resolution estuarine sea level cycles
from the Late Cretaceous: Amplitude constraints using agglutinated
foraminifera, J. Foramin. Res., 34, 130–143, 2004.
Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., Petrizzo, M. R., Forster,
A., Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T., and
Damsté, J. S.: Carbon-isotope stratigraphy recorded by the
Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications
based on three key localities, J. Geol. Soc., 161, 711–719, 2004.
Turgeon, S. C. and Creaser, R. A.: Cretaceous oceanic anoxic event 2
triggered by a massive magmatic episode, Nature, 454, 323–326, 2008.
Valentine, P. C.: Upper Cretaceous subsurface stratigraphy and structure of coastal Georgia and South Carolina, U.S. Geological Survey Professional Paper 1222, United States Government Printing Office, Washington, DC, USA, 33 pp.,
1982.
Valentine, P. C.: Turonian (Eaglefordian) stratigraphy of the Atlantic Coastal Plain and Texas, U.S. Geological Survey Professional Paper 1315, United States Government Printing Office, Washington, DC, USA, 21 pp., 1984.
van Helmond, N. A., Sluijs, A., Reichart, G. J., Damsté, J. S. S.,
Slomp, C. P., and Brinkhuis, H.: A perturbed hydrological cycle during
Oceanic Anoxic Event 2, Geology, 42, 123–126, 2014.
van Helmond, N. A. G. M., Sluijs, A., Sinninghe Damsté, J. S., Reichart, G.-J., Voigt, S., Erbacher, J., Pross, J., and Brinkhuis, H.: Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany), Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, 2015.
Weems, R. E., Seefelt, E. L., Wrege, B. M., Self-Trail, J. M., Prowell, D.
C., Durand, C., Cobbs, E. F., and McKinney, K. C.: Preliminary physical
stratigraphy and geophysical data of the USGS Hope Plantation Core (BE-110),
Bertie County, North Carolina, US Geological Survey Open-File Report, 1251, United States Geological Survey, Reston, VA, USA, 1–163, 2007.
Weems, R. E., Self-Trail, J. M., and Edwards, L. E.: Cross Section of the
North Carolina Coastal Plain from Enfield through Cape Hatteras, US Geological Survey Open-File Report, 2019-1145, United States Geological Survey, Reston, VA, USA, 2019.
Whitechurch, H., Montigny, R., Sevigny, J., Storey, M., and Salters, V.: K-Ar
and 40Ar-39Ar ages of central Kerguelen Plateau basalts, Proc. Ocean Drill. Program Sci. Results, 120, 71–77, 1992.
Zarra, L.: Sequence stratigraphy and foraminiferal biostratigraphy for
selected wells in the Albemarle Embayment, North Carolina, North Carolina Geological Survey Open File Report 89-5, United States Government Printing Office, Washington, DC, USA, 52 pp.,
1989.
Short summary
Recent work has shown that the mid-Cretaceous Oceanic Anoxic Event 2 (OAE2, ∼ 94 million years ago) was associated with a global increase in precipitation, but regional patterns are still poorly known. We present two new OAE2 records from the ancient inner continental shelf of North Carolina, USA. These cores show an increase in the amount of land-plant-derived organic matter delivered to the inner shelf during OAE2, indicating that this region experienced increased precipitation during OAE2.
Recent work has shown that the mid-Cretaceous Oceanic Anoxic Event 2 (OAE2, ∼ 94 million years...