Articles | Volume 16, issue 5
https://doi.org/10.5194/cp-16-1759-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1759-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of temporally varying weatherability on CO2-climate coupling and ecosystem change in the late Paleozoic
Department of Earth and Planetary Sciences, University of California,
Davis, Davis, CA 95616, USA
Isabel P. Montañez
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, University of California,
Davis, Davis, CA 95616, USA
Yves Goddéris
Géosciences Environnement Toulouse, CNRS – Université Paul
Sabatier, Toulouse, France
Cindy V. Looy
Department of Integrative Biology and Museum of Paleontology,
University of California, Berkeley, Berkeley, CA 94720, USA
Neil P. Griffis
Department of Earth and Planetary Sciences, University of California,
Davis, Davis, CA 95616, USA
Berkeley Geochronology Center, Berkeley, CA 94720, USA
William A. DiMichele
Department of Paleobiology, Smithsonian Museum of Natural History,
Washington, DC 20560, USA
Related authors
No articles found.
Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather L. Buss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2811, https://doi.org/10.5194/egusphere-2024-2811, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the earth by sequestering atmospheric CO2 . The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Pierre Dietrich, François Guillocheau, Guilhem Amin Douillet, Neil Patrick Griffis, Guillaume Baby, Daniel Paul Le Heron, Laurie Barrier, Maximilien Mathian, Isabel Patricia Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-467, https://doi.org/10.5194/egusphere-2024-467, 2024
Short summary
Short summary
At the evocation of ‘icy landscapes’, Africa is not the first place that comes to mind. The modern relief of Southern Africa is generally considered as resulting from uplift and counteracting erosion. We show that many modern reliefs of this region are fossil glacial landscapes tied to an ice age that occurred 300 million years ago: striated pavements, valleys, fjords. We emphasise how these landscapes have escaped being erased for hundreds of millions of years, generally considered improbable.
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
Sébastien Carretier, Yves Goddéris, Javier Martinez, Martin Reich, and Pierre Martinod
Earth Surf. Dynam., 6, 217–237, https://doi.org/10.5194/esurf-6-217-2018, https://doi.org/10.5194/esurf-6-217-2018, 2018
Short summary
Short summary
The role of mountain uplift and associated silicate weathering in the global climate over geological times is controversial. Previous soil column models suggest that weathering falls at a high denudation rate. We present the results of a 3-D model that couples erosion and weathering, a CO2 consumer during mountain uplift. Our model suggests that the weathering of temporarily stocked colluvium may contribute significantly to the mountain weathering outflux at high denudation rates.
Sébastien Carretier, Pierre Martinod, Martin Reich, and Yves Godderis
Earth Surf. Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, https://doi.org/10.5194/esurf-4-237-2016, 2016
Short summary
Short summary
We introduce moving clasts (grains, minerals, cobbles) in a landscape evolution model.
This coupling has many potential applications, such as sediment provenance or the tracing of weathered material. It fills a gap between long-term landscape dynamics, which are difficult to tackle, and sediment clast populations studied in the field.
N. Vigier and Y. Goddéris
Clim. Past, 11, 635–645, https://doi.org/10.5194/cp-11-635-2015, https://doi.org/10.5194/cp-11-635-2015, 2015
Short summary
Short summary
We develop here a new approach that couples the carbon and lithium cycles for reconstructing the Cenozoic Li isotope record. We show that this record does not provide persuasive, unique evidence for Cenozoic change in erosional forcing as it could, alternatively, be consistent with climatic control on soil production rates. The Li storage in continental secondary phases plays a key role, in particular, during the Early Cenozoic.
Y. Goddéris, S. L. Brantley, L. M. François, J. Schott, D. Pollard, M. Déqué, and M. Dury
Biogeosciences, 10, 135–148, https://doi.org/10.5194/bg-10-135-2013, https://doi.org/10.5194/bg-10-135-2013, 2013
Cited articles
Balseiro, D. and Powell, M. G.: Carbonate collapse and the late Paleozoic
ice age marine biodiversity crisis, Geology, 48, 118–122,
https://doi.org/10.1130/G46858.1, 2019.
Beerling, D. J. and Berner, R. A.: Impact of a Permo-Carboniferous high
O2 event on the terrestrial carbon cycle, P. Natl. Acad. Sci. USA, 97, 12428–12432, https://doi.org/10.1073/pnas.220280097, 2000.
Beerling, D. J., Woodward, F. I., Lomas, M. R., Wills, M. A., Quick, W. P.,
and Valdes, P. J.: The influence of Carboniferous palaeoatmospheres on plant
function: an experimental and modelling assessment, Philos. T. R. Soc.
Lon. B, 353, 131–140, https://doi.org/10.1098/rstb.1998.0196, 1998.
Belt, E. S., Heckel, P. H., Lentz, L. J., Bragonier, W. A., and Lyons, T. W.: Record of glacial–eustatic sea-level fluctuations in complex middle to
late Pennsylvanian facies in the Northern Appalachian Basin and relation to
similar events in the Midcontinent basin, Sediment. Geol., 238, 79–100,
https://doi.org/10.1016/j.sedgeo.2011.04.004, 2011.
Benton, M. J.: No gap in the Middle Permian record of terrestrial
vertebrates, Geology, 40, 339–342, https://doi.org/10.1130/G32669.1, 2012.
Berner, R. A. and Caldeira, K.: The need for mass balance and feedback in
the geochemical carbon cycle, Geology, 25, 955–956,
https://doi.org/10.1130/0091-7613(1997)025{<}0955:TNFMBA{>}2.3.CO;2, 1997.
Breecker, D. O.: Quantifying and understanding the uncertainty of
atmospheric CO2 concentrations determined from calcic paleosols,
Geochem. Geophys. Geosy., 14, 3210–3220,
https://doi.org/10.1002/ggge.20189, 2013.
Buggisch, W., Wang, X., Alekseev, A. S., and Joachimski, M. M.:
Carboniferous–Permian carbon isotope stratigraphy of successions from China
(Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals),
Palaeogeogr. Palaeocl., 301, 18–38,
https://doi.org/10.1016/j.palaeo.2010.12.015, 2011.
Cagliari, J., Philipp, R. P., Buso, V. V., Netto, R. G., Klaus Hillebrand, P., da Cunha Lopes, R., Stipp Basei, M. A., and Faccini, U. F.: Age
constraints of the glaciation in the Paraná Basin: evidence from new
U–Pb dates, J. Geol. Soc. London, 173, 871–874,
https://doi.org/10.1144/jgs2015-161, 2016.
Cascales-Miñana, B., Diez, J. B., Gerrienne, P., and Cleal, C. J.: A
palaeobotanical perspective on the great end-Permian biotic crisis, Hist.
Biol., 28, 1066–1074, https://doi.org/10.1080/08912963.2015.1103237, 2016.
Caves, J. K., Jost, A. B., Lau, K. V., and Maher, K.: Cenozoic carbon cycle
imbalances and a variable weathering feedback, Earth Planet. Sc. Lett.,
450, 152–163, https://doi.org/10.1016/j.epsl.2016.06.035, 2016.
Chen, J. and Xu, Y.-g.: Establishing the link between Permian volcanism and
biodiversity changes: Insights from geochemical proxies, Gondwana Res., 75,
68–96, https://doi.org/10.1016/j.gr.2019.04.008, 2019.
Chen, J., Montañez, I. P., Qi, Y., Shen, S., and Wang, X.: Strontium and
carbon isotopic evidence for decoupling of pCO2 from continental
weathering at the apex of the late Paleozoic glaciation, Geology, 46,
395–398, https://doi.org/10.1130/G40093.1, 2018.
Chen, J., Chen, B., and Montañez, I. P.: Carboniferous isotope
stratigraphy, in: The Carboniferous Timescale, edited by: Lucas, S. G.,
Schneider, J. W., Wang, X., and Nikolaeva, S., Geological Society of London,
London, in press, 2020.
Clapham, M. E. and James, N. P.: Paleoecology Of Early–Middle Permian
Marine Communities In Eastern Australia: Response To Global Climate Change
In the Aftermath Of the Late Paleozoic Ice Age, Palaios, 23, 738–750,
https://doi.org/10.2110/palo.2008.p08-022r, 2008.
Cleal, C. J. and Thomas, B. A.: Palaeozoic tropical rainforests and their
effect on global climates: is the past the key to the present?, Geobiology,
3, 13–31, https://doi.org/10.1111/j.1472-4669.2005.00043.x, 2005.
Crowley, T. J. and Baum, S. K.: Modeling late Paleozoic glaciation,
Geology, 20, 507–510, https://doi.org/10.1130/0091-7613(1992)020{<}0507:MLPG{>}2.3.CO;2, 1992.
D'Antonio, M. P., Ibarra, D. E., and Boyce, C. K.: Land plant evolution
decreased, rather than increased, weathering rates, Geology, 48, 29–33,
https://doi.org/10.1130/G46776.1, 2019.
Davydov, V. I.: Precaspian Isthmus emergence triggered the Early Sakmarian
glaciation: Evidence from the Lower Permian of the Urals, Russia,
Palaeogeogr. Palaeocl., 511, 403–418,
https://doi.org/10.1016/j.palaeo.2018.09.007, 2018.
de Boer, H. J., Drake, P. L., Wendt, E., Price, C. A., Schulze, E.-D.,
Turner, N. C., Nicolle, D., and Veneklaas, E. J.: Apparent Overinvestment in
Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in
Arid Habitats, Plant Physiol., 172, 2286–2299,
https://doi.org/10.1104/pp.16.01313, 2016.
Dessert, C., Dupré, B., François, L. M., Schott, J., Gaillardet, J.,
Chakrapani, G., and Bajpai, S.: Erosion of Deccan Traps determined by river
geochemistry: impact on the global climate and the 87Sr/86Sr ratio of
seawater, Earth Planet. Sc. Lett., 188, 459–474,
https://doi.org/10.1016/S0012-821X(01)00317-X, 2001.
Dessert, C., Dupré, B., Gaillardet, J., François, L. M., and
Allègre, C. J.: Basalt weathering laws and the impact of basalt
weathering on the global carbon cycle, Chem. Geol., 202, 257–273,
https://doi.org/10.1016/j.chemgeo.2002.10.001, 2003.
Diefendorf, A. F., Leslie, A. B., and Wing, S. L.: Leaf wax composition and
carbon isotopes vary among major conifer groups, Geochim. Cosmochim. Ac.,
170, 145–156, https://doi.org/10.1016/j.gca.2015.08.018, 2015.
DiMichele, W. A.: Wetland-dryland vegetational dynamics in the Pennsylvanian ice age tropics, Int. J. Plant Sci., 175, 123–164, https://doi.org/10.1086/675235, 2014.
DiMichele, W. A., Montañez, I. P., Poulsen, C. J., and Tabor, N. J.:
Climate and vegetational regime shifts in the late Paleozoic ice age earth,
Geobiology, 7, 200–226, https://doi.org/10.1111/j.1472-4669.2009.00192.x,
2009.
DiMichele, W. A., Wagner, R. H., Bashforth, A. R., and
Álvárez-Vazquez, C.: An update on the flora of the Kinney Quarry of
central New Mexico (Upper Pennsylvanian), its preservational and
environmental significance, in: Carboniferous-Permian transition in central
New Mexico, edited by: Lucas, S. G., Nelson, W. J., DiMichele, W. A.,
Speilmann, J. A., Krainer, K., Barrick, J. E., Elrick, S., and Voigt, S.,
New Mexico Museum of Natural History and Science, Bulletin, New Mexico
Museum of Natural History and Science, Albuquerque, New Mexico, 289–325,
2013.
Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A., and
Meert, J.: A “snowball Earth” climate triggered by continental break-up
through changes in runoff, Nature, 428, 303–306,
https://doi.org/10.1038/nature02408, 2004.
Donnadieu, Y., Goddéris, Y., Pierrehumbert, R., Dromart, G., Fluteau, F., and Jacob, R.: A GEOCLIM simulation of climatic and biogeochemical
consequences of Pangea breakup, Geochem. Geophys. Geosy., 7, Q11019,
https://doi.org/10.1029/2006GC001278, 2006.
Eros, J. M., Montañez, I. P., Osleger, D. A., Davydov, V. I.,
Nemyrovska, T. I., Poletaev, V. I., and Zhykalyak, M. V.: Sequence
stratigraphy and onlap history of the Donets Basin, Ukraine: insight into
Carboniferous icehouse dynamics, Palaeogeogr. Palaeocl., 313, 1–25,
https://doi.org/10.1016/j.palaeo.2011.08.019, 2012.
Falcon-Lang, H. J., Nelson, W. J., Heckel, P. H., DiMichele, W. A., and
Elrick, S. D.: New insights on the stepwise collapse of the Carboniferous
Coal Forests: Evidence from cyclothems and coniferopsid tree-stumps near the
Desmoinesian–Missourian boundary in Peoria County, Illinois, USA,
Palaeogeogr. Palaeocl., 490, 375–392,
https://doi.org/10.1016/j.palaeo.2017.11.015, 2018.
Feulner, G.: Formation of most of our coal brought Earth close to global
glaciation, P. Natl. Acad. Sci. USA, 114, 11333–11337,
https://doi.org/10.1073/pnas.1712062114, 2017.
Fielding, C. R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., and Roberts, J.: Stratigraphic imprint of the Late Palaeozoic Ice Age in
eastern Australia: a record of alternating glacial and nonglacial climate
regime, J. Geol. Soc. London, 165, 129–140,
https://doi.org/10.1144/0016-76492007-036, 2008.
Fielding, C. R., Nelson, W. J., and Elrick, S. D.: Sequence stratigraphy of
the late Desmoinesian to early Missourian (Pennsylvanian) succession of
southern Illinois: Insights into controls on stratal architecture in an
icehouse period of Earth history, J. Sediment. Res., 90, 200–227,
https://doi.org/10.2110/jsr.2020.10, 2020.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat. Commun.,
8, 14845, https://doi.org/10.1038/ncomms14845, 2017.
Franks, P. J., Royer, D. L., Beerling, D. J., Van de Water, P. K., Cantrill, D. J., Barbour, M. M., and Berry, J. A.: New constraints on atmospheric
CO2 concentration for the Phanerozoic, Geophys. Res. Lett., 41,
4685–4694, https://doi.org/10.1002/2014GL060457, 2014.
Friedman, M. and Sallan, L. C.: Five hundred million years of extinction
and recovery: a phanerozoic survey of large-scale diversity patterns in
fishes, Palaeontology, 55, 707–742,
https://doi.org/10.1111/j.1475-4983.2012.01165.x, 2012.
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global
silicate weathering and CO2 consumption rates deduced from the
chemistry of large rivers, Chem. Geol., 159, 3–30,
https://doi.org/10.1016/S0009-2541(99)00031-5, 1999.
Gao, Z., Tian, W., Wang, L., Shi, L., and Pan, M.: Emplacement of intrusions
of the Tarim Flood Basalt Province and their impacts on oil and gas
reservoirs: A 3D seismic reflection study in Yingmaili fields, Tarim Basin,
northwest China, Interpretation, 5, SK51–SK63,
https://doi.org/10.1190/INT-2016-0165.1, 2017.
Gerhart, L. M. and Ward, J. K.: Plant responses to low [CO2] of the
past, New Phytol., 188, 674–695,
https://doi.org/10.1111/j.1469-8137.2010.03441.x, 2010.
Gibbs, M. T., Bluth, G. J., Fawcett, P. J., and Kump, L. R.: Global chemical
erosion over the last 250 my; variations due to changes in paleogeography,
paleoclimate, and paleogeology, Am. J. Sci., 299, 611–651,
https://doi.org/10.2475/ajs.299.7-9.611, 1999.
Glasspool, I., Scott, A., Waltham, D., Pronina, N., and Shao, L.: The impact
of fire on the Late Paleozoic Earth system, Front. Plant Sci., 6, 756,
https://doi.org/10.3389/fpls.2015.00756, 2015.
Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V., and Nardin, E.:
The role of palaeogeography in the Phanerozoic history of atmospheric
CO2 and climate, Earth-Sci. Rev., 128, 122–138,
https://doi.org/10.1016/j.earscirev.2013.11.004, 2014.
Goddéris, Y., Donnadieu, Y., Carretier, S., Aretz, M., Dera, G.,
Macouin, M., and Regard, V.: Onset and ending of the late Palaeozoic ice age
triggered by tectonically paced rock weathering, Nat. Geosci., 10, 382–386,
https://doi.org/10.1038/ngeo2931, 2017.
Griffis, N. P., Mundil, R., Montañez, I. P., Isbell, J., Fedorchuk, N.,
Vesely, F., Iannuzzi, R., and Yin, Q.-Z.: A new stratigraphic framework
built on U-Pb single-zircon TIMS ages and implications for the timing of the
penultimate icehouse (Paraná Basin, Brazil), Geol. Soc. Am. Bull., 130,
848–858, https://doi.org/10.1130/B31775.1, 2018.
Griffis, N. P., Montañez, I. P., Mundil, R., Richey, J. D., Isbell, J.,
Fedorchuk, N., Linol, B., Iannuzzi, R., Vesely, F., Mottin, T., de Rosa, E.,
Keller, C. B., and Yin, Q.-Z.: Coupled stratigraphic and U-Pb zircon age
constraints on the late Paleozoic icehouse-to-greenhouse turnover in
south-central Gondwana, Geology, 47, 1146–1150,
https://doi.org/10.1130/G46740.1, 2019.
Grossman, E. L., Yancey, T. E., Jones, T. E., Bruckschen, P., Chuvashov, B.,
Mazzullo, S. J., and Mii, H.-s.: Glaciation, aridification, and carbon
sequestration in the Permo-Carboniferous: The isotopic record from low
latitudes, Palaeogeogr. Palaeocl., 268, 222–233,
https://doi.org/10.1016/j.palaeo.2008.03.053, 2008.
Groves, J. R. and Yue, W.: Foraminiferal diversification during the late
Paleozoic ice age, Paleobiology, 35, 367–392,
https://doi.org/10.1666/0094-8373-35.3.367, 2009.
Henderson, C. M., Wardlaw, B. R., Davydov, V. I., Schmitz, M. D., Schiappa, T. A., Tierney, K. E., and Shen, S.: Proposal for base-Kungurian GSSP,
Permophiles, 56, 8–21, 2012.
Hernandez-Castillo, G. R., Stockey, R. A., Mapes, G. K., and Rothwell, G. W.: A new voltzialean conifer Emporia royalii sp. nov. (Emporiaceae) from the Hamilton
Quarry, Kansas, Int. J. Plant Sci., 170, 1201–1227,
https://doi.org/10.1086/605874, 2009a.
Hernandez-Castillo, G. R., Stockey, R. A., Rothwell, G. W., and Mapes, G. K.: Reconstruction of the Pennsylvanian-age walchian conifer Emporia cryptica sp. nov.
(Emporiaceae: Voltziales), Rev. Palaeobot. Palyno., 157, 218–237,
https://doi.org/10.1016/j.revpalbo.2009.05.003, 2009b.
Hernandez-Castillo, G. R., Stockey, R. A., Rothwell, G. W., and Mapes, G. K.: Reconstructing Emporia lockardii (Voltziales: Emporiaceae) and initial thoughts on
Paleozoic conifer ecology, Int. J. Plant Sci., 170, 1056–1074,
https://doi.org/10.1086/605115, 2009c.
Hibbett, D., Blanchette, R., Kenrick, P., and Mills, B.: Climate, decay, and
the death of the coal forests, Curr. Biol., 26, R563–R567,
https://doi.org/10.1016/j.cub.2016.01.014, 2016.
Horton, D. E., Poulsen, C. J., Montañez, I. P., and DiMichele, W. A.:
Eccentricity-paced late Paleozoic climate change, Palaeogeogr. Palaeocl.,
331, 150–161, https://doi.org/10.1016/j.palaeo.2012.03.014, 2012.
Ibarra, D. E., Caves, J. K., Moon, S., Thomas, D. L., Hartmann, J.,
Chamberlain, C. P., and Maher, K.: Differential weathering of basaltic and
granitic catchments from concentration–discharge relationships, Geochim.
Cosmochim. Ac., 190, 265–293, https://doi.org/10.1016/j.gca.2016.07.006,
2016.
Ibarra, D. E., Rugenstein, J. K. C., Bachan, A., Baresch, A., Lau, K. V.,
Thomas, D. L., Lee, J.-E., Boyce, C. K., and Chamberlain, C. P.: Modeling
the consequences of land plant evolution on silicate weathering, Am. J.
Sci., 319, 1–43, https://doi.org/10.2475/01.2019.01, 2019.
Isbell, J. L., Henry, L. C., Gulbranson, E. L., Limarino, C. O., Fraiser, M. L., Koch, Z. J., Ciccioli, P. L., and Dineen, A. A.: Glacial paradoxes
during the late Paleozoic ice age: Evaluating the equilibrium line altitude
as a control on glaciation, Gondwana Res., 22, 1–19,
https://doi.org/10.1016/j.gr.2011.11.005, 2012.
Joshi, M. M., Mills, B. J. W., and Johnson, M.: A Capacitor-Discharge
Mechanism to Explain the Timing of Orogeny-Related Global Glaciations,
Geophys. Res. Lett., 46, 8347–8354, https://doi.org/10.1029/2019GL083368,
2019.
Käßner, A., Tichomirowa, M., Lützner, H., and Gaupp, R.: New
high precision CA-ID-TIMS U-Pb zircon ages from the Thuringian Forest
Rotliegend section, in: Geophysical Research Abstracts, European Geophysical
Union, Vienna, Austria, 2019,
Kemp, T. S.: The origin and early radiation of the therapsid mammal-like
reptiles: a palaeobiological hypothesis, J. Evolution. Biol., 19,
1231–1247, https://doi.org/10.1111/j.1420-9101.2005.01076.x, 2006.
Koch, J. T. and Frank, T. D.: The Pennsylvanian–Permian transition in the
low-latitude carbonate record and the onset of major Gondwanan glaciation,
Palaeogeogr. Palaeocl., 308, 362–372,
https://doi.org/10.1016/j.palaeo.2011.05.041, 2011.
Korte, C. and Ullmann, C. V.: Permian strontium isotope stratigraphy, Geol.
Soc. Spec. Publ., 450, 105–118, https://doi.org/10.1144/sp450.5, 2018.
Krause, A. J., Mills, B. J. W., Zhang, S., Planavsky, N. J., Lenton, T. M.,
and Poulton, S. W.: Stepwise oxygenation of the Paleozoic atmosphere, Nat.
Commun., 9, 4081, https://doi.org/10.1038/s41467-018-06383-y, 2018.
Lee, C.-T. A., Thurner, S., Paterson, S., and Cao, W.: The rise and fall of
continental arcs: Interplays between magmatism, uplift, weathering, and
climate, Earth Planet. Sc. Lett., 425, 105–119,
https://doi.org/10.1016/j.epsl.2015.05.045, 2015.
Lee, C.-T. A. and Dee, S.: Does volcanism cause warming or cooling?,
Geology, 47, 687–688, https://doi.org/10.1130/focus072019.1, 2019.
Lenton, T. M., Daines, S. J., and Mills, B. J. W.: COPSE reloaded: An
improved model of biogeochemical cycling over Phanerozoic time, Earth-Sci.
Rev., 178, 1–28, https://doi.org/10.1016/j.earscirev.2017.12.004, 2018.
Li, H., Taylor, E. L., and Taylor, T. N.: Permian Vessel Elements, Science,
271, 188–189, https://doi.org/10.1126/science.271.5246.188, 1996.
Lowry, D. P., Poulsen, C. J., Horton, D. E., Torsvik, T. H., and Pollard, D.: Thresholds for Paleozoic ice sheet initiation, Geology, 42, 627–630,
https://doi.org/10.1130/G35615.1, 2014.
Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L., and
Jagoutz, O.: Arc-continent collisions in the tropics set Earth's climate
state, Science, 364, 181–184, https://doi.org/10.1126/science.aav5300,
2019.
Maher, K. and Chamberlain, C. P.: Hydrologic Regulation of Chemical
Weathering and the Geologic Carbon Cycle, Science, 343, 1502–1504,
https://doi.org/10.1126/science.1250770, 2014.
McGhee, G. R.: Carboniferous Giants and Mass Extinction: The Late Paleozoic
Ice Age World, Columbia University Press, New York, 2018.
McKenzie, N. R., Horton, B. K., Loomis, S. E., Stockli, D. F., Planavsky, N. J., and Lee, C.-T. A.: Continental arc volcanism as the principal driver of
icehouse-greenhouse variability, Science, 352, 444–447,
https://doi.org/10.1126/science.aad5787, 2016.
McLoughlin, S.: Glossopteris – insights into the architecture and
relationships of an iconic Permian Gondwanan plant, Journal of the Botanical Society of Bengal, 65, 93–106, 2011.
Melville, R.: Glossopteridae, Angiospermidae and the evidence for angiosperm
origin, Bot. J. Linn. Soc., 86, 279–323,
https://doi.org/10.1111/j.1095-8339.1983.tb00975.x, 1983.
Montañez, I. P.: Modern soil system constraints on reconstructing
deep-time atmospheric CO2, Geochim. Cosmochim. Ac., 101, 57–75,
https://doi.org/10.1016/j.gca.2012.10.012, 2013.
Montañez, I. P.: A Late Paleozoic climate window of opportunity, P.
Natl. Acad. Sci. USA, 113, 2234–2336,
https://doi.org/10.1073/pnas.1600236113, 2016.
Montañez, I. P. and Poulsen, C. J.: The Late Paleozoic Ice Age: An
Evolving Paradigm, Annu. Rev. Earth Pl. Sc., 41, 629–656,
https://doi.org/10.1146/annurev.earth.031208.100118, 2013.
Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D., Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M. C.:
CO2-forced climate and vegetation instability during Late Paleozoic
deglaciation, Science, 315, 87–91, https://doi.org/10.1126/science.1134207,
2007.
Montañez, I. P., McElwain, J. C., Poulsen, C. J., White, J. D.,
Dimichele, W. A., Wilson, J. P., Griggs, G., and Hren, M. T.: Climate,
pCO2 and terrestrial carbon cycle linkages during late Palaeozoic
glacial–interglacial cycles, Nat. Geosci., 9, 824–828,
https://doi.org/10.1038/ngeo2822, 2016.
Ogg, J. G., Ogg, G., and Gradstein, F. M.: A concise geologic time scale:
2016, Elsevier, New York, 2016.
Pardo, J. D., Small, B. J., Milner, A. R., and Huttenlocker, A. K.:
Carboniferous–Permian climate change constrained early land vertebrate
radiations, Nat. Ecol. Evol., 3, 200–206,
https://doi.org/10.1038/s41559-018-0776-z, 2019.
Poulsen, C. J., Tabor, C., and White, J. D.: Long-term climate forcing by
atmospheric oxygen concentrations, Science, 348, 1238–1241,
https://doi.org/10.1126/science.1260670, 2015.
Powell, M. G.: Climatic basis for sluggish macroevolution during the late Paleozoic ice age, Geology, 33, 381–384, https://doi.org/10.1130/G21155.1, 2005.
Richey, J. D., Montañez, I. P., Goddéris, Y., Looy, C. V., Griffis, N. P., and DiMichele, W. A.: Primary Data from Richey et al., 2020 (Climate Of The Past), v8, UC Davis, https://doi.org/10.25338/B8S90Q, 2020.
Romanek, C. S., Grossman, E. L., and Morse, J. W.: Carbon isotopic
fractionation in synthetic aragonite and calcite: Effects of temperature and
precipitation rate, Geochim. Cosmochim. Ac., 56, 419–430,
https://doi.org/10.1016/0016-7037(92)90142-6, 1992.
Sato, A. M., Llambías, E. J., Basei, M. A. S., and Castro, C. E.: Three
stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana,
and the relationships with the volcanogenic events in coeval basins, J. S.
Am. Earth Sci., 63, 48–69, https://doi.org/10.1016/j.jsames.2015.07.005,
2015.
Scotese, C.: PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter
Program, PALEOMAP Project, available at:
https://www.earthbyte.org/paleomap-paleoatlas-for-gplates/ (last access: 17 August 2019), 2016.
Shellnutt, J. G.: The Panjal Traps, in: Large Igneous Provinces from
Gondwana and Adjacent Regions, edited by: Sensarma, S., and Storey, B. C.,
Special Publications, 1, Geological Society, London, 59–86, 2018.
Šimůnek, Z.: Cuticular analysis of new Westphalian and Stephanian
Cordaites species from the USA, Rev. Palaeobot. Palyno., 253, 1–14,
https://doi.org/10.1016/j.revpalbo.2018.03.001, 2018.
Soreghan, G. S., Soreghan, M. J., and Heavens, N. G.: Explosive volcanism as
a key driver of the late Paleozoic ice age, Geology, 47, 600–604,
https://doi.org/10.1130/G46349.1, 2019.
Spalletti, L. A. and Limarino, C. O.: The Choiyoi magmatism in south
western Gondwana: implications for the end-permian mass extinction-a review,
Andean Geol., 44, 328–338, https://doi.org/10.5027/andgeoV44n3-a05, 2017.
Srivastava, A. K.: Evolutionary tendency in the venation pattern of
Glossopteridales, Geobios, 24, 383–386,
https://doi.org/10.1016/S0016-6995(06)80235-4, 1991.
Stanley, S. M.: Estimates of the magnitudes of major marine mass extinctions
in earth history, P. Natl. Acad. Sci. USA, 113, E6325–E6334,
https://doi.org/10.1073/pnas.1613094113, 2016.
Stanley, S. M. and Powell, M. G.: Depressed rates of origination and
extinction during the late Paleozoic ice age: a new state for the global
marine ecosystem, Geology, 31, 877–880, https://doi.org/10.1130/G19654R.1,
2003.
Tabor, N. J. and Montañez, I. P.: Oxygen and hydrogen isotope
compositions of Permian pedogenic phyllosilicates: development of modern
surface domain arrays and implications for paleotemperature reconstructions,
Palaeogeogr. Palaeocl., 223, 127–146,
https://doi.org/10.1016/j.palaeo.2005.04.009, 2005.
Tabor, N. J., DiMichele, W. A., Montañez, I. P., and Chaney, D. S.: Late
Paleozoic continental warming of a cold tropical basin and floristic change
in western Pangea, Int. J. Coal. Geol., 119, 177–186,
https://doi.org/10.1016/j.coal.2013.07.009, 2013.
Torsvik, T. H., Smethurst, M. A., Burke, K., and Steinberger, B.: Long term
stability in deep mantle structure: Evidence from the ∼300 Ma
Skagerrak-Centered Large Igneous Province (the SCLIP), Earth Planet. Sc.
Lett., 267, 444–452, https://doi.org/10.1016/j.epsl.2007.12.004, 2008.
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback
mechanism for the long-term stabilization of Earth's surface temperature, J.
Geophys. Res.-Oceans, 86, 9776–9782,
https://doi.org/10.1029/JC086iC10p09776, 1981.
Wang, X.-D., Wang, X.-J., Zhang, F., and Zhang, H.: Diversity patterns of
Carboniferous and Permian rugose corals in South China, Geol. J., 41,
329–343, https://doi.org/10.1002/gj.1041, 2006.
West, A. J.: Thickness of the chemical weathering zone and implications for
erosional and climatic drivers of weathering and for carbon-cycle feedbacks,
Geology, 40, 811–814, https://doi.org/10.1130/g33041.1, 2012.
Wilson, J. P., Montañez, I. P., White, J. D., DiMichele, W. A.,
McElwain, J. C., Poulsen, C. J., and Hren, M. T.: Dynamic Carboniferous
tropical forests: new views of plant function and potential for
physiological forcing of climate, New Phytol., 215, 1333–1353,
https://doi.org/10.1111/nph.14700, 2017.
Wilson, J. P., White, J. D., Montañez, I. P., DiMichele, W. A.,
McElwain, J. C., Poulsen, C. J., and Hren, M. T.: Carboniferous plant
physiology breaks the mold, New Phytol., https://doi.org/10.1111/nph.16460,
2020.
Yang, S., Chen, H., Li, Z., Li, Y., Yu, X., Li, D., and Meng, L.: Early
Permian Tarim Large Igneous Province in northwest China, Sci. China Earth
Sci., 56, 2015–2026, https://doi.org/10.1007/s11430-013-4653-y, 2013.
Zhai, Q.-G., Jahn, B.-M., Su, L., Ernst, R. E., Wang, K.-l., Zhang, R.-Y.,
Wang, J., and Tang, S.: SHRIMP zircon U–Pb geochronology, geochemistry and
Sr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtang
terrane, northern Tibet and geodynamic implications, Lithos, 174, 28–43,
https://doi.org/10.1016/j.lithos.2012.10.018, 2013.
Zhou, W., Wan, M., Koll, R. A., and Wang, J.: Occurrence of the earliest
gigantopterid from the basal Permian of the North China Block and its
bearing on evolution, Geol. J., 53, 500–509,
https://doi.org/10.1002/gj.2907, 2017.
Short summary
Our 40 Myr CO2 reconstruction substantially refines existing late Paleozoic CO2 estimates, provides the best resolved pre-Cenozoic CO2 record, and indicates a close temporal relationship to changes in marine and terrestrial ecosystems. The GEOCLIM model used in our study allows for insight into the relative influences of uplift of the Central Pangean Mountains, intensifying aridity, and increasing mafic-to-granite ratio of outcropping rocks on changes in pCO2 through the late Paleozoic.
Our 40 Myr CO2 reconstruction substantially refines existing late Paleozoic CO2 estimates,...