Elderfield, H.: Foraminiferal Mg/Ca paleothermometry: expected advances and
unexpected consequences, Goldschmidt Conference, Davos, Switzerland, 17–23 August, Geochmim. Cosmochim. Acta, 66, A213, 2002.
Elling, F. J., Könneke, M., Lipp, J. S., Becker, K. W., Gagen, E. J., and Hinrichs, K.-U.: Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment, Geochim. Cosmochim. Ac., 141, 579–597, https://doi.org/10.1016/j.gca.2014.07.005, 2014.
Emiliani, C.: Pleistocene temperatures, The J. Geol., 63, 538–578,
https://doi.org/10.1086/626295, 1955.
Franklin, A.: Experiment, right or wrong. Cambridge University Press,
Cambridge, United Kingdom, 1990.
German, C. R. and Elderfield, H.: Application of the Ce Anomaly as a
paleoredox indicator: the ground rules, Paleoceanography, 5, 823–0833,
https://doi.org/10.1029/PA005i005p00823, 1990.
Harning, D., Andrews, J. T., Belt, S. T., Babedo-Sanz, P., Geirsdottir, A.,
Dildar, N., Miller, G. H., and Sepúlveda, J.: Sea ice control on winter
subsurface temperatures of the north Iceland shelf during the Little Ice
Age: a TEX
86 calibration case study, Paleoceanogr.
Paleoclim., 34, 1–16, https://doi.org/10.1029/2018PA003523, 2019.
Hastings, D. W., Russell, A. D., and Emerson, S. R.: Foraminiferal magnesium in
Globeriginoides sacculifer as a paleotemperature proxy, Paleoceanography, 13, 161–169, https://doi.org/10.1029/97PA03147, 1998.
Hetzberg, J. E., Schmidt, M. W., Bianchi, T. S., Smith, R. W., Shields, M. R., and Marcantonio, F.: Comparison of eastern tropical Pacific TEX
86 and
Globigerinoides ruber Mg/Ca derived sea surface temperature: Insights from the Holocene and Last
Glacial Maximum, Earth Planet. Sci. Lett., 434, 320–332,
https://doi.org/10.1016/j.epsl.2015.11.050, 2016.
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M., Creech,
J. B., Hines, B. R., Crouch, E. M., Morgans, H. E. G., Crampon, J. S., Gibbs, S.,
Pearson, P. N., and Zachos, J. C.: Early Paleogene temperature history of the
Southwest Pacific Ocean: Reconciling proxies and models, Earth Planet.
Sci. Lett., 349–350, 53–66,
https://doi.org/10.1016/j.epsl.2012.06.024, 2012.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Huguet, C., Kim, J.-H., Sinninghe Damsté, J. S., and Schouten, S.:
Reconstruction of sea surface temperature variations in the Arabian Sea over
the last 23 kyr using organic proxies (TEX
86 and U
'),
Paleoceanography, 21, PA3003, https://doi.org/10.1029/2005PA001215, 2006.
Hurley, S. J., Elling, F. J., Konneke, M., Buchwald, C., Wankel, S. D.,
Santoro, A. E., Lipp, J. S., Hinrichs, K.-U., and Pearson, A.: Influence of
ammonia oxidation rate on thaumarchaeal lipid composition and the TEX
86
temperature proxy, P. Natl. Acad. Sci. USA, 113,
7762–7767, https://doi.org/10.1073/pnas.1518534113, 2016.
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F.,
Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf, S.,
Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D.:
Palaeoclimate, in: Climate Change 2007: The Physical Science Basis.
Contributio
n of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen,
Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
2007.
Junium, C. K., Meyers, S. R., and Arthur, M. A.: Nitrogen cycle dynamics in the
Late Cretaceous greenhouse, Earth Planet. Sci. Lett., 481,
404–411, https://doi.org/10.1016/j.epsl.2017.10.006, 2018.
Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damsté,
J. S.: Global sediment core-top calibration of the TEX
86
paleothermometer in the ocean, Geochim. Cosmochim. Acta, 72,
1154–1173, https://doi.org/10.1016/j.gca.2007.12.010, 2008.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koc, N., Hopmans, E. C., and Sinninghe Damsté, J. S.: New
indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Acta, 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Lee, K. E., Kim, J.-H., Wilke, I., Helmke, P., and Schouten, S.: A study of
the alkenone, TEX
86, and planktonic foraminifera in the Benguela
Upwelling System: Implications for past sea surface temperature estimates,
Geochem. Geophys. Geosyst., 9, Q10019, https://doi.org/10.1029/2008GC002056,
2008.
Li, D., Zhao, M., Tian, J., and Li., L.: Comparison and implication of
TEX
86 and U
' temperature records over the last 356 kyr of
ODP Site 1147 from the northern South China Sea, Palaeogeogr.
Palaeoclim. Palaeoecol., 376, 213–223,
https://doi.org/10.1016/j.palaeo.2013.02.031, 2013.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H.,
Shah, S. R., Leckie, R. M., and Pearson, A.: Global cooling during the
Eocene-Oligocene climate transition, Science, 233, 1187–1190, https://doi.org/10.1126/science.1166368, 2009.
Mashiotta, T. A., Lea, D. W., and Spero, H. J.: Glacial-interglacial changes in
Subantarctic sea surface temperature and
δ18O-water using
foraminiferal Mg, Earth Planet. Sci. Lett., 170, 417–432,
https://doi.org/10.1016/S0012-821X(99)00116-8, 1999.
Newman, D. K., Neubauer, C., Ricci, J. N., Wu, C.-H., and Pearson, A.: Cellular
and molecular biological approaches to interpreting ancient biomarkers,
Annu. Rev. Earth Planet. Sci., 44, 493–522,
https://doi.org/10.1146/annurev-earth-050212-123958, 2016.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S.,
Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell,
S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C.,
Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs,
B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J.,
Wagner, T., and Wrobel, N. E.: Cretaceous sea-surface temperature evolution:
Constraints from TEX
86 and planktonic foraminiferal oxygen isotopes,
Earth-Sci. Rev., 172, 224–247,
https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
Okazaki, A. and Yoshimura, K.: Global evaluation of proxy system models for
stable water isotopes with realistic atmospheric forcing, JGR Atmos.,
124, 8972–8993, https://doi.org/10.1029/2018JD029463, 2019.
Polik, C. A., Elling, F. J., and Pearson, A.: Impacts of Paleoecology on the TEX86 sea surface temperature proxy in the Pliocene-Pleistocene Mediterranean Sea, Paleoceanography and Paleoclimatology, 33, 1472–1489 https://doi.org/10.1029/2018PA003494, 2018.
Powers, L., Werne, J. P., Vanderwoude, A. J., Sinninghe Damsté, J. S.,
Hopmans, E. C., and Schouten, S.: Applicability and calibration of the
TEX
86 paleothermometer in lakes, Organ. Geochem., 41, 404–413,
https://doi.org/10.1016/j.orggeochem.2009.11.009, 2010.
Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W., Stahl,
D. A., and Ingalls, A. E.: Confounding effects of oxygen and temperature on
the TEX
86 signature of marine Thaumarchaeota, P.
Natl. Acad. Sci. USA, 112, 10979–10984, https://doi.org/10.1073/pnas.1501568112, 2015.
Ravelo, A. C. and Hillaire-Marcel, C.: The use of oxygen and carbon isotopes
of foraminifera in paleoceanography, in: Developments in Marine Geology,
1, 735–764, https://doi.org/10.1016/S1572-5480(07)01023-8, 2007.
Royer, D. L.: Stomatal density and stomatal index as indicators of
paleoatmospheric
CO2 concentrations, Rev. Palaeobot.
Palynol., 114, 1–28, https://doi.org/10.1016/S0034-6667(00)00074-9, 2001.
Ruddiman, W. F.: Earth's climate: Past and Future, second edition, W. H.
Freeman and Company, New York, USA, 2008.
Schouten, S., Hopmans, E. C., Pancost, R. D., and Sinninghe Damsté, J. S.:
Widespread occurrence of structurally diverse tetraether membrane lipids:
Evidence for the ubiquitous presence of low-tempearture relatives of
hyperthermophiles, P. Natl. Acad. Sci. USA, 97,
14421–14426, 2000.
Schouten, S., Hopmans, E. C., SchefußE., and Sinninghe Damsté,
J. S.: Distributional variations in marine crenarchaeotal membrane lipids: a
new tool for reconstructing ancient sea water temperatures?, Earth
Planet. Sci. Lett., 204, 265–274,
https://doi.org/10.1016/S0012-821X(02)00979-2, 2002.
Schouten, S., Hopmans, E. C., Forster, A., van Breugel, Y., Kuypers, M. M. M.,
and Sinninghe Damsté, J. S.: Extremely high sea-surface temperatures at
low latitudes during the middle Cretaceous as revealed by archaeal membrane
lipids, Geology, 31, 1069–1072, https://doi.org/10.1130/G19876.1, 2003.
Shevenell, A. E., Ingalls, A. E., Domack, E. W., and Kelly, C.: Holocene
Southern Ocean surface temperature variability west of the Antarctic
Peninsula, Nature, 470, 250–254, https://doi.org/10.1038/nature09751, 2011.
Slujis, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H.,
Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein,
R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K.,
and the Expedition 302 Scientists: Subtropical Arctic Ocean temperatures
during the Palaeocene/Eocene thermal maximum, Nature, 441, 610–613,
https://doi.org/10.1038/nature04668, 2006.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater
carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature,
390, 497–500, https://doi.org/10.1038/37333, 1997.
Suppes, P.: A set of independent axioms for extensive quantities, Portugaliae
Mathematica, 10, 163–172, https://doi.org/10.1007/978-94-017-3173-7_3, 1951
Telford, R. J. and Birks, H. J. B.: The secret assumption of transfer
functions: problems with spatial autocorrelation in evaluating model
performance, Quaternary Sci. Rev., 24, 2173–2179,
https://doi.org/10.1016/j.quascirev.2005.05.001, 2005.
Telford, R. J., Andersson, R., Birks, H. J. B., and Juggins, S.: Biases in the
estimation of transfer function prediction errors, Paleoceanography, 19,
PA4014, https://doi.org/10.1029/2004PA001072, 2004.
Telford, R. J., Li, C., and Kucera, M.: Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions, Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, 2013.
Tierney, J. E.: GDGT thermometry: Lipid tools for reconstructing
paleotemperatures, in: Reconstructing Earth's Deep-Time Climate – The State
of the Art in 2012, Paaleontological Society Short Course, The
Paleontological Society Papers, 18, edited by: Ivany, L. V. and Huber, B. T., 115–131, https://doi.org/10.1017/S1089332600002588, 2012.
Tierney, J. E. and Tingley, M. P.: A Bayesian, spatially-varying calibration
model for the TEX
86 proxy, Geochmim. Cosmochim. Acta, 127,
83–106, https://doi.org/10.1016/j.gca.2013.11.026, 2014.
Tierney, J. E., Mayes, M. T., Meyer, N., Johnson, C., Swarzenski, P. W., Cohen,
A. S., and Russell, J. M.: Late-twentieth-century warming in Lake Tanganyika
unprecedented since AD 500, Nat. Geosci., 3, 422–425,
https://doi.org/10.1038/ngeo865, 2010.
Trommer, G., Siccha, M., van der Meer, M. T. J., Schouten, S., Sinninghe
Damsté, J. A., Schulz, H., Hemleben, C., and Kucera, M.: Distribution of
Crenarchaeota tetraether membrane lipids in surface sediments from the Red
Sea, Organ. Geochem., 40, 724–731,
https://doi.org/10.1016/j.orggeochem.2009.03.001, 2009.
Urey, H. C.: Oxygen isotopes in nature and in the laboratory, Science, 108,
489–496, https://doi.org/10.1126/science.108.2810.489, 1948.
Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R.: Measurement of
paleotempeatures and temperatures of the upper Cretaceous of England,
Denmark, and the southeastern United States, B. Geol.
Soc. Am., 62, 399–416,
https://doi.org/10.1130/0016-7606(1951)62[399:MOPATO]2.0.CO;2, 1951.
Van Fraassen, B. C.: Scientific representation: Paradoxes of perspective,
Analysis, 70, 511–514, https://doi.org/10.1093/analys/anq042, 2010.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S.: Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index, Org. Geochem., 37, 1680–1693, https://doi.org/10.1016/j.orggeochem.2006.07.018, 2006.
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L.: Using fossil
leaves as paleoprecipitaiton indicators; an Eocene example, Geology, 26,
203–206, https://doi.org/10.1130/0091-7613(1998)026<0203:UFLAPI>2.3.CO;2, 1998.
Wilson, J. and Boudinot, F. G.: The reliability of proxy measurements and
the proxy/non-proxy distinction, American Geophysical Union Fall Meeting,
abstract ID PP14B-07, San Francisco, California, 9–13 December 2019.
Woelders, L., Vellekoop, J., Kroon, D., Smit, J., Casadio, S., Pramparo,
M. B., Dinares-Turell, J., Peterse, F., Slujis, A., Lenaerts, J. T. M., and
Speijer, R. P.: Latest Cretaceous climatic and environmental change in the
South Atlantic region, Paleoceanography, 32, 466–483,
https://doi.org/10.1002/2016PA003007, 2017.
Yasuhara, M., Rabalais, N. N., Conley, D. J., and Gutierrez, D.: Palaeo-records of
histories of deoxygenation and its ecosystem impact, in: Ocean deoxygenation:
Everyone's problem – Causes, impacts, consequences, and solutions,
edited by: Laffoley, D. and Baxter, J. M., IUCN, Gland, Switzerland, 213–224,
https://doi.org/10.1007/s00338-019-01765-0, 2019.
Yevjevich, V.: Stochastic models in hydrology, Stoch. Hydrol.
Hydraul., 1, 17–36, https://doi.org/10.1007/BF01543907, 1987.