Articles | Volume 16, issue 2
https://doi.org/10.5194/cp-16-799-2020
https://doi.org/10.5194/cp-16-799-2020
Research article
 | 
30 Apr 2020
Research article |  | 30 Apr 2020

Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn sediments

Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (05 Feb 2020) by Zhengtang Guo
AR by Elisabeth Dietze on behalf of the Authors (19 Feb 2020)  Author's response 
ED: Referee Nomination & Report Request started (24 Feb 2020) by Zhengtang Guo
RR by Anonymous Referee #1 (04 Mar 2020)
RR by John Dodson (15 Mar 2020)
ED: Publish as is (16 Mar 2020) by Zhengtang Guo
AR by Elisabeth Dietze on behalf of the Authors (20 Mar 2020)
Download
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.