Articles | Volume 15, issue 6
https://doi.org/10.5194/cp-15-1959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bispectra of climate cycles show how ice ages are fuelled
Diederik Liebrand
CORRESPONDING AUTHOR
Center for Marine Environmental Sciences (MARUM), University of
Bremen, Bremen, Germany
Anouk T. M. de Bakker
CORRESPONDING AUTHOR
LIttoral ENvironnement et Sociétés (LIENSs), Université de
La Rochelle, La Rochelle, France
Unit of Marine and Coastal Systems, Deltares, Delft, the Netherlands
Related authors
Diederik Liebrand, Anouk T. M. de Bakker, Heather J. H. Johnstone, and Charlotte S. Miller
Clim. Past, 19, 1447–1459, https://doi.org/10.5194/cp-19-1447-2023, https://doi.org/10.5194/cp-19-1447-2023, 2023
Short summary
Short summary
Climate cycles with millennial periodicities are enigmatic because no Earth external climate forcing exists that operates on millennial timescales. Using a statistical analysis of a famous Greenlandic air temperature record, we show that two disparate energy sources (one astronomical and one centennial) fuel millennial climate variability. We speculate that two distinct Earth internal cryospheric/climatic/oceanic processes are responsible for the transfer of energy to millennial climate cycles.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Diederik Liebrand, Anouk T. M. de Bakker, Heather J. H. Johnstone, and Charlotte S. Miller
Clim. Past, 19, 1447–1459, https://doi.org/10.5194/cp-19-1447-2023, https://doi.org/10.5194/cp-19-1447-2023, 2023
Short summary
Short summary
Climate cycles with millennial periodicities are enigmatic because no Earth external climate forcing exists that operates on millennial timescales. Using a statistical analysis of a famous Greenlandic air temperature record, we show that two disparate energy sources (one astronomical and one centennial) fuel millennial climate variability. We speculate that two distinct Earth internal cryospheric/climatic/oceanic processes are responsible for the transfer of energy to millennial climate cycles.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Related subject area
Subject: Feedback and Forcing | Archive: Marine Archives | Timescale: Pleistocene
Insolation evolution and ice volume legacies determine interglacial and glacial intensity
The transient impact of the African monsoon on Plio-Pleistocene Mediterranean sediments
Land–sea coupling of early Pleistocene glacial cycles in the southern North Sea exhibit dominant Northern Hemisphere forcing
A distal 140 kyr sediment record of Nile discharge and East African monsoon variability
Takahito Mitsui, Polychronis C. Tzedakis, and Eric W. Wolff
Clim. Past, 18, 1983–1996, https://doi.org/10.5194/cp-18-1983-2022, https://doi.org/10.5194/cp-18-1983-2022, 2022
Short summary
Short summary
We provide simple quantitative models for the interglacial and glacial intensities over the last 800 000 years. Our results suggest that the memory of previous climate states and the time course of the insolation in both hemispheres are crucial for understanding interglacial and glacial intensities. In our model, the shift in interglacial intensities at the Mid-Brunhes Event (~430 ka) is ultimately attributed to the amplitude modulation of obliquity.
Bas de Boer, Marit Peters, and Lucas J. Lourens
Clim. Past, 17, 331–344, https://doi.org/10.5194/cp-17-331-2021, https://doi.org/10.5194/cp-17-331-2021, 2021
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Werner Ehrmann, Gerhard Schmiedl, Martin Seidel, Stefan Krüger, and Hartmut Schulz
Clim. Past, 12, 713–727, https://doi.org/10.5194/cp-12-713-2016, https://doi.org/10.5194/cp-12-713-2016, 2016
Cited articles
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi,
K., and Blatter, H.: Insolation-driven 100 000-year glacial cycles and
hysteresis of ice-sheet volume, Nature, 500, 190–194, https://doi.org/10.1038/nature12374, 2013.
Agassiz, L.: Études sur les glaciers, Neuchâtel, Jent et Gassmann,
available at:
https://archive.org/details/etudessurlesgla00agasgoog/page/n10 (last access: 30 March 2019), 1840.
Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic
Pliocene–Pleistocene stack of benthic δ18O using a profile
hidden Markov model, Dynamics and Statistics of the Climate System, 2, 1–16,
https://doi.org/10.1093/climsys/dzx002, 2017.
Bak, P.: How nature works: the science of self-organized criticality,
Copernicus, New York, 1996.
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality – an
explanation of 1/f noise, Phys. Rev. Lett., 59, 381–384, https://doi.org/10.1103/PhysRevLett.59.381, 1987.
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys.
Rev. A, 38, 364–374, https://doi.org/10.1103/PhysRevA.38.364, 1988.
Beerling, D. J. and Royer, D. L.: Convergent Cenozoic CO2 history,
Nat. Geosci., 4, 418–420, https://doi.org/10.1038/ngeo1186, 2011.
Berger, A., Loutre, M. F., and Mélice, J. L.: Equatorial insolation: from precession harmonics to eccentricity frequencies, Clim. Past, 2, 131–136, https://doi.org/10.5194/cp-2-131-2006, 2006.
Berger, A. L.: Support for astronomical theory of climatic change, Nature,
269, 44–45, https://doi.org/10.1038/269044a0, 1977.
Bintanja, R. and van de Wal, R. S. W.: North American ice-sheet dynamics
and the onset of 100 000-year glacial cycles, Nature, 454, 869–872,
https://doi.org/10.1038/nature07158, 2008.
Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J., and
Lourens, L. J.: Response of the North African summer monsoon to precession
and obliquity forcings in the EC-Earth GCM, Clim. Dynam., 44, 279–297,
https://doi.org/10.1007/s00382-014-2260-z, 2015a.
Bosmans, J. H. C., Hilgen, F. J., Tuenter, E., and Lourens, L. J.: Obliquity forcing of low-latitude climate, Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, 2015b.
Broecker, W. S.: Absolute dating and astronomical theory of glaciation,
Science, 151, 299–304, https://doi.org/10.1126/science.151.3708.299, 1966.
Calov, R. and Ganopolski, A.: Multistability and hysteresis in the
climate-cryosphere system under orbital forcing, Geophys. Res. Lett., 32,
L21717, https://doi.org/10.1029/2005GL024518, 2005.
Chalk, T. B., Hain, M. P., Foster, G. L., Rohling, E. J., Sexton, P. F.,
Badger, M. P. S., Cherry, S. G., Hasenfratz, A. P., Haug, G. H., Jaccard, S.
L., Martinez-Garcia, A., Palike, H., Pancost, R. D., and Wilson, P. A.:
Causes of ice age intensification across the Mid-Pleistocene Transition,
P. Natl. Acad. Sci. USA, 114, 13114–13119, https://doi.org/10.1073/pnas.1702143114, 2017.
Chaudhuri, P. and Marron, J. S.: SiZer for exploration of structures in
curves, J. Am. Stat. Assoc., 94, 807–823, https://doi.org/10.2307/2669996, 1999.
Cheng, H., Edwards, R. L., Sinha, A., Spotl, C., Yi, L., Chen, S. T., Kelly,
M., Kathayat, G., Wang, X. F., Li, X. L., Kong, X. G., Wang, Y. J., Ning, Y.
F., and Zhang, H. W.: The Asian monsoon over the past 640 000 years and ice
age terminations, Nature, 534, 640–646, https://doi.org/10.1038/nature18591, 2016.
Clark, P. U. and Pollard, D.: Origin of the middle Pleistocene transition
by ice sheet erosion of regolith, Paleoceanography, 13, 1–9, https://doi.org/10.1029/97pa02660, 1998.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin,
V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene
transition: characteristics. mechanisms, and implications for long-term
changes in atmospheric pCO2, Quaternary Sci. Rev., 25,
3150–3184, https://doi.org/10.1016/j.quascirev.2006.07.008,
2006.
Collis, W. B., White, P. R., and Hammond, J. K.: Higher-order spectra: The
bispectrum and trispectrum, Mech. Syst. Signal Pr., 12, 375–394, https://doi.org/10.1006/mssp.1997.0145, 1998.
Crowhurst, S. J., Palike, H., and Rickaby, R. E. M.: Carbonate ions, orbits
and Mg/Ca at ODP 1123, Geochim. Cosmochim. Ac., 236, 384–398,
https://doi.org/10.1016/j.gca.2018.03.013, 2018.
Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene climate
theory, Philos. T. R. Soc. A, 370, 1140–1165, https://doi.org/10.1098/rsta.2011.0315, 2012.
Da Silva, A. C., Dekkers, M. J., De Vleeschouwer, D., Hladil, J., Chadimova,
L., Slavik, L., and Hilgen, F. J.: Millennial-scale climate changes manifest
Milankovitch combination tones and Hallstatt solar cycles in the Devonian
greenhouse world, Geology, 47, 19–22, https://doi.org/10.1130/G45511.1, 2018.
de Bakker, A. T. M., Tissier, M. F. S., and Ruessink, B. G.: Shoreline
dissipation of infragravity waves, Cont. Shelf Res., 72, 73–82, https://doi.org/10.1016/j.csr.2013.11.013, 2014.
de Bakker, A. T. M., Herbers, T. H. C., Smit, P. B., Tissier, M. F. S., and
Ruessink, B. G.: Nonlinear infragravity-wave interactions on a gently
sloping laboratory beach, J. Phys. Oceanogr., 45, 589–605,
https://doi.org/10.1175/JPO-D-14-0186.1, 2015.
de Bakker, A. T. M., Tissier, M. F. S., and Ruessink, B. G.: Beach steepness
effects on nonlinear infragravity-wave interactions: A numerical study, J.
Geophys. Res.-Oceans, 121, 554–570, https://doi.org/10.1002/2015jc011268, 2016.
de Boer, B., van de Wal, R. S. W., Lourens, L. J., and Bintanja, R.:
Transient nature of the Earth's climate and the implications for the
interpretation of benthic δ18O records, Palaeogeogr. Palaeocl.,
335, 4–11, https://doi.org/10.1016/j.palaeo.2011.02.001, 2012.
deMenocal, P. B.: Plio-Pleistocene African climate, Science, 270, 53–59,
https://doi.org/10.1126/science.270.5233.53, 1995.
Doering, J. C. and Bowen, A. J.: Parametrization of orbital velocity
asymmetries of shoaling and breaking waves using bispectral analysis,
Coast. Eng., 26, 15–33, https://doi.org/10.1016/0378-3839(95)00007-X, 1995.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N.,
Hodell, D. A., and Piotrowski, A. M.: Evolution of ocean temperature and ice
volume through the mid-Pleistocene climate transition, Science, 337,
704–709, https://doi.org/10.1126/science.1221294, 2012.
Elgar, S. and Guza, R. T.: Observations of bispectra of shoaling surface
gravity-waves, J. Fluid Mech., 161, 425–448, https://doi.org/10.1017/S0022112085003007, 1985.
Elgar, S.: Relationships involving third moments and bispectra of a harmonic
process, IEEE T. Acoust. Speech,
ASSP-35, 1725–1726, https://doi.org/10.1109/TASSP.1987.1165090, 1987.
Elgar, S. and Sebert, G.: Statistics of bicoherence and biphase, J. Geophys.
Res.-Oceans, 94, 10993–10998, https://doi.org/10.1029/JC094iC08p10993, 1989.
Farmer, J. R., Honisch, B., Haynes, L. L., Kroon, D., Jung, S., Ford, H. L.,
Raymo, M. E., Jaume-Segui, M., Bell, D. B., Goldstein, S. L., Pena, L. D.,
Yehudai, M., and Kim, J.: Deep Atlantic Ocean carbon storage and the rise of
100 000-year glacial cycles, Nat. Geosci., 12, 355–360, https://doi.org/10.1038/s41561-019-0334-6, 2019.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Ganopolski, A., Winkelmann, R., and Schellnhuber, H. J.: Critical
insolation-CO2 relation for diagnosing past and future glacial inception,
Nature, 529, 200–203, https://doi.org/10.1038/nature16494,
2016.
Hagelberg, T., Pisias, N., and Elgar, S.: Linear and nonlinear couplings
between orbital forcing and the marine δ18O record during the
late Neogene, Paleoceanography, 6, 729–746, https://doi.org/10.1029/91PA02281, 1991.
Hagelberg, T. K., Bond, G., and deMenocal, P.: Milankovitch band forcing of
sub-milankovitch climate variability during the Pleistocene,
Paleoceanography, 9, 545–558, https://doi.org/10.1029/94pa00443, 1994.
Hasselmann, K.: Stochastic climate models. Part I. Theory, Tellus, 28,
473–485, https://doi.org/10.3402/tellusa.v28i6.11316, 1976.
Hasselmann, K., Munk, W., and MacDonald, G.: Bispectra of ocean waves, in:
Proceedings of the Symposium on Time Series Analysis, edited by: Rosenblatt,
M., John Wiley, 125–139, 1963.
Haug, G. H. and Tiedemann, R.: Effect of the formation of the Isthmus of
Panama on Atlantic Ocean thermohaline circulation, Nature, 393, 673–676,
https://doi.org/10.1038/31447, 1998.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's
orbit – Pacemaker of the ice ages, Science, 194, 1121–1132, https://doi.org/10.1126/science.194.4270.1121, 1976.
Herbers, T. H. C. and Burton, M. C.: Nonlinear shoaling of directionally
spread waves on a beach, J. Geophys. Res.-Oceans, 102, 21101–21114, https://doi.org/10.1029/97jc01581, 1997.
Herbers, T. H. C., Russnogle, N. R., and Elgar, S.: Spectral energy balance
of breaking waves within the surf zone, J. Phys. Oceanogr.,
30, 2723–2737, https://doi.org/10.1175/1520-0485(2000)030<2723:SEBOBW>2.0.CO;2, 2000.
Hilgen, F. J., Lourens, L. J., Van Dam, J. A., Beu, A. G., Boyes, A. F.,
Cooper, R. A., Krijgsman, W., Ogg, J. G., Piller, W. E., and Wilson, D. S.:
The Neogene Period, in: Geologic Time Scale 2012, vols. 1 and 2, edited by:
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 923–978,
2012.
Huybers, P.: Glacial variability over the last two million years: an
extended depth-derived agemodel, continuous obliquity pacing, and the
Pleistocene progression, Quaternary Sci. Rev., 26, 37–55, https://doi.org/10.1016/j.quascirev.2006.07.013, 2007.
Huybers, P.: Combined obliquity and precession pacing of late Pleistocene
deglaciations, Nature, 480, 229–232, https://doi.org/10.1038/nature10626, 2011.
Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum
temperature variability, Nature, 441, 329–332, https://doi.org/10.1038/nature04745, 2006.
Huybers, P. and Tziperman, E.: Integrated summer insolation forcing and
40 000-year glacial cycles: The perspective from an ice-sheet/energy-balance
model, Paleoceanography, 23, PA1208, https://doi.org/10.1029/2007pa001463, 2008.
Huybers, P. and Wunsch, C.: A depth-derived Pleistocene age model:
Uncertainty estimates, sedimentation variability, and nonlinear climate
change, Paleoceanography, 19, PA1028, https://doi.org/10.1029/2002pa000857, 2004.
Huybers, P. and Wunsch, C.: Obliquity pacing of the late Pleistocene
glacial terminations, Nature, 434, 491–494, https://doi.org/10.1038/nature03401, 2005.
Kender, S., Ravelo, A. C., Worne, S., Swann, G. E. A., Leng, M. J., Asahi,
H., Becker, J., Detlef, H., Aiello, I. W., Andreasen, D., and Hall, I. R.:
Closure of the Bering Strait caused Mid-Pleistocene Transition cooling, Nat.
Commun., 9, 5386, https://doi.org/10.1038/s41467-018-07828-0, 2018.
Kennedy, A. B., Chen, Q., Kirby, J. T., and Dalrymple, R. A.: Boussinesq
modeling of wave transformation, breaking, and runup. I: 1D, J.
Waterw. Port C., 126, 39–47, https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39), 2000.
King, T.: Quantifying nonlinearity and geometry in time series of climate,
Quaternary Sci. Rev., 15, 247–266, https://doi.org/10.1016/0277-3791(95)00060-7, 1996.
King Hagelberg, T. and Cole, J.: Determining the role of linear and
nonlinear interactions in records of climate change:
possible solar influences in annual to century-scale record, in: Proceedings
of the eleventh annual Pacific climate (PACLIM) workshop, edited by: Isaacs,
C. M., and Tharp, V. L., Interagency ecological program, California
department of water resources, 47–54, 1995.
Konijnendijk, T. Y. M., Ziegler, M., and Lourens, L. J.: On the timing and
forcing mechanisms of late Pleistocene glacial terminations: Insights from a
new high-resolution benthic stable oxygen isotope record of the eastern
Mediterranean, Quaternary Sci. Rev., 129, 308–320, https://doi.org/10.1016/j.quascirev.2015.10.005, 2015.
Köppen, W. and Wegener, A.: Die klimate der geologischen vorzeit.,
Gebrüder Borntraeger, Berlin, 1924.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: A new orbital
solution for the long term motion of the Earth, Astron. Astrophys.,
532, A89, https://doi.org/10.1051/0004-6361/201116836, 2011a.
Laskar, J., Gastineau, M., Delisle, J.-B., Farrés, A., and Fienga, A.:
Strong chaos induced by close encounters with Ceres and Vesta, Astron.
Astrophys., 532, 1–4, https://doi.org/10.1051/0004-6361/201117504, 2011b.
Liebrand, D., de Bakker, A. T. M., Beddow, H. M., Wilson, P. A., Bohaty, S.
M., Ruessink, G., Pälike, H., Batenburg, S. J., Hilgen, F. J., Hodell,
D. A., Huck, C. E., Kroon, D., Raffi, I., Saes, M. J. M., van Dijk, A. E.,
and Lourens, L. J.: Evolution of the early Antarctic ice ages, P. Natl. Acad. Sci. USA, 114,
3867–3872, https://doi.org/10.1073/pnas.1615440114, 2017.
Lisiecki, L. E.: Links between eccentricity forcing and the 100 000-year
glacial cycle, Nat. Geosci., 3, 349–352, https://doi.org/10.1038/Ngeo828, 2010.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005a.
Lisiecki, L. E. and Raymo, M. E.: Pliocene-Pleistocene stack of globally distributed benthic stable oxygen isotope records, PANGAEA, https://doi.org/10.1594/PANGAEA.704257, 2005b.
Lisiecki, L. E. and Raymo, M. E.: Plio-Pleistocene climate evolution:
trends and transitions in glacial cycle dynamics, Quaternary Sci.
Rev., 26, 56–69, https://doi.org/10.1016/j.quascirev.2006.09.005, 2007.
Lisiecki, L. E., Raymo, M. E., and Curry, W. B.: Atlantic overturning
responses to Late Pleistocene climate forcings, Nature, 456, 85–88,
https://doi.org/10.1038/nature07425, 2008.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last
Deglaciation with a New Mechanism for Bolling-Allerod Warming, Science, 325,
310–314, https://doi.org/10.1126/science.1171041, 2009.
Lourens, L. J. and Hilgen, F. J.: Long-periodic variations in the Earth's
obliquity and their relation to third-order eustatic cycles and late Neogene
glaciations, Quatern. Int., 40, 43–52, https://doi.org/10.1016/S1040-6182(96)00060-2, 1997.
Lourens, L. J., Becker, J., Bintanja, R., Hilgen, F. J., Tuenter, E., van de
Wal, R. S. W., and Ziegler, M.: Linear and non-linear response of late
Neogene glacial cycles to obliquity forcing and implications for the
Milankovitch theory, Quaternary Sci. Rev., 29, 352–365, https://doi.org/10.1016/j.quascirev.2009.10.018, 2010.
Martinez-Boti, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton,
P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. S., and Schmidt, D. N.:
Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2
records, Nature, 518, 49–54, https://doi.org/10.1038/nature14145, 2015.
Meyers, S. R. and Hinnov, L. A.: Northern Hemisphere glaciation and the
evolution of Plio-Pleistocene climate noise, Paleoceanography, 25,
PA3207, https://doi.org/10.1029/2009pa001834, 2010.
Milankovitch, M.: Canon of Insolation and the Ice-Age Problem, 1st ed.,
Zavod za udžbenike i nastavna sredstva & Muzej nauke i tehnike Srpske
akademije nauka i umetnosti, Beograd, 1941.
Muller, R. A. and MacDonald, G. J.: Spectrum of 100 kyr glacial cycle:
Orbital inclination, not eccentricity, P. Natl. Acad.
Sci. USA, 94, 8329–8334, https://doi.org/10.1073/pnas.94.16.8329, 1997a.
Muller, R. A. and MacDonald, G. J.: Simultaneous presence of orbital
inclination and eccentricity in proxy climate records from Ocean Drilling
Program Site 806, Geology, 25, 3–6, https://doi.org/10.1130/0091-7613(1997)025<0003:SPOOIA>2.3.CO;2, 1997b.
Norheim, C. A., Herbers, T. H. C., and Elgar, S.: Nonlinear evolution of
surface wave spectra on a beach, J. Phys. Oceanogr., 28,
1534–1551, https://doi.org/10.1175/1520-0485(1998)028<1534:Neosws>2.0.Co;2, 1998.
Paillard, D., Labeyrie, L., and Yiou, P.: AnalySeries, Macintosh program
performs time-series analysis, EOS Transactions AGU, 77, 379, https://doi.org/10.1029/96EO00259, 1996.
Pelletier, J. D.: The power spectral density of atmospheric temperature from
time scales of 10−2 to 106 yr, Earth Planet. Sc. Lett., 158,
157–164, https://doi.org/10.1016/S0012-821x(98)00051-X, 1998.
Pestiaux, P., Van der Mersch, I., Berger, A., and Duplessy, J. C.:
Paleoclimatic variability at frequencies ranging from 1 cycle per 10 000
years to 1 cycle per 1000 years: evidence for nonlinear behaviour of the
climate system, Climatic Change, 12, 9–37, https://doi.org/10.1007/Bf00140262, 1988.
Pisias, N. G., Mix, A. C., and Zahn, R.: Nonlinear response in the global
climate system: evidence from benthic oxygen isotopic record in Core
Rc13-110, Paleoceanography, 5, 147–160, https://doi.org/10.1029/PA005i002p00147, 1990.
Raymo, M. E. and Nisancioglu, K.: The 41 kyr world: Milankovitch's other
unsolved mystery, Paleoceanography, 18, 1011, https://doi.org/10.1029/2002pa000791, 2003.
Raymo, M. E., Lisiecki, L. E., and Nisancioglu, K. H.: Plio-pleistocene ice
volume, Antarctic climate, and the global δ18O record, Science,
313, 492–495, https://doi.org/10.1126/science.1123296, 2006.
Rial, J. A. and Anaclerio, C. A.: Understanding nonlinear responses of the
climate system to orbital forcing, Quaternary Sci. Rev., 19,
1709–1722, https://doi.org/10.1016/S0277-3791(00)00087-1,
2000.
Ridgwell, A. J., Watson, A. J., and Raymo, M. E.: Is the spectral signature
of the 100 kyr glacial cycle consistent with a Milankovitch origin?,
Paleoceanography, 14, 437–440, https://doi.org/10.1029/1999pa900018, 1999.
Roe, G.: In defense of Milankovitch, Geophys. Res. Lett., 33, L24703, https://doi.org/10.1029/2006gl027817, 2006.
Roe, G. H. and Allen, M. R.: A comparison of competing explanations for the
100 000-yr ice age cycle, Geophys. Res. Lett., 26, 2259–2262, https://doi.org/10.1029/1999gl900509, 1999.
Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P.,
Tamisiea, M. E., and Williams, F.: Sea-level and deep-sea-temperature
variability over the past 5.3 million years, Nature, 508, 477–482,
https://doi.org/10.1038/nature13230, 2014.
Rutherford, S. and D'Hondt, S.: Early onset and tropical forcing of
100 000-year Pleistocene glacial cycles, Nature, 408, 72–75, https://doi.org/10.1038/35040533, 2000.
Shackleton, N. J.: The 100 000-year ice-age cycle identified and found to
lag temperature, carbon dioxide, and orbital eccentricity, Science, 289,
1897–1902, https://doi.org/10.1126/science.289.5486.1897,
2000.
Sun, Y., Chen, J., Clemens, S. C., Liu, Q. S., Ji, J. F., and Tada, R.: East
Asian monsoon variability over the last seven glacial cycles recorded by a
loess sequence from the northwestern Chinese Loess Plateau, Geochem. Geophy.
Geosy., 7, Q12Q02, https://doi.org/10.1029/2006gc001287, 2006.
Tabor, C. R. and Poulsen, C. J.: Simulating the mid-Pleistocene transition
through regolith removal, Earth Planet. Sc. Lett., 434,
231–240, https://doi.org/10.1016/j.epsl.2015.11.034, 2016.
Tziperman, E., Raymo, M. E., Huybers, P., and Wunsch, C.: Consequences of
pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to
Milankovitch forcing, Paleoceanography, 21, PA4206, https://doi.org/10.1029/2005pa001241, 2006.
Viaggi, P.: δ18O and SST signal decomposition and dynamic of
the Pliocene-Pleistocene climate system: new insights on orbital nonlinear
behavior vs. long-term trend, Progress in Earth and Planetary Science, 5,
1–37, https://doi.org/10.1186/s40645-018-0236-z, 2018.
von Dobeneck, T. and Schmieder, F.: Using rock magnetic proxy records for
orbital tuning and extended time series analyses into the super- and
sub-Milankovitch band, in: Use of proxies in paleoceanography: examples from
the South Atlantic, edited by: Fischer, G. and Wefer, G., Springer-Verlag,
Berlin, Heidelberg, 601–633, https://doi.org/10.1007/978-3-642-58646-0_25,
1999.
Wara, M. W., Ravelo, A. C., and Revenaugh, J. S.: The pacemaker always rings
twice, Paleoceanography, 15, 616–624, https://doi.org/10.1029/2000pa000500, 2000.
Werner, M., Heimann, M., and Hoffmann, G.: Isotopic composition and origin
of polar precipitation in present and glacial climate simulations, Tellus B,
53, 53–71, https://doi.org/10.3402/tellusb.v53i1.16539, 2001.
Willeit, M., Ganopolski, A., Calov, R., Robinson, A., and Maslin, M.: The
role of CO2 decline for the onset of Northern Hemisphere glaciation,
Quaternary Sci. Rev., 119, 22–34, https://doi.org/10.1016/j.quascirev.2015.04.015, 2015.
Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V.: Mid-Pleistocene
transition in glacial cycles explained by declining CO2 and regolith
removal, Sci. Adv., 5, eaav7337, https://doi.org/10.1126/sciadv.aav7337,
2019.
Wu, P. L., Jackson, L., Pardaens, A., and Schaller, N.: Extended warming of
the northern high latitudes due to an overshoot of the Atlantic meridional
overturning circulation, Geophys. Res. Lett., 38, L24704, https://doi.org/10.1029/2011gl049998, 2011.
Yiou, P., Ghil, M., Jouzel, J., Paillard, D., and Vautard, R.: Nonlinear
variability of the climatic system from singular and power spectra of late
Quaternary records, Clim. Dynam., 9, 371–389, https://doi.org/10.1007/s003820050030, 1994.
Ziegler, M., Lourens, L. J., Tuenter, E., Hilgen, F., Reichart, G. J., and
Weber, N.: Precession phasing offset between Indian summer monsoon and
Arabian Sea productivity linked to changes in Atlantic overturning
circulation, Paleoceanography, 25, PA3213, https://doi.org/10.1029/2009pa001884, 2010.
Short summary
We present a new analysis and interpretation of a well-established climate record that spans the past 5 million years. We describe how the energy the Earth receives from the Sun is transferred among climate cycles with different duration. This analysis offers new insights into the complex evolution of the global climate system and land-ice volumes during this time. Furthermore, it provides a more complete solution to the long-standing 40 000- and ~100 000-year problems of the ice ages.
We present a new analysis and interpretation of a well-established climate record that spans the...