Articles | Volume 16, issue 2
https://doi.org/10.5194/cp-16-757-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-757-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks
Sebastian Beil
CORRESPONDING AUTHOR
Institute of Geosciences, Kiel University,
Ludewig-Meyn-Str. 10–14, 24118 Kiel, Germany
Wolfgang Kuhnt
CORRESPONDING AUTHOR
Institute of Geosciences, Kiel University,
Ludewig-Meyn-Str. 10–14, 24118 Kiel, Germany
Ann Holbourn
Institute of Geosciences, Kiel University,
Ludewig-Meyn-Str. 10–14, 24118 Kiel, Germany
Florian Scholz
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3,
24148 Kiel, Germany
Julian Oxmann
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3,
24148 Kiel, Germany
Klaus Wallmann
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3,
24148 Kiel, Germany
Janne Lorenzen
Institute of Geosciences, Kiel University,
Ludewig-Meyn-Str. 10–14, 24118 Kiel, Germany
Mohamed Aquit
OCP S.A., Direction de Recherche et Développement, Recherche
Géologique, 46300 Youssoufia, Morocco
El Hassane Chellai
Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad
University, Marrakesh, Morocco
Related authors
No articles found.
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1360, https://doi.org/10.5194/egusphere-2024-1360, 2024
Short summary
Short summary
Our research uses deep learning to predict organic carbon stocks in ocean sediments, crucial for understanding their role in the global carbon cycle. By analyzing over 22,000 samples and various seafloor characteristics, our model gives more accurate results than traditional methods. We estimate the top 10 cm of ocean sediments hold about 171 petagrams of carbon. This work enhances carbon stock estimates and helps plan future sampling strategies to better understand oceanic carbon burial.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Tronje P. Kemena, Angela Landolfi, Andreas Oschlies, Klaus Wallmann, and Andrew W. Dale
Earth Syst. Dynam., 10, 539–553, https://doi.org/10.5194/esd-10-539-2019, https://doi.org/10.5194/esd-10-539-2019, 2019
Short summary
Short summary
Oceanic deoxygenation is driven by climate change in several areas of the global ocean. Measurements indicate that ocean volumes with very low oxygen levels expand, with consequences for marine organisms and fishery. We found climate-change-driven phosphorus (P) input in the ocean is hereby an important driver for deoxygenation on longer timescales with effects in the next millennia.
Sonja Geilert, Christian Hensen, Mark Schmidt, Volker Liebetrau, Florian Scholz, Mechthild Doll, Longhui Deng, Annika Fiskal, Mark A. Lever, Chih-Chieh Su, Stefan Schloemer, Sudipta Sarkar, Volker Thiel, and Christian Berndt
Biogeosciences, 15, 5715–5731, https://doi.org/10.5194/bg-15-5715-2018, https://doi.org/10.5194/bg-15-5715-2018, 2018
Short summary
Short summary
Abrupt climate changes in Earth’s history might have been triggered by magmatic intrusions into organic-rich sediments, which can potentially release large amounts of greenhouse gases. In the Guaymas Basin, vigorous hydrothermal venting at the ridge axis and off-axis inactive vents show that magmatic intrusions are an effective way to release carbon but must be considered as very short-lived processes in a geological sense. These results need to be taken into account in future climate models.
Konstantin Stolpovsky, Andrew W. Dale, and Klaus Wallmann
Biogeosciences, 15, 3391–3407, https://doi.org/10.5194/bg-15-3391-2018, https://doi.org/10.5194/bg-15-3391-2018, 2018
Short summary
Short summary
The paper describes a new way to parameterize G-type models in marine sediments using data about reactivity of organic carbon sinking to the seafloor.
Ulrike Lomnitz, Stefan Sommer, Andrew W. Dale, Carolin R. Löscher, Anna Noffke, Klaus Wallmann, and Christian Hensen
Biogeosciences, 13, 1367–1386, https://doi.org/10.5194/bg-13-1367-2016, https://doi.org/10.5194/bg-13-1367-2016, 2016
Short summary
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
K. Wallmann, B. Schneider, and M. Sarnthein
Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016, https://doi.org/10.5194/cp-12-339-2016, 2016
Short summary
Short summary
An Earth system model was set up and applied to evaluate the effects of sea-level change, ocean dynamics, and nutrient utilization on seawater composition and atmospheric pCO2 over the last glacial cycle. The model results strongly suggest that global sea-level change contributed significantly to the slow glacial decline in atmospheric pCO2 and the gradual pCO2 increase over the Holocene whereas the rapid deglacial pCO2 rise was induced by fast changes in ocean dynamics and nutrient utilization.
A. W. Dale, S. Sommer, U. Lomnitz, I. Montes, T. Treude, V. Liebetrau, J. Gier, C. Hensen, M. Dengler, K. Stolpovsky, L. D. Bryant, and K. Wallmann
Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, https://doi.org/10.5194/bg-12-1537-2015, 2015
J. F. Oxmann and L. Schwendenmann
Biogeosciences, 12, 723–738, https://doi.org/10.5194/bg-12-723-2015, https://doi.org/10.5194/bg-12-723-2015, 2015
J. F. Oxmann and L. Schwendenmann
Ocean Sci., 10, 571–585, https://doi.org/10.5194/os-10-571-2014, https://doi.org/10.5194/os-10-571-2014, 2014
J. F. Oxmann
Biogeosciences, 11, 2169–2183, https://doi.org/10.5194/bg-11-2169-2014, https://doi.org/10.5194/bg-11-2169-2014, 2014
A. W. Dale, V. J. Bertics, T. Treude, S. Sommer, and K. Wallmann
Biogeosciences, 10, 629–651, https://doi.org/10.5194/bg-10-629-2013, https://doi.org/10.5194/bg-10-629-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pre-Cenozoic
Warming drove the expansion of marine anoxia in the equatorial Atlantic during the Cenomanian leading up to Oceanic Anoxic Event 2
Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361)
Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK
Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation
Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic
Late Cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
"OAE 3" – regional Atlantic organic carbon burial during the Coniacian–Santonian
Bridging the Faraoni and Selli oceanic anoxic events: late Hauterivian to early Aptian dysaerobic to anaerobic phases in the Tethys
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
James S. Eldrett, Paul Dodsworth, Steven C. Bergman, Milly Wright, and Daniel Minisini
Clim. Past, 13, 855–878, https://doi.org/10.5194/cp-13-855-2017, https://doi.org/10.5194/cp-13-855-2017, 2017
Short summary
Short summary
This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes for the Cenomanian to Coniacian stages of the Late Cretaceous, along a north–south transect from the Cretaceous Western Interior Seaway to the equatorial western Atlantic and Southern Ocean. Distinct palynological assemblages and geochemical signatures allow insights into palaeoenvironmental conditions and water-mass evolution during this greenhouse climate period.
Nicolas Thibault, Rikke Harlou, Niels H. Schovsbo, Lars Stemmerik, and Finn Surlyk
Clim. Past, 12, 429–438, https://doi.org/10.5194/cp-12-429-2016, https://doi.org/10.5194/cp-12-429-2016, 2016
Short summary
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
M. Wagreich
Clim. Past, 8, 1447–1455, https://doi.org/10.5194/cp-8-1447-2012, https://doi.org/10.5194/cp-8-1447-2012, 2012
K. B. Föllmi, M. Bôle, N. Jammet, P. Froidevaux, A. Godet, S. Bodin, T. Adatte, V. Matera, D. Fleitmann, and J. E. Spangenberg
Clim. Past, 8, 171–189, https://doi.org/10.5194/cp-8-171-2012, https://doi.org/10.5194/cp-8-171-2012, 2012
Cited articles
Anderson, L. D., Delaney, M. L., and Faul, K. L.: Carbon to phosphorus
ratios in sediments: Implications for nutrient cycling, Global Biogeochem.
Cy., 15, 65–79, https://doi.org/10.1029/2000GB001270, 2001.
Ando, A., Huber, B. T., MacLeod, K. G., Ohta, T., and Khim, B. K.: Blake
Nose stable isotopic evidence against the mid-Cenomanian glaciation
hypothesis, Geology, 37, 451–454, https://doi.org/10.1130/G25580A.1,
2009.
Arning, E. T., Birgel, D., Brunner, B., and Peckmann, J.: Bacterial
formation of phosphatic laminites off Peru, Geobiology, 7, 295–307,
https://doi.org/10.1111/j.1472-4669.2009.00197.x, 2009a.
Arning, E. T., Lückge, A., Breuer, L. C., Gussone, N., Birgel, D., and
Peckmann, J.: Genesis of phosphorite crusts off Peru, Mar. Geol., 262,
68–81, https://doi.org/10.1016/j.margeo.2009.03.006, 2009b.
Arthur, M. A., Dean, W. E., and Schlanger, S. O.: Variations in the Global
Carbon Cycle During the Cretaceous Related to Climate, Volcanism, and
Changes in Atmospheric CO2, in: The Carbon Cycle and Atmospheric
CO2: Natural Variations Archean to Present, edited by: Sundquist, E.
and Broecker, W., American Geophysical Union, Washington D.C., USA, 32,
504–529, https://doi.org/10.1029/GM032p0504, 1985.
Arthur, M. A., Dean, W. E., and Pratt, L. M.: Geochemical and climatic
effects of increased marine organic carbon burial at the Cenomanian/Turonian
boundary, Nature, 335, 714–717, https://doi.org/10.1038/335714a0, 1988.
Batenburg, S. J., De Vleeschouwer, D., Sprovieri, M., Hilgen, F. J., Gale, A. S., Singer, B. S., Koeberl, C., Coccioni, R., Claeys, P., and Montanari, A.: Orbital control on the timing of oceanic anoxia in the Late Cretaceous, Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, 2016.
Behrooz, L., Naafs, B. D. A., Dickson, A. J., Love, G. D., Batenburg, S. J.,
and Pancost, R. D.: Astronomically driven variations in depositional
environments in the South Atlantic during the Early Cretaceous,
Paleoceanogr. Paleocl., 33, 894–912,
https://doi.org/10.1029/2018PA003338, 2018.
Beil, S., Kuhnt, W., Holbourn, A. E., Aquit, M., Flögel, S., Chellai, E.
H., and Jabour, H.: New insights into Cenomanian paleoceanography and
climate evolution from the Tarfaya Basin, southern Morocco, Cretaceous Res.,
84, 451–473, https://doi.org/10.1016/j.cretres.2017.11.006, 2018.
Beil, S., Kuhnt, W., Holbourn, A., Scholz, F., Wallmann, K., Lorenzen, J., Aquit, M., and Chellai, E. H.: Cretaceous Oceanic Anoxic Events prolonged by phosphorus cycle feedbacks, data from SN4 and La Bedoule, PANGAEA, https://doi.org/10.1594/PANGAEA.912375, 2020.
Berger, W. H. and Vincent, E.: Deep-sea carbonates: reading the
carbon-isotope signal, Geol. Rundsch., 75, 249–269,
https://doi.org/10.1007/BF01770192, 1986.
Bornemann, A., Erbacher, J., Heldt, M., Kollaske, T., Wilmsen, M.,
Lübke, N., Huck, S., Vollmar, N. M., and Wonik, T.: The
Albian–Cenomanian transition and Oceanic Anoxic Event 1d – an example from
the boreal realm, Sedimentology, 64, 44–65,
https://doi.org/10.1111/sed.12347, 2017.
Bosmans, J. H. C., Hilgen, F. J., Tuenter, E., and Lourens, L. J.: Obliquity forcing of low-latitude climate, Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, 2015.
Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H. C., Schouten, S., and Sinninghe Damsté, J. S.: Climate variability and ocean fertility during the Aptian Stage, Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, 2015.
Broecker, W. S. and Peng, T.-H.: Tracers in the Sea, Eldigio Press,
Palisades, New York, USA, 1982.
Calvert, S. E. and Pedersen, T. F.: Chapter fourteen elemental proxies for
palaeoclimatic and palaeoceanographic variability in marine sediments:
interpretation and application, in: Developments in Marine Geology, edited
by: Hillaire–Marcel, C. and De Vernal, A., Elsevier, 1, 567–644,
https://doi.org/10.1016/S1572-5480(07)01019-6, 2007.
Charbonnier, G., Boulila, S., Spangenberg, J. E., Adatte, T., Föllmi, K.
B., and Laskar, J.: Obliquity pacing of the hydrological cycle during the
Oceanic Anoxic Event 2, Earth Planet. Sc. Lett., 499, 266–277,
https://doi.org/10.1016/j.epsl.2018.07.029, 2018.
Coccioni, R. and Galeotti, S.: The mid-Cenomanian Event: prelude to OAE 2,
Palaeogeogr. Palaeocl., 190, 427–440,
https://doi.org/10.1016/S0031-0182(02)00617-X, 2003.
Codispoti, L. A.: Phosphorus vs. nitrogen limitation of new and export
production, in: Productivity of the Ocean: Present and Past, edited by:
Berger, W. H., Smetacek, V. S., and Wefer, G., Wiley, New York, USA,
377–394, 1989.
Cors, J., Heimhofer, U., Adatte, T., Hochuli, P. A., Huck, S., and
Bover-Arnal, T.: Climatic evolution across oceanic anoxic event 1a derived
from terrestrial palynology and clay minerals (Maestrat Basin, Spain), Geol.
Mag., 152, 632–647, https://doi.org/10.1017/S0016756814000557, 2015.
Cosmidis, J., Benzerara, K., Menguy, N., and Arning, E.: Microscopy evidence
of bacterial microfossils in phosphorite crusts of the Peruvian shelf:
Implications for phosphogenesis mechanisms, Chem. Geol., 359, 10–22,
https://doi.org/10.1016/j.chemgeo.2013.09.009, 2013.
Danzelle, J., Riquier, L., Baudin, F., Thomazo, C., and Pucéat, E.:
Oscillating redox conditions in the Vocontian Basin (SE France) during
Oceanic Anoxic Event 2 (OAE 2), Chem. Geol., 493, 136–152,
https://doi.org/10.1016/j.chemgeo.2018.05.039, 2018.
Delaney, M. L.: Phosphorus accumulation in marine sediments and the oceanic
phosphorus cycle, Global Biogeochem. Cy., 12, 563–572,
https://doi.org/10.1029/98GB02263, 1998.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of
oceanic methane hydrate as a cause of the carbon isotope excursion at the
end of the Paleocene, Paleoceanography, 10, 965–971,
https://doi.org/10.1029/95PA02087, 1995.
Dumitrescu, M. and Brassell, S. C.: Biogeochemical assessment of sources of
organic matter and paleoproductivity during the early Aptian Oceanic Anoxic
Event at Shatsky Rise, ODP Leg 198, Org. Geochem., 36, 1002–1022,
https://doi.org/10.1016/j.orggeochem.2005.03.001, 2005.
Dumitrescu, M. and Brassell, S. C.: Compositional and isotopic
characteristics of organic matter for the early Aptian Oceanic Anoxic Event
at Shatsky Rise, ODP Leg 198, Palaeogeogr. Palaeocl., 235, 168–191,
https://doi.org/10.1016/j.palaeo.2005.09.028, 2006.
Dumitrescu, M., Brassell, S. C., Schouten, S., Hopmans, E. C., and Sinninghe
Damsté, J. S.: Instability in tropical Pacific sea-surface temperatures
during the early Aptian, Geology, 34, 833–836,
https://doi.org/10.1130/G22882.1, 2006.
Du Vivier, A. D., Selby, D., Sageman, B. B., Jarvis, I., Gröcke, D. R.,
and Voigt, S.: Marine 187Os/188Os isotope stratigraphy reveals the
interaction of volcanism and ocean circulation during Oceanic Anoxic Event
2, Earth Planet. Sc. Lett., 389, 23–33,
https://doi.org/10.1016/j.epsl.2013.12.024, 2014.
Du Vivier, A. D. C., Selby, D., Condon, D. J., Takashima, R., and Nishi, H.:
Pacific 187Os/188Os isotope chemistry and U–Pb geochronology:
Synchroneity of global Os isotope change across OAE 2, Earth Planet. Sc.
Lett., 428, 204–216, https://doi.org/10.1016/j.epsl.2015.07.020, 2015.
Eicher, D. L. and Worstell, P.: Cenomanian and Turonian foraminifera from
the great plains, United States, Micropaleontology, 16, 269–324,
https://doi.org/10.2307/1485079, 1970.
El Albani, A., Kuhnt, W., Luderer, F., Herbin, J. P., and Caron, M.:
Palaeoenvironmental evolution of the Late Cretaceous sequence in the Tarfaya
Basin (southwest of Morocco), Geol. Soc. (London) Spec. Publ., 153,
223–240, https://doi.org/10.1144/GSL.SP.1999.153.01.14, 1999.
Eldrett, J. S., Ma, C., Bergman, S. C., Lutz, B., Gregory, F. J., Dodsworth,
P., Phipps, M., Hardas, P., Minisini, D., Ozkan, A., Ramezani, J., Bowing,
S. A., Kamo, S. L., Ferguson, K., Macaulay, C., and Kelly, A. E.: An
astronomically calibrated stratigraphy of the Cenomanian, Turonian and
earliest Coniacian from the Cretaceous Western Interior Seaway, USA:
Implications for global chronostratigraphy, Cretaceous Res., 56, 316–344,
https://doi.org/10.1016/j.cretres.2015.04.010, 2015.
Elkhazri, A., Abdallah, H., Razgallah, S., Moullade, M., and Kuhnt, W.:
Carbon-isotope and microfaunal stratigraphy bounding the Lower Aptian
Oceanic Anoxic Event 1a in northeastern Tunisia, Cretaceous Res., 39,
133–148, https://doi.org/10.1016/j.cretres.2012.05.011, 2013.
Elrick, M., Molina-Garza, R., Duncan, R., and Snow, L.: C-isotope
stratigraphy and paleoenvironmental changes across OAE2 (mid-Cretaceous)
from shallow-water platform carbonates of southern Mexico, Earth Planet. Sc.
Lett., 277, 295–306, https://doi.org/10.1016/j.epsl.2008.10.020, 2009.
Erba, E.: Calcareous nannofossil distribution in pelagic rhythmic sediments
(Aptian-Albian Piobbico core, central Italy), Riv. Ital.
Paleontol. S,
97, 455–484, https://doi.org/10.13130/2039-4942/8959, 1992.
Erba, E.: Calcareous nannofossils and Mesozoic oceanic anoxic events, Mar.
Micropaleontol., 52, 85–106,
https://doi.org/10.1016/j.marmicro.2004.04.007, 2004.
Erba, E., Channell, J. E., Claps, M., Jones, C., Larson, R., Opdyke, B.,
Premoli Silva, I., Riva, A., Salvini, G., and Torricelli, S.: Integrated
stratigraphy of the Cismon Apticore (southern Alps, Italy); a “reference
section” for the Barremian-Aptian interval at low latitudes, J. Foramin.
Res., 29, 371–391, 1999.
Erbacher, J., Huber, B. T., Norris, R. D., and Markey, M.: Increased
thermohaline stratification as a possible cause for an ocean anoxic event in
the Cretaceous period, Nature, 409, 325–327,
https://doi.org/10.1038/35053041, 2001.
Filippelli, G. M.: The global phosphorus cycle: past, present, and future,
Elements, 4, 89–95, https://doi.org/10.2113/GSELEMENTS.4.2.89, 2008.
Flögel, S., Kuhnt, W., and Moullade, M.: Drilling of Early Cretaceous Oceanic Anoxic Event 1a in Southern France, Sci. Dril., 9, 20–22, https://doi.org/10.2204/iodp.sd.9.03.2010, 2010.
Föllmi, K. B.: The phosphorus cycle, phosphogenesis and marine
phosphate-rich deposits, Earth-Sci. Rev., 40, 55–124,
https://doi.org/10.1016/0012-8252(95)00049-6, 1996.
Föllmi, K. B.: Early Cretaceous life, climate and anoxia, Cretaceous
Res., 35, 230–257, https://doi.org/10.1016/j.cretres.2011.12.005, 2012.
Forster, A., Schouten, S., Moriya, K., Wilson, P. A., and Sinninghe
Damsté, J. S.: Tropical warming and intermittent cooling during the
Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records
from the equatorial Atlantic, Paleoceanography, 22,
PA1219, https://doi.org/10.1029/2006PA001349, 2007.
Friedrich, O., Erbacher, J., and Mutterlose, J.: Paleoenvironmental changes
across the Cenomanian/Turonian boundary event (oceanic anoxic event 2) as
indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207), Rev.
Micropaléontol., 49, 121–139,
https://doi.org/10.1016/j.revmic.2006.04.003, 2006.
Gale, A. S.: A Milankovitch scale for Cenomanian time, Terra Nova, 1,
420–425, 1989.
Gale, A. S. and Christensen, W. K.: Occurrence of the belemnite Actinocamax
plenus in the Cenomanian of SE France and its significance, B. Geol. Soc.
Denmark, 43, 68–77, 1996.
Gale, A. S., Hardenbol, J., Hathway, B., Kennedy, W. J., Young, J. R., and
Phansalkar, V.: Global correlation of Cenomanian (Upper Cretaceous)
sequences: Evidence for Milankovitch control on sea level, Geology, 30,
291–294, https://doi.org/10.1130/0091-7613(2002)030<0291:GCOCUC>2.0.CO;2, 2002.
Gale, A. S., Kennedy, W. J., Voigt, S., and Walaszczyk, I.: Stratigraphy of
the Upper Cenomanian-Lower Turonian Chalk succession at Eastbourne, Sussex,
UK: ammonites, inoceramid bivalves and stable carbon isotopes, Cretaceous
Res., 26, 460–487, https://doi.org/10.1016/j.cretres.2005.01.006, 2005.
Gambacorta, G., Malinverno, A., and Erba, E.: Orbital forcing of carbonate
versus siliceous productivity in the late Albian–late Cenomanian
(Umbria-Marche Basin, central Italy), Newsl. Stratigr., 52, 197–220,
https://doi.org/10.1127/nos/2018/0456, 2019.
Gangl, S. K., Moy, C. M., Stirling, C. H., Jenkyns, H. C., Crampton, J. S.,
Clarkson, M. O., Ohneiser, C., and Porcellid, D.: High-resolution records of
Oceanic Anoxic Event 2: Insights into the timing, duration and extent of
environmental perturbations from the palaeo-South Pacific Ocean, Earth
Planet. Sc. Lett., 518, 172–182,
https://doi.org/10.1016/j.epsl.2019.04.028, 2019.
Geider, R. and La Roche, J.: Redfield revisited: variability of C:N:P in
marine microalgae and its biochemical basis, Eur. J. Phycol., 37, 1–17,
https://doi.org/10.1017/S0967026201003456, 2002.
Goldhammer, T., Brüchert, V., Ferdelman, T. G., and Zabel, M.: Microbial
sequestration of phosphorus in anoxic upwelling sediments, Nat. Geosci.,
3, 557–561, https://doi.org/10.1038/ngeo913, 2010.
Golterman, H. L.: Phosphate release from anoxic sediments or “What did
Mortimer really write?”, Hydrobiologia, 450, 99–106,
https://doi.org/10.1023/A:1017559903404, 2001.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza,
S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in
Atlantic surface sediments (36 N – 49 S): Imprint of terrigenous input and
continental weathering, Geochem. Geophy. Geosy., 13, Q01013,
https://doi.org/10.1029/2011GC003785, 2012.
Handoh, I. C. and Lenton, T. M.: Periodic mid-Cretaceous oceanic anoxic
events linked by oscillations of the phosphorus and oxygen biogeochemical
cycles, Global Biogeochem. Cy., 17, 1092, https://doi.org/10.1029/2003GB002039,
2003.
Hasegawa, H., Tada, R., Jiang, X., Suganuma, Y., Imsamut, S., Charusiri, P., Ichinnorov, N., and Khand, Y.: Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse, Clim. Past, 8, 1323–1337, https://doi.org/10.5194/cp-8-1323-2012, 2012.
Hay, W. W.: Why Cretaceous paleoclimatology remains a mystery, GSA Denver
Annual Meeting 2007, 28–31 October 2007,
Denver, CO, 2007.
Hay, W. W. and Floegel, S.: New thoughts about the Cretaceous climate and
oceans, Earth-Sci. Rev., 115, 262–272,
https://doi.org/10.1016/j.earscirev.2012.09.008, 2012.
Herrle, J. O., Schröder-Adams, C. J., Davis, W., Pugh, A. T., Galloway,
J. M., and Fath, J.: Mid-Cretaceous High Arctic stratigraphy, climate, and
Oceanic Anoxic Events, Geology, 43, 403–406,
https://doi.org/10.1130/G36439.1, 2015.
Hochuli, P. A., Menegatti, A. P., Weissert, H., Riva, A., Erba, E., and
Silva, I. P.: Episodes of high productivity and cooling in the early Aptian
Alpine Tethys, Geology, 27, 657–660,
https://doi.org/10.1130/0091-7613(1999)027<0657:EOHPAC>2.3.CO;2, 1999.
Holland H. D.: The Chemistry of the Atmosphere and Oceans, Wiley, New York,
USA, 1978.
Hu, X., Zhao, K., Yilmaz, I. O., and Li, Y.: Stratigraphic transition and
palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a)
to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey,
Cretaceous Res., 38, 40–51, https://doi.org/10.1016/j.cretres.2012.01.007,
2012.
Ingall, E. and Jahnke, R.: Evidence for enhanced phosphorus regeneration
from marine sediments overlain by oxygen depleted waters, Geochim.
Cosmochim. Ac., 58, 2571–2575,
https://doi.org/10.1016/0016-7037(94)90033-7, 1994.
Ingall, E. D.: Biogeochemistry: phosphorus burial, Nat. Geosci., 3, 521–522,
https://doi.org/10.1038/ngeo926, 2010.
Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., and Pearce, M.
A.: Black shale deposition, atmospheric CO2 drawdown, and cooling
during the Cenomanian-Turonian Oceanic Anoxic Event, Paleoceanography,
26, PA3201, https://doi.org/10.1029/2010PA002081, 2011.
Jarvis, I. A. N., Gale, A. S., Jenkyns, H. C., and Pearce, M. A.: Secular
variation in Late Cretaceous carbon isotopes: a new δ13C
carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma),
Geol. Mag., 143, 561–608, https://doi.org/10.1017/S0016756806002421,
2006.
Jenkyns, H. C.: Cretaceous anoxic events: from continents to oceans, J.
Geol. Soc. London, 137, 171–188,
https://doi.org/10.1029/2010pa002081,2011, 1980.
Jenkyns, H. C.: Carbon-isotope stratigraphy and paleoceanographic
significance of the Lower Cretaceous shallow-water carbonates of Resolution
Guyot, Mid-Pacific Mountains, in: Proceedings of the Ocean Drilling Program,
Scientific Results, 143, edited by: Winterer, E. L., Sager, W. W., Firth, J.
V., and Sinton, J. M., Ocean Drilling Program, College Station, 99–108,
https://doi.org/10.2973/odp.proc.sr.143.213.1995, 1995.
Jenkyns, H. C.: Evidence for rapid climate change in the
Mesozoic–Palaeogene greenhouse world, Philos. T. Roy. Soc. A, 361,
1885–1916, https://doi.org/10.1098/rsta.2003.1240, 2003.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy.
Geosy., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Jenkyns, H. C.: Transient cooling episodes during Cretaceous Oceanic Anoxic
Events with special reference to OAE 1a (Early Aptian), Philos. T. Roy. Soc.
A., 376, 20170073, https://doi.org/10.1098/rsta.2017.0073, 2018.
Jenkyns, H. C., Gale, A. S., and Corfield, R. M.: Carbon-and oxygen-isotope
stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic
significance, Geol. Mag., 131, 1–34,
https://doi.org/10.1017/S0016756800010451, 1994.
Jenkyns, H. C., Matthews, A., Tsikos, H., and Erel, Y.: Nitrate reduction,
sulfate reduction, and sedimentary iron isotope evolution during the
Cenomanian-Turonian oceanic anoxic event, Paleoceanography, 22, PA3208,
https://doi.org/10.1029/2006PA001355, 2007.
Jenkyns, H. C., Dickson, A. J., Ruhl, M., and Van den Boorn, S. H.:
Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and
geochemical change: deconstructing Oceanic Anoxic Event 2
(Cenomanian–Turonian, Late Cretaceous), Sedimentology, 64, 16–43,
https://doi.org/10.1111/sed.12305, 2017.
Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., Fennel, K., and
Falkowski, P. G.: Biological overprint of the geological carbon cycle, Mar.
Geol., 217, 323–338, https://doi.org/10.1016/j.margeo.2004.08.005,
2005.
Keller, C. E., Hochuli, P. A., Weissert, H., Bernasconi, S. M., Giorgioni,
M., and Garcia, T. I.: A volcanically induced climate warming and floral
change preceded the onset of OAE1a (Early Cretaceous), Palaeogeogr.
Palaeocl., 305, 43–49, https://doi.org/10.1016/j.palaeo.2011.02.011,
2011.
Keller, G., Berner, Z., Adatte, T., and Stueben, D.: Cenomanian–Turonian
and δ13C, and δ18O, sea level and salinity
variations at Pueblo, Colorado, Palaeogeogr. Palaeocl., 211, 19–43,
https://doi.org/10.1016/j.palaeo.2004.04.003, 2004.
Kochhann, K. G. D., Koutsoukos, A. M., and Fauth, G.: Aptian/Albian benthic
foraminifera from DSDP Site 364 (offshore Angola): A paleoenvironmental and
paleobiogeographic appraisal, Cretaceous Res., 48, 1–11,
https://doi.org/10.1016/j.cretres.2013.11.009, 2014.
Kolonic, S., Wagner, T., Forster, A., Sinninghe Damsté, J. S.,
Walsworth-Bell, B., Erba, E., Turgeon, S., Brumsack, H.-J., Chellai, E. H.,
Tsikos, H., Kuhnt, W., and Kuypers, M. M. M.: Black shale deposition on the
northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event:
Climate coupling and global organic carbon burial, Paleoceanography, 20,
PA1006, https://doi.org/10.1029/2003PA000950, 2005.
Kuhnt, W., Thurow, J., Wiedmann, J., and Herbin, J. P.: Oceanic anoxic
conditions around the Cenomanian/Turonian Boundary and the response of the
biota, in: Biogeochemistry of Black Shales (Vol. 60), edited by: Degens, E.
T., Meyers, P. A., and Brassell, S. C., Mitteilungen aus dem Geologischen
Institut der Univ. Hamburg, Germany, 205–246, 1986.
Kuhnt, W., Herbin, J., Thurow, J., and Wiedemann, J.: Distribution of
Cenomanian-Turonian organic facies in the western Mediterranean and along
the adjacent Atlantic margin, in: Deposition of organic facies (Vol. 30),
Amer. Assoc. Petroleum Geologists, 133–160, 1990.
Kuhnt, W., Nederbragt, A., and Leine, L.: Cyclicity of Cenomanian-Turonian
organic-carbon-rich sediments in the Tarfaya Atlantic coastal basin
(Morocco), Cretaceous Res., 18, 587–601,
https://doi.org/10.1006/cres.1997.0076, 1997.
Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J., and Wagner, T.:
Orbital-scale record of the late Cenomanian–Turonian oceanic anoxic event
(OAE-2) in the Tarfaya Basin (Morocco), Int. J. Earth Sci., 94, 147–159,
https://doi.org/10.1007/s00531-004-0440-5, 2005.
Kuhnt, W., Holbourn, A., and Moullade, M.: Transient global cooling at the
onset of early Aptian oceanic anoxic event (OAE) 1a, Geology, 39,
323–326, https://doi.org/10.1130/G31554.1, 2011.
Kuhnt, W., Holbourn, A. E., Beil, S., Aquit, M., Krawczyk, T., Flögel,
S., Chellai, E. H., and Jabour, H.: Unraveling the onset of Cretaceous
Oceanic Anoxic Event 2 in an extended sediment archive from the
Tarfaya-Laayoune Basin, Morocco, Paleoceanography, 32, 923–946,
https://doi.org/10.1002/2017PA003146, 2017.
Kump, L. R.: Interpreting carbon-isotope excursions: Strangelove oceans,
Geology, 19, 299–302, https://doi.org/10.1130/0091-7613(1991)019<0299:ICIESO>2.3.CO;2, 1991.
Kump, L. R. and Arthur, M. A.: Interpreting carbon-isotope excursions:
carbonate and organic matter, Chem. Geol., 161, 181–198,
https://doi.org/10.1016/S0009-2541(99)00086-8, 1999.
Kuypers, M. M., Pancost, R. D., and Damste, J. S. S.: A large and abrupt
fall in atmospheric CO2 concentration during Cretaceous times, Nature,
399, 342–345, https://doi.org/10.1038/20659, 1999.
Kuypers, M. M., van Breugel, Y., Schouten, S., Erba, E., and Siminghe
Damsté, J. S.: N2-fixing cyanobacteria supplied nutrient N for
Cretaceous oceanic anoxic events, Geology, 32, 853–856,
https://doi.org/10.1130/G20458.1, 2004.
Larson, R. L.: Latest pulse of Earth: Evidence for a mid-Cretaceous
superplume, Geology, 19, 547–550,
https://doi.org/10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2, 1991.
Larson, R. L. and Erba, E.: Onset of the Mid-Cretaceous greenhouse in the
Barremian-Aptian: Igneous events and the biological, sedimentary, and
geochemical responses, Paleoceanography, 14, 663–678,
https://doi.org/10.1029/1999PA900040, 1999.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital
solution for the long-term motion of the Earth, Astron. Astrophys., 532,
A89, https://doi.org/10.1051/0004-6361/201116836, 2011a.
Laskar, J., Gastineau, M., Delisle, J. B., Farrés, A., and Fienga, A.:
Strong chaos induced by close encounters with Ceres and Vesta, Astron.
Astrophys., 532, 53, https://doi.org/10.1051/0004-6361/201117504, 2011b.
Leine, L.: Geology of the Tarfaya oil shale deposit, Morocco, Geol.
Mijnbouw, 65, 57–74, 1986.
Li, Y. X., Bralower, T. J., Montañez, I. P., Osleger, D. A., Arthur, M.
A., Bice, D. M., Herbert, T. D., Erba, E., and Silva, I. P.: Toward an
orbital chronology for the early Aptian oceanic anoxic event (OAE1a,
∼120 Ma), Earth Planet. Sc. Lett., 271, 88–100,
https://doi.org/10.1016/j.epsl.2008.03.055, 2008.
Li, R., Xu, J., Li, X., Shi, Z., and Harrison, P. J.: Spatiotemporal
variability in phosphorus species in the Pearl River Estuary: Influence of
the river discharge, Sci. Rep., 7, 13649,
https://doi.org/10.1038/s41598-017-13924-w, 2017a.
Li, Y. X., Montanez, I. P., Liu, Z., and Ma, L.: Astronomical constraints on
global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2), Earth
Planet. Sc. Lett., 462, 35–46, https://doi.org/10.1016/j.epsl.2017.01.007,
2017b.
Lorenzen, J., Kuhnt, W., Holbourn, A., Flögel, S., Moullade, M., and
Tronchetti, G.: A new sediment core from the Bedoulian (Lower Aptian)
stratotype at Roquefort-La Bédoule, SE France, Cretaceous Res., 39,
6–16, https://doi.org/10.1016/j.cretres.2012.03.019, 2013.
Ma, C., Meyers, S. R., Sageman, B. B., Singer, B. S., and Jicha, B. R.:
Testing the astronomical time scale for oceanic anoxic event 2, and its
extension into Cenomanian strata of the Western Interior Basin (USA), Geol.
Soc. Am. Bull., 126, 974–989, https://doi.org/10.1130/B30922.1, 2014.
Mackenzie, F. T., Ver, L. M., and Lerman, A.: Century-scale nitrogen and
phosphorus controls of the carbon cycle, Chem. Geol., 190, 13–32,
https://doi.org/10.1016/S0009-2541(02)00108-0, 2002.
Malinverno, A., Erba, E., and Herbert, T. D.: Orbital tuning as an inverse
problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli
Level) in the Cismon APTICORE, Paleoceanography, 25, PA2203,
https://doi.org/10.1029/2009PA001769, 2010.
Mann, M. E. and Lees, J. M.: Robust estimation of background noise and
signal detection in climatic time series, Climatic change, 33, 409–445,
https://doi.org/10.1007/BF00142586, 1996.
März, C., Poulton, S. W., Beckmann, B., Küster, K., Wagner, T., and
Kasten, S.: Redox sensitivity of P cycling during marine black shale
formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters,
Geochim. Cosmochim. Ac., 72, 3703–3717,
https://doi.org/10.1016/j.gca.2008.04.025, 2008.
Masse, J. P., Bouaziz, S., Amon, E. O., Baraboshin, E., Tarkowski, R. A.,
Bergerat, F., Sandulescu, M., Platel, J. P., Canerot, J., and Guiraud, R.:
Early Aptian (112–114 Ma), in: Atlas Peri-Tethys, Palaeogeographical Maps,
edited by: Dercourt, J., Gaetani, M., and Vrielynck, B., CCGM, Paris,
119–127, 2000.
Masure, E., Raynaud, J. F., Pons, D., and de Reneville, P.: Palynologie du
stratotype historique de l'Aptien inférieur dans la région de
Cassis-La Bédoule (SE France), Géologie méditerranéenne,
25, 263–287, 1998.
Menegatti, A. P., Weissert, H., Brown, R. S., Tyson, R. V., Farrimond, P.,
Strasser, A., and Caron, M.: High-resolution δ13C stratigraphy
through the early Aptian “Livello Selli” of the Alpine
Tethys, Paleoceanography, 13, 530–545, https://doi.org/10.1029/98PA01793,
1998.
Meyers, S. R.: Astrochron: An R package for astrochronology,
available at: https://cran.r-project.org/package=astrochron (last access: 1 September 2019), 2014.
Meyers, S. R. and Sageman, B. B.: Quantification of deep-time orbital
forcing by average spectral misfit, Am. J. Sci., 307, 773–792,
https://doi.org/10.2475/05.2007.01, 2007.
Meyers, S. R., Sageman, B. B., and Arthur, M. A.: Obliquity forcing of
organic matter accumulation during Oceanic Anoxic Event 2, Paleoceanography,
27, PA3212, https://doi.org/10.1029/2012PA002286, 2012a.
Meyers, S. R., Siewert, S. E., Singer, B. S., Sageman, B. B., Condon, D. J.,
Obradovich, J. D., Jicha, B. R., and Sawyer, D. A.: Intercalibration of
radioisotopic and astrochronologic time scales for the Cenomanian-Turonian
boundary interval, Western Interior Basin, USA, Geology, 40, 7–10,
https://doi.org/10.1130/G32261.1, 2012b.
Mort, H. P., Adatte, T., Follmi, K. B., Keller, G.,
Steinmann, P., Matera, V., Berner, Z., and Stuben, D.:
Phosphorus and the roles of productivity and nutrient recycling during
oceanic anoxic event 2, Geology, 35, 483–486,
https://doi.org/10.1130/G23475A.1, 2007.
Mort, H. P., Adatte, T., Keller, G., Bartels, D., Föllmi, K. B.,
Steinmann, P., Berner, Z., and Chellai, E. H.: Organic carbon deposition and
phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco,
Cretaceous Res., 29, 1008–1023,
https://doi.org/10.1016/j.cretres.2008.05.026, 2008.
Moullade, M., Tronchetti, G., Granier, B., Bornemann, A., Kuhnt, W., and
Lorenzen, J.: High-resolution integrated stratigraphy of the OAE1a and
enclosing strata from core drillings in the Bedoulian stratotype
(Roquefort-La Bédoule, SE France), Cretaceous Res., 56, 119–140,
https://doi.org/10.1016/j.cretres.2015.03.004, 2015.
Mulitza, S., Prange, M., Stuut, J. B., Zabel, M., von Dobeneck, T., Itambi,
A. C., Nizou, J., Schulz, M., and Wefer, G.: Sahel megadroughts triggered by
glacial slowdowns of Atlantic meridional overturning, Paleoceanography,
23, PA4206, https://doi.org/10.1029/2008PA001637, 2008.
Naafs, B. D. A. and Pancost, R. D.: Sea-surface temperature evolution across
Aptian oceanic anoxic event 1a, Geology, 44, 959–962,
https://doi.org/10.1130/G38575.1, 2016.
Naafs, B. D. A., Castro, J. M., DeGea, G. A., Quijano, M. L., Schmidt, D.
N., and Pancost, R. D.: Gradual and sustained carbon dioxide release during
Aptian oceanic anoxic event 1a, Nat. Geosci., 9, 135–139,
https://doi.org/10.1038/ngeo2627, 2016.
Nederbragt, A. J. and Fiorentino, A.: Stratigraphy and palaeoceanography of
the Cenomanian-Turonian boundary event in Oued Mellegue, north-western
Tunisia, Cretaceous Res., 20, 47–62,
https://doi.org/10.1006/cres.1998.0136, 1999.
Nederbragt, A. J., Thurow, J., Vonhof, H., and Brumsack, H. J.: Modelling
oceanic carbon and phosphorus fluxes: implications for the cause of the late
Cenomanian Oceanic Anoxic Event (OAE2), J. Geol. Soc. London, 161,
721–728, https://doi.org/10.1144/0016-764903-075, 2004.
Nemoto, T. and Hasegawa, T.: Submillennial resolution carbon isotope
stratigraphy across the Oceanic Anoxic Event 2 horizon in the Tappu section,
Hokkaido, Japan, Palaeogeogr. Palaeocl., 309, 271–280,
https://doi.org/10.1016/j.palaeo.2011.06.009, 2011.
Niebuhr, B.: Geochemistry and time-series analyses of orbitally forced Upper
Cretaceous marl–limestone rhythmites (Lehrte West Syncline, northern
Germany), Geol. Mag., 142, 31–55,
https://doi.org/10.1017/S0016756804009999, 2005.
Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T.,
Graco, M., and Wallmann, K.: Benthic iron and phosphorus fluxes across the
Peruvian oxygen minimum zone, Limnol. Oceanogr., 57, 851–867,
https://doi.org/10.4319/lo.2012.57.3.0851, 2012.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Damste, J. S. S., Schouten,
S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C.,
Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C.,
Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs,
D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop,
J., Wagner, T., and Wrobel, N. E.: Cretaceous sea-surface temperature
evolution: Constraints from TEX86 and planktonic foraminiferal oxygen
isotopes, Earth-Sci. Rev., 172, 224–247,
https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
Oxmann, J. F., Pham, Q. H., and Lara, R. J.: Quantification of individual
phosphorus species in sediment: a sequential conversion and extraction
method, Eur. J. Soil Sci., 59, 1177–1190,
https://doi.org/10.1111/j.1365-2389.2008.01062.x, 2008.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
heartbeat of the Oligocene climate system, Science, 314, 1894–1898,
https://doi.org/10.1126/science.1133822, 2006.
Patterson, M. O., McKay, R., Naish, T., Escutia, C., Jimenez-Espejo, F. J.,
Raymo, M. E., Meyers, S. R., Tauxe, L., Brinkhuis, H., and IODP Expedition
318 Scientists: Orbital forcing of the East Antarctic ice sheet during the
Pliocene and Early Pleistocene, Nat. Geosci., 7, 841–847,
https://doi.org/10.1038/ngeo2273, 2014.
Paul, C. R. C., Lamolda, M. A., Mitchell, S. F., Vaziri, M. R., Gorostidi,
A., and Marshall, J. D.: The Cenomanian-Turonian boundary at Eastbourne
(Sussex, UK): a proposed European reference section, Palaeogeogr. Palaeocl.,
150, 83–121, https://doi.org/10.1016/S0031-0182(99)00009-7, 1999.
Peterson, L. C., Haug, G. H., Hughen, K. A., and Röhl, U.: Rapid changes
in the hydrologic cycle of the tropical Atlantic during the last glacial,
Science, 290, 1947–1951,
https://doi.org/10.1126/science.290.5498.1947, 2000.
Petrizzo, M. R., Huber, B. T., Wilson, P. A., and MacLeod, K. G.: Late
Albian paleoceanography of the western subtropical North Atlantic,
Paleoceanography, 23, PA1213, https://doi.org/10.1029/2007PA001517, 2008.
Poulton, S. W. and Canfield, D. E.: Ferruginous conditions: a dominant
feature of the ocean through Earth's history, Elements, 7, 107–112,
https://doi.org/10.2113/gselements.7.2.107, 2011.
Poulton, S. W., Henkel, S., März, C., Urquhart, H., Flögel, S.,
Kasten, S., Siminghe Damste, J. S., and Wagner, T.: A continental-weathering
control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic
Anoxic Event 2, Geology, 43, 963–966, https://doi.org/10.1130/G36837.1,
2015.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/ (last access: 1 September 2019), 2018.
Rau, G. H., Arthur, M. A., and Dean, W. E.: 15N/14N variations in
Cretaceous Atlantic sedimentary sequences: Implication for past changes in
marine nitrogen biogeochemistry, Earth Planet. Sc. Lett., 82, 269–279,
https://doi.org/10.1016/0012-821X(87)90201-9, 1987
Reboulet, S., Giraud, F., Colombié, C., and Carpentier, A.: Integrated
stratigraphy of the Lower and Middle Cenomanian in a Tethyan section
(Blieux, southeast France) and correlations with Boreal basins, Cretaceous
Res., 40, 170–189, https://doi.org/10.1016/j.cretres.2012.06.006, 2013.
Redfield, A. C.: The biological control of chemical factors in the
environment, Am. Sci., 46, 230A–221, 1958.
Redfield, A. C.: The influence of organisms on the composition of seawater,
in: The sea, edited by: Hill, M. N., Interscience, New York, USA, 2, 26–77,
1963.
Rigby, D. and Batts, B. D.: The isotopic composition of nitrogen in
Australian coals and oil shales, Chem. Geol.,
58, 273–282, https://doi.org/10.1016/0168-9622(86)90016-3, 1986.
Riggs, S. R.: Phosphorite sedimentation in Florida - a model phosphogenic
system, Econ. Geol., 74, 285–314,
https://doi.org/10.2113/gsecongeo.74.2.285, 1979.
Roth, R., Ritz, S. P., and Joos, F.: Burial-nutrient feedbacks amplify the sensitivity of atmospheric carbon dioxide to changes in organic matter remineralisation, Earth Syst. Dynam., 5, 321–343, https://doi.org/10.5194/esd-5-321-2014, 2014.
Ruiz-Ortiz, P. A., Castro, J. M., de Gea, G. A., Jarvis, I., Molina, J. M., Nieto, L. M., Pancost, R. D., Quijano, M. L., Reolid, M., Skelton, P. W., and Weissert, H. J.: New drilling of the early Aptian OAE1a: the Cau core (Prebetic Zone, south-eastern Spain), Sci. Dril., 21, 41–46, https://doi.org/10.5194/sd-21-41-2016, 2016.
Ruttenberg, K. C.: The Global Phosphorus Cycle, in: Treatise on Geochemistry
(Vol. 8), edited by: Turekian, K. K. and Holland, H. D., Elsevier, 585–643,
https://doi.org/10.1016/B0-08-043751-6/08153-6, 2003.
Ruttenberg, K. C. and Berner, R. A.: Authigenic apatite formation and burial
in sediments from non-upwelling continental margins, Geochim. Cosmochim Ac.,
57, 991–1007, https://doi.org/10.1016/0016-7037(93)90035-U, 1993.
Sageman, B. B., Meyers, S. R., and Arthur, M. A.: Orbital time scale and new
C-isotope record for Cenomanian-Turonian boundary stratotype, Geology,
34, 125–128, https://doi.org/10.1130/G22074.1, 2006.
Schlanger, S. O. and Jenkyns, H. C.: Cretaceous oceanic anoxic events:
causes and consequences, Geol. Mijnbouw, 55, 179–184, 1976.
Schlanger, S. O., Jenkyns, H. C., and Premoli-Silva, I.: Volcanism and
vertical tectonics in the Pacific Basin related to global Cretaceous
transgressions, Earth Planet. Sc. Lett., 52, 435–449,
https://doi.org/10.1016/0012-821X(81)90196-5, 1981.
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., and Scholle, P. A.: The
Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution
of organic carbon-rich beds and the marine δ13C excursion,
Geol. Soc. (London) Spec Publ, 26, 371–399,
https://doi.org/10.1144/GSL.SP.1987.026.01.24, 1987.
Scholle, P. A. and Arthur, M. A.: Carbon isotope fluctuations in Cretaceous
pelagic limestones: potential stratigraphic and petroleum exploration tool,
AAPG Bull., 64, 67–87,
https://doi.org/10.1306/2F91892D-16CE-11D7-8645000102C1865D, 1980.
Scholz, F., Beil, S., Flögel, S., Lehmann, M. F., Holbourn, A.,
Wallmann, K., and Kuhnt, W.: Oxygen minimum zone-type biogeochemical cycling
in the Cenomanian-Turonian Proto-North Atlantic across Oceanic Anoxic Event
2, Earth Planet. Sc. Lett., 517, 50–60,
https://doi.org/10.1016/j.epsl.2019.04.008, 2019.
Schroller-Lomnitz, U., Hensen, C., Dale, A. W., Scholz, F., Clemens, D.,
Sommer, S., Noffke, A., and Wallmann, K.: Dissolved benthic phosphate, iron
and carbon fluxes in the Mauritanian upwelling system and implications for
ongoing deoxygenation, Deep-Sea Res. Pt. I, 143, 70–84,
https://doi.org/10.1016/j.dsr.2018.11.008, 2019.
Schulz, H. N. and Schulz, H. D.: Large sulfur bacteria and the formation of
phosphorite, Science, 307, 416–418,
https://doi.org/10.1126/science.1103096, 2005.
Scott, R. W.: A Cretaceous chronostratigraphic database: construction and
applications, Carnets Geol., 14, 15–37,
https://doi.org/10.4267/2042/53522, 2014.
Scott, R. W.: Barremian–Aptian–Albian carbon isotope segments as
chronostratigraphic signals: numerical age calibration and durations,
Stratigraphy, 13, 21–47, 2016.
Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G. J., Pross, J.,
and Schouten, S.: A CO2 decrease-driven cooling and increased
latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic
Event 2, Earth Planet. Sc. Lett., 293, 97–103,
https://doi.org/10.1016/j.epsl.2010.02.027, 2010.
Slomp, C. P. and Van Cappellen, P.: The global marine phosphorus cycle: sensitivity to oceanic circulation, Biogeosciences, 4, 155–171, https://doi.org/10.5194/bg-4-155-2007, 2007.
Slomp, C. P., Thomson, J., and de Lange, G. J.: Controls on phosphorus
regeneration and burial during formation of eastern Mediterranean sapropels,
Mar. Geol., 203, 141–159,
https://doi.org/10.1016/S0025-3227(03)00335-9, 2004.
Smith, S. V.: Phosphorus versus nitrogen limitation in the marine
environment, Limnol. Oceanogr., 29, 1149–1160,
https://doi.org/10.4319/lo.1984.29.6.1149, 1984.
Stein, M., Föllmi, K. B., Westermann, S., Godet, A., Adatte, T., Matera,
V., Fleitmann, D., and Berner, Z.: Progressive palaeoenvironmental change
during the late Barremian–early Aptian as prelude to Oceanic Anoxic Event
1a: Evidence from the Gorgo a Cerbara section (Umbria-Marche basin, central
Italy), Palaeogeogr. Palaeocl., 302, 396–406,
https://doi.org/10.1016/j.palaeo.2011.01.025, 2011.
Tisserand, A., Malaizé, B., Jullien, E., Zaragosi, S., Charlier, K., and
Grousset, F.: African monsoon enhancement during the penultimate glacial
period (MIS 6.5 ∼170 ka) and its atmospheric impact, Paleoceanography,
24, PA2220, https://doi.org/10.1029/2008PA001630, 2009.
Trabucho-Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J.,
van de Wal, R. S., Dijkstra, H. A., and de Boer, P. L.: The mid-Cretaceous
North Atlantic nutrient trap: black shales and OAEs, Paleoceanography,
25, PA4201, https://doi.org/10.1029/2010PA001925, 2010.
Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., Petrizzo, M. R., Forster,
A., Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T., and
Sinninghe Damsté, J. S.: Carbon-isotope stratigraphy recorded by the
Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications
based on three key localities, J. Geol. Soc. London, 161, 711–719,
https://doi.org/10.1144/0016-764903-077, 2004.
Turgeon, S. C. and Creaser, R. A.: Cretaceous oceanic anoxic event 2
triggered by a massive magmatic episode, Nature, 454, 323–326,
https://doi.org/10.1038/nature07076, 2008.
Tyrrell, T.: The relative influences of nitrogen and phosphorus on oceanic
primary production, Nature, 400, 525–531, https://doi.org/10.1038/22941,
1999.
van Bentum, E. C., Reichart, G.-J., Forster, A., and Sinninghe Damsté, J. S.: Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity, Biogeosciences, 9, 717–731, https://doi.org/10.5194/bg-9-717-2012, 2012.
Voigt, S., Wilmsen, M., Mortimore, R. N., and Voigt, T.: Cenomanian
palaeotemperatures derived from the oxygen isotopic composition of
brachiopods and belemnites: evaluation of Cretaceous palaeotemperature
proxies, Int. J. Earth Sci., 92, 285–299,
https://doi.org/10.1007/s00531-003-0315-1, 2003.
Voigt, S., Gale, A. S., and Flögel, S.: Midlatitude shelf seas in the
Cenomanian-Turonian greenhouse world: Temperature evolution and North
Atlantic circulation, Paleoceanography, 19, PA4020,
https://doi.org/10.1029/2004PA001015, 2004.
Voigt, S., Aurag, A., Leis, F., and Kaplan, U.: Late Cenomanian to Middle
Turonian high-resolution carbon isotope stratigraphy: New data from the
Münsterland Cretaceous Basin, Germany, Earth Planet. Sc. Lett.,
253, 196–210, https://doi.org/10.1016/j.epsl.2006.10.026, 2007.
Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese,
F., Wilmsen, M., and Wonik, T.: The Cenomanian–Turonian of the Wunstorf
section–(North Germany): global stratigraphic reference section and new
orbital time scale for Oceanic Anoxic Event 2, Newsl. Stratigr., 43,
65–89, https://doi.org/10.1127/0078-0421/2008/0043-0065, 2008.
Wagner, T., Wallmann, K., Herrle, J. O., Hofmann, P., and Stuesser, I.:
Consequences of moderate ∼25 000 yr lasting emission of light CO2
into the mid-Cretaceous ocean, Earth Planet. Sc. Lett., 259, 200–211,
https://doi.org/10.1016/j.epsl.2007.04.045, 2007.
Wallmann, K.: Feedbacks between oceanic redox states and marine
productivity: A model perspective focused on benthic phosphorus cycling,
Global Biogeochem. Cy., 17, 1084, https://doi.org/10.1029/2002GB001968,
2003.
Wallmann, K.: Phosphorus imbalance in the global ocean?, Global Biogeochem.
Cy., 24, GB4030, https://doi.org/10.1029/2009GB003643, 2010.
Wallmann, K., Flögel, S., Scholz, F., Dale, A. W., Kemena, T. P.,
Steinig, S., and Kuhnt, W.: Periodic changes in the Cretaceous ocean and
climate caused by marine redox see-saw, Nat. Geosci., 12, 456–461,
https://doi.org/10.1038/s41561-019-0359-x, 2019.
Weaver, C. E.: Potassium, illite and the ocean, Geochim. Cosmochim. Ac.,
31, 2181–2196, https://doi.org/10.1016/0016-7037(67)90060-9, 1967.
Weaver, C. E.: Developments in Sedimentology 44 – Clays, muds, and shales,
Elsevier, 1989.
Weissert, H., Lini, A., Föllmi, K. B., and Kuhn, O.: Correlation of
Early Cretaceous carbon isotope stratigraphy and platform drowning events: a
possible link?, Palaeogeogr. Palaeocl., 137, 189–203,
https://doi.org/10.1016/S0031-0182(97)00109-0, 1998.
Weltje, G. J. and Tjallingii, R.: Calibration of XRF core scanners for
quantitative geochemical logging of sediment cores: theory and application,
Earth Planet. Sc. Lett., 274, 423–438,
https://doi.org/10.1016/j.epsl.2008.07.054, 2008.
Wendler, I.: A critical evaluation of carbon isotope stratigraphy and
biostratigraphic implications for Late Cretaceous global correlation,
Earth-Sci. Rev., 126, 116–146,
https://doi.org/10.1016/j.earscirev.2013.08.003, 2013.
Wilson, J.: Did the Atlantic close and then reopen?, Nature, 211, 676–681,
https://doi.org/10.1038/211676a0, 1966.
Worsley, T. R., Nance, R. D., and Moody, J. B.: Tectonic cycles and the
history of the Earth's biogeochemical and paleoceanographic record,
Paleoceanography, 1, 233–263, https://doi.org/10.1029/PA001i003p00233,
1986.
Yao, H., Chen, X., Melinte-Dobrinescu, M. C., Wu, H., Liang, H., and
Weissert, H.: Biostratigraphy, carbon isotopes and cyclostratigraphy of the
Albian-Cenomanian transition and Oceanic Anoxic Event 1d in southern Tibet,
Palaeogeogr. Palaeocl., 499, 45–55,
https://doi.org/10.1016/j.palaeo.2018.03.005, 2018.
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation...