Articles | Volume 15, issue 4
https://doi.org/10.5194/cp-15-1363-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1363-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mid–late Holocene event registered in organo-siliciclastic sediments of Lagoa Salgada carbonate system, southeast Brazil
Anna Paula Soares Cruz
Programa de Pós-Graduação em Geoquímica, Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Centro, Niterói, Rio de Janeiro CEP 24.020-141, Brazil
Cátia Fernandes Barbosa
CORRESPONDING AUTHOR
Programa de Pós-Graduação em Geoquímica, Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Centro, Niterói, Rio de Janeiro CEP 24.020-141, Brazil
Angélica Maria Blanco
Programa de Pós-Graduação em Geoquímica, Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Centro, Niterói, Rio de Janeiro CEP 24.020-141, Brazil
Camila Areias de Oliveira
Programa de Pós-Graduação em Geoquímica, Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Centro, Niterói, Rio de Janeiro CEP 24.020-141, Brazil
Cleverson Guizan Silva
Programa de Pós-Graduação em Dinâmica dos Oceanos e da Terra, Departamento de Geologia, Universidade Federal Fluminense,
Niterói, Rio de Janeiro, CEP 24.210-346, Brazil
José Carlos Sícoli Seoane
Programa de Pós-Graduação em Geologia, Departamento de
Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP
21.941-916, Brazil
Related authors
No articles found.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019, https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary
Short summary
Fossil microorganisms from the last glacial found in marine sediments collected off southern Brazil suggest that more productive austral summer upwelling and more frequent austral winter incursions of nutrient-rich waters from the Plata River boosted regional productivity year-round. While upwelling was more productive due to the higher silicon content from the Southern Ocean, more frequent riverine incursions were modulated by stronger alongshore southwesterly winds.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
Related subject area
Subject: Continental Surface Processes | Archive: Marine Archives | Timescale: Holocene
A High Arctic inner shelf–fjord system from the Last Glacial Maximum to the present: Bessel Fjord and southwest Dove Bugt, northeastern Greenland
Precipitation as the main driver of Neoglacial fluctuations of Gualas glacier, Northern Patagonian Icefield
Kevin Zoller, Jan Sverre Laberg, Tom Arne Rydningen, Katrine Husum, and Matthias Forwick
Clim. Past, 19, 1321–1343, https://doi.org/10.5194/cp-19-1321-2023, https://doi.org/10.5194/cp-19-1321-2023, 2023
Short summary
Short summary
Marine geologic data from NE Greenland provide new information about the behavior of the Greenland Ice Sheet from the last glacial period to present. Seafloor landforms suggest that a large, fast-flowing ice stream moved south through southern Dove Bugt. This region is believed to have been deglaciated from at least 11.4 ka cal BP. Ice in an adjacent fjord, Bessel Fjord, may have retreated to its modern position by 7.1 ka cal BP, and the ice halted or readvanced multiple times upon deglaciation.
S. Bertrand, K. A. Hughen, F. Lamy, J.-B. W. Stuut, F. Torrejón, and C. B. Lange
Clim. Past, 8, 519–534, https://doi.org/10.5194/cp-8-519-2012, https://doi.org/10.5194/cp-8-519-2012, 2012
Cited articles
Arz, H. W., Lamy, F., and Pätzold, J.: A pronounced dry event recorded
around 4.2 ka in brine sediments from the northern Red Sea, Quaternary Res.,
66, 432–441, https://doi.org/10.1016/j.yqres.2006.05.006, 2006.
Barbosa, C. F.: Reconstituição paleoambiental de fácies
lagunares com base em foraminiferos: O nível do mar no Quaternário
Superior na área de Cabo Frio, RJ, Universidade de São Paulo,
Instituto de Geociências, 278 pp., 1997.
Behling, H.: A high resolution Holocene pollen record from Lago do Pires, SE
Brazil: vegetation, climate and fire history, J. Paleolimnol., 14,
253–268, https://doi.org/10.1007/BF00682427, 1995.
Behling, H.: Late Quaternary vegetational and climatic changes in Brazil, Rev. Palaeobot. Palyno., 99, 143–156, https://doi.org/10.1016/S0034-6667(97)00044-4, 1998.
Bernal, J. P., Cruz, F. W., Stríkis, N. M., Wang, X., Deininger, M.,
Catunda, M. C. A., Ortega-Obregón, C., Cheng, H., Edwards, R. L., and
Auler, A. S.: High-resolution Holocene South American monsoon history
recorded by a speleothem from Botuverá Cave, Brazil, Earth Planet. Sc.
Lett., 450, 186–196, https://doi.org/10.1016/j.epsl.2016.06.008, 2016.
Blaauw, M. and Christeny, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and
statistics package for the analysis of unconsolidated sediments, Earth Surf.
Process. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Booth, R. K., Jackson, S. T., Forman, S. L., Kutzbach, J. E., Bettis, E. A.,
Kreig, J., and Wright, D. K.: A severe centennial-scale drought in
mid-continental North America 4200 years ago and apparent global linkages,
Holocene, 15, 321–328, https://doi.org/10.1191/0959683605hl825ft, 2005.
Bradley, R. and Bakke, J.: Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?, Clim. Past Discuss., https://doi.org/10.5194/cp-2018-162, in review, 2019.
Busch, W. H. and Keller, G. H.: The physical
properties of Peru-Chile continental margin sediments-the influence of
coastal upwelling on sediment, J. Sediment. Petrol., 51, 705–719, 1981.
Castro, J. W. A., Suguio, K., Seoane, J. C. S., Cunha, A. M., and Dias, F.
F.: Sea-level fluctuations and coastal evolution in the state of Rio de
Janeiro, southeastern Brazil, An. Acad. Bras. Cienc., 86, 671–683,
https://doi.org/10.1590/0001-3765201420140007, 2014.
Castro, J. W. A., Seoane, J. C. S., Cunha, A. M. D. A., Malta, J. V., Oliveira,
C. A., Vaz, S. R., and Suguio, K.: Comments to Angulo et al. 2016 on
“Sea-level fluctuations and coastal evolution in the state of Rio de
Janeiro, southeastern – Brazil” by Castro et al. 2014, An. Acad. Bras.
Cienc., 90, 1369–1375, https://doi.org/10.1590/0001-3765201820171010, 2018.
Coimbra, M. M., Silva, C. G., Barbosa, C. F., and Mueller, K. A.:
Radiocarbon measurements of stromatolite heads and crusts at the Salgada
Lagoon, Rio de Janeiro State, Brazil, Nucl. Instrum. Meth. B, 172, 592–596,
https://doi.org/10.1016/S0168-583X(00)00391-8, 2000.
Cruz, A. P. S., Barbosa, C. F., Ayres-Neto, A., and Albuquerque, A. L. S.:
Physical and geochemical properties of centennial marine sediments of the
continental shelf of southeast Brazil, Geochim. Bras., 27, 1–12,
https://doi.org/10.5327/Z0102-9800201300010001, 2013.
Cruz, A. P. S., Barbosa, C. F., Ayres-Neto, A., Munayco, P., Scorzelli, R.
B., Amorim, N. S., Albuquerque, A. L. S., and Seoane, J. C. S.: Geochemistry
and magnetic sediment distribution at the western boundary upwelling system
of southwest Atlantic, Cont. Shelf Res., 153, 64–74,
https://doi.org/10.1016/j.csr.2017.12.011, 2018.
Cullen, H. M., DeMenocal, P. B., Hemming, S., Hemming, G., Brown, F. H., Guilderson, T. P., and Sirocko, F.: Climate change and the
collapse of the Akkadian empire: Evidence from the deep sea, Geology, 28,
379–382, 2000.
Cullen, H. M., Kaplan, A., Arkin, P. A., and DeMenocal, P. B.: Impact of the
North Atlantic Oscilation on middle eastern climate and streamflow, Climatic
Change, 55, 315–338, https://doi.org/10.1023/A:1020518305517, 2002.
Cvijanovic, I., Langen, P. L., Kaas, E., and Ditlevsen, P. D.: Southward
intertropical convergence zone shifts and implications for an atmospheric
bipolar seesaw, J. Climate, 26, 4121–4137, https://doi.org/10.1175/JCLI-D-12-00279.1,
2013.
Damnati, B., Etebaai, I., Reddad, H., Benhardouz, H., Benhardouz, O., Miche,
H., and Taieb, M.: Recent environmental changes and human impact since
mid-20th century in Mediterranean lakes: Ifrah, Iffer and Afourgagh, Middle
Atlas Morocco, Quaternary Int., 262, 44–55, https://doi.org/10.1016/j.quaint.2011.09.028,
2012.
Davey, M. K., Brookshaw, A., and Ineson, S.: The probability of the impact
of ENSO on precipitation and near-surface temperature, Clim. Risk Manag., 1,
5–24, https://doi.org/10.1016/j.crm.2013.12.002, 2014.
Decho, A. W. and Kawaguchi, T.: Extracellular Polymers (EPS) and
calcification within modern marine stromatolites, in: Fossil and Recent
Biofilms – A natural History of life on Earth, 227–240, Springer Netherlands, Dordrecht, 2003.
Deininger, M., Ward, B. M., Novello, V. F., and Cruz, F. W.: Late Quaternary
Variations in the South American Monsoon System as Inferred by
Speleothems – New Perspectives using the SISAL Database, Quaternary, 2,
6, https://doi.org/10.3390/quat2010006, 2019.
De Oliveira, P. E.: A palynological record of late Quaternary vegetational
and climatic change in southeastern Brazil, Ohio State University, 1992.
Duarte, C. M., Delgado-Huertas, A., Anton, A., Carrillo-de-Albornoz, P.,
López-Sandoval, D. C., Agustí, S., Almahasheer, H., Marbá, N.,
Hendriks, I. E., Krause-Jensen, D., and Garcias-Bonet, N.: Stable Isotope
(δ13C, δ15N, δ18O, δD) Composition and
Nutrient Concentration of Red Sea Primary Producers, Front. Mar. Sci.,
5, 1–12, https://doi.org/10.3389/fmars.2018.00298, 2018.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., and
Visscher, P. T.: Processes of carbonate precipitation in modern microbial
mats, Earth-Sci. Rev., 96, 141–162,
https://doi.org/10.1016/j.earscirev.2008.10.005, 2009.
Folk, R. L. and Ward, W. C.: Brazos river bar: study of the significance of grain size parameters, J. Sediment. Petrol., 17, 3–27, 1957.
França, M. C., Alves, I. C. C., Cohen, M. C. L., Rossetti, D. F.,
Pessenda, L. C. R., Giannini, P. C. F., Lorente, F. L., Buso Junior, A.
Á., Bendassolli, J. A., and Macario, K.: Millennial to secular
time-scale impacts of climate and sea-level changes on mangroves from the
Doce River delta, Southeastern Brazil, Holocene, 26, 1733–1749,
https://doi.org/10.1177/0959683616645938, 2016.
Gandu, A. W. and Silva Dias, P. L.: Impact of tropical heat sources on the
South American tropospheric upper circulation and subsidence, J. Geophys.
Res.-Atmos., 103, 6001–6015, https://doi.org/10.1029/97JD03114, 1998.
Gasse, F.: Hydrological changes in the African tropics since the Last
Glacial Maximum, Quaternary Sci. Rev., 19, 189–211,
https://doi.org/10.1016/S0277-3791(99)00061-X, 2000.
Giesche, A., Staubwasser, M., Petrie, C. A., and Hodell, D. A.: Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea, Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, 2019.
Hartmann, K. and Wünnemann, B.: Hydrological changes and Holocene
climate variations in NW China, inferred from lake sediments of Juyanze
palaeolake by factor analyses, Quaternary Int., 194, 28–44,
https://doi.org/10.1016/j.quaint.2007.06.037, 2009.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl, U.:
Southward migration of the intertropical convergence zone through the
Holocene, Science, 293, 1304–8, https://doi.org/10.1126/science.1059725, 2001.
Hughen, K. A., Overpeck, J. T., Peterson, L. C., and Trumbore, S.: Rapid
climate changes in the tropical Atlantic region during the last
deglaciation, Nature, 380, 51–54, https://doi.org/10.1038/380051a0, 1996.
Jones, C. and Carvalho, L. M. V.: Active and break phases in the South
American monsoon system, J. Climate, 15, 905–914,
https://doi.org/10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2,
2002.
Isola, I., Zanchetta, G., Drysdale, R. N., Regattieri, E., Bini, M., Bajo, P., Hellstrom, J. C., Baneschi, I., Lionello, P., Woodhead, J., and Greig, A.: The 4.2 ka event in the central Mediterranean: new data from a Corchia speleothem (Apuan Alps, central Italy), Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, 2019.
Jonkers, H. M., Ludwig, R., Wit, R., Pringault, O., Muyzer, G., Niemann, H.,
Finke, N., and Beer, D.: Structural and functional analysis of a microbial
mat ecosystem from a unique permanent hypersaline inland lake: La Salada de
Chiprana; (NE Spain), FEMS Microbiol. Ecol., 44, 175–189,
https://doi.org/10.1016/S0168-6496(02)00464-6, 2003.
Kaniewski, D., Marriner, N., Cheddadi, R., Guiot, J., and Van Campo, E.: The 4.2 ka BP event in the Levant, Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, 2018.
Kathayat, G., Cheng, H., Sinha, A., Berkelhammer, M., Zhang, H., Duan, P., Li, H., Li, X., Ning, Y., and Edwards, R. L.: Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India, Clim. Past, 14, 1869–1879, https://doi.org/10.5194/cp-14-1869-2018, 2018.
Kushnir, Y. and Stein, M.: North Atlantic influence on 19th–20th century
rainfall in the Dead Sea watershed, teleconnections with the Sahel, and
implication for Holocene climate fluctuations, Quaternary Sci. Rev., 29,
3843–3860, https://doi.org/10.1016/j.quascirev.2010.09.004, 2010.
Laslandes, B., Sylvestre, F., Sifeddine, A., Turcq, B., Albuquerque, A. L.
S., and Abrão, J.: Enregistrement de la variabilité hydroclimatique
au cours des 6500 dernières années sur le littoral de Cabo Frio (Rio
de Janeiro, Brésil), CR Geosci., 338, 667–675,
https://doi.org/10.1016/j.crte.2006.05.006, 2006.
Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M., and Widdicombe, S.:
Bioturbation: impact on the marine nitrogen cycle, Biochem. Soc. T.,
39, 315–320, https://doi.org/10.1042/BST0390315, 2011.
Ledru, M. P., Salgado-Labouriau, M. L., and Lorscheitter, M. L.: Vegetation
dynamics in southern and central Brazil during the last 10,000 yr BP, Rev.
Palaeobot. Palyno., 99, 131–142, https://doi.org/10.1016/S0034-6667(97)00049-3,
1998.
Lemos, R. M. T.: Estudo das fácies deposicionais e das estruturas estromatolíticas da Lagoa Salgada – Rio de Janeiro, Dissertação (Mestrado em Geologia e Geofísica Marinha) – Universidade Federal Fluminense, Niterói, 122 f., 1995.
Lessa, D. V. O., Venancio, I. M., dos Santos, T. P., Belem, A. L., Turcq, B.
J., Sifeddine, A., and Albuquerque, A. L. S.: Holocene oscillations of
Southwest Atlantic shelf circulation based on planktonic foraminifera from
an upwelling system (off Cabo Frio, Southeastern Brazil), Holocene, 26,
1175–1187, https://doi.org/10.1177/0959683616638433, 2016.
Li, H., Cheng, H., Sinha, A., Kathayat, G., Spötl, C., André, A. A., Meunier, A., Biswas, J., Duan, P., Ning, Y., and Edwards, R. L.: Hydro-climatic variability in the southwestern Indian Ocean between 6000 and 3000 years ago, Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, 2018.
Ludwig, R., Al-Horani, F. A., de Beer, D., and Jonkers, H. M.:
Photosynthesis-controlled calcification in a hypersaline microbial mat,
Limnol. Oceanogr., 50, 1836–1843, https://doi.org/10.4319/lo.2005.50.6.1836, 2005.
Martin, L. and Suguio, K.: Variation of coastal dynamics during the last
7000 years recorded in beach-ridge plains associated with river mouths:
example from the central Brazilian coast, Palaeogeogr. Palaeocl., 99(1–2), 119–140, https://doi.org/10.1016/0031-0182(92)90010-3, 1992.
Megens, L., van der Plicht, J., de Leeuw, J., and Smedes, F.: Stable carbon
and radiocarbon isotope compositions of particle size fractions to determine
origins of sedimentary organic matter in an estuary, Org. Geochem., 33,
945–952, https://doi.org/10.1016/S0146-6380(02)00060-8, 2002.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic,
paleolimnologic, and paleoclimatic processes, Org. Geochem., 27,
213–250, https://doi.org/10.1016/S0146-6380(97)00049-1, 1997.
Nagai, R. H., Sousa, S. H. M., Burone, L., and Mahiques, M. M.:
Paleoproductivity changes during the Holocene in the inner shelf of Cabo
Frio, southeastern Brazilian continental margin: Benthic foraminifera and
sedimentological proxies, Quaternary Int., 206, 62–71,
https://doi.org/10.1016/j.quaint.2008.10.014, 2009.
Nagai, R. H., Martins, M. V. A., Burone, L., Wainer, I. E. K. C., Mello e
Sousa, S. H., Figueira, R. C. L., Bícego, M. C., Alves, D. P. V., Dias,
J. M. A., and Mahiques, M. M.: In-Phase Inter-Hemispheric Changes in Two
Upwelling Regions: the Southeast Brazilian and NW Iberian Margins, J.
Sediment. Environ., 1, 43–67, https://doi.org/10.12957/jse.2016.21463, 2016.
Perşoiu, A., Ionita, M., and Weiss, H.: Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event – a hypothesis, Clim. Past, 15, 781–793, https://doi.org/10.5194/cp-15-781-2019, 2019.
Pessenda, L. C. R., Gouveia, S. E. M., Aravena, R., Boulet, R., and
Valencia, E. P. E.: Holocene fire and vegetation changes in southeastern
Brazil as deduced from fossil charcoal and soil carbon isotopes, Quaternary Int.,
114, 35–43, https://doi.org/10.1016/S1040-6182(03)00040-5, 2004.
Rossetti, D. F., Cohen, M. C. L., and Pessenda, L. C. R.: Vegetation Change
in Southwestern Amazonia (Brazil) and Relationship to the Late Pleistocene
and Holocene Climate, Radiocarbon, 59, 69–89, https://doi.org/10.1017/RDC.2016.107,
2017.
Salomons, W. and Mook, W.: Field observations of the isotopic composition of
particulate organic carbon in the southern North Sea and adjacent estuaries,
Mar. Geol., 41, M11–M20, https://doi.org/10.1016/0025-3227(81)90079-7, 1981.
Schulz, H. D. and Zabel, M.: Marine Geochemistry, Springer-Verlag, Berlin,
1999.
Scuderi, L. A., Yang, X., Ascoli, S. E., and Li, H.: The 4.2 ka BP Event in northeastern China: a geospatial perspective, Clim. Past, 15, 367–375, https://doi.org/10.5194/cp-15-367-2019, 2019.
Silva, L. H. da S., Alves, S. A. P. M. N., Magina, F. C., and Gomes, S. B.
V. C.: Composição cianobacteriana e química dos
estromatólitos da lagoa Salgada, Neógeno do estado do Rio de
Janeiro, Brasil, Geol. USP. Série Científica, 13, 95–106,
https://doi.org/10.5327/Z1519-874X2013000100006, 2013.
Silva e Silva, L., Iespa, A. A. C., Damazio, C. M., Gomes, S. B. V. C., and
Alves, S. A. P. M. N.: Confronto entre estruturas estromatolíticas
domais (composição cianobacteriana) das lagoas Pernambuco e Salgada,
Brasil, Rev. Geol., 18, 159–165, 2005.
Silva e Silva, L., Iespa, A. A. C., and Damazio, C. M.: Composição
dos Estromatólitos Estratiformes da Lagoa Salgada, Rio de Janeiro,
Brasil, Anuário do Inst. Geociências – UFRJ, 31, 42–49, 2008.
Staubwasser, M. and Weiss, H.: Holocene Climate and Cultural Evolution in
Late Prehistoric–Early Historic West Asia, Quaternary Res., 66, 372–387,
https://doi.org/10.1016/j.yqres.2006.09.001, 2006.
Suguio, K., Martin, L., Bittencourt, A. C. S. P., Dominguez, J. M. L.,
Flexor, J.-M., and Azevedo, A. E. G.: Flutuações do nível
relativo do mar durante o Quaternário superior ao longo do litoral
brasileiro e suas implicações na sedimentação costeira, Rev.
Bras. Geociências, 15, 273–286, 1985.
Tapia, P. M., Fritz, S. C., Baker, P. A., Seltzer, G. O., and Dunbar, R. B.:
A late quaternary diatom record of tropical climatic history from Lake
Titicaca (Peru and Bolivia), Palaeogeogr. Palaeocl.,
194, 139–164, https://doi.org/10.1016/S0031-0182(03)00275-X, 2003.
Thunell, R. C., Qingmin, M., Calvert, S. E., and Pedersen, T. F.:
Glacial-Holocene Biogenic Sedimentation Patterns in the South China Sea:
Productivity Variations and Surface Water pCO2, Paleoceanography, 7,
143–162, https://doi.org/10.1029/92PA00278, 1992.
Wang, Y.: The Holocene Asian Monsoon: Links to Solar Changes and North
Atlantic Climate, Science, 308, 854–857,
https://doi.org/10.1126/science.1106296, 2005.
Weiss, H., Courty, M.-A., Wetterstrom, W., Guichard, F., Senior, L., Meadow,
R., and Curnow, A.: The Genesis and Collapse of Third Millennium North
Mesopotamian Civilization, Science, 261, 995–1004,
https://doi.org/10.1126/science.261.5124.995, 1993.
Xu, H., Ai, L., Tan, L., and An, Z.: Stable isotopes in bulk carbonates and
organic matter in recent sediments of Lake Qinghai and their climatic
implications, Chem. Geol., 235, 262–275,
https://doi.org/10.1016/j.chemgeo.2006.07.005, 2006.
Zanchetta, G., Regattieri, E., Isola, I., Drysdale, R. N., Bini, M.,
Baneschi, I., and Hellstrom, J. C.: The so-called “4.2 event” in the
central mediterranean and its climatic teleconnections, Alp. Mediterr.
Quat., 29, 5–17,
2016.
Zhou, C., Wong, K., and Zhao, J.: Coastal Wetland Vegetation in Response to
Global Warming and Climate Change, in: Sea Level Rise and Coastal
Infrastructure, InTech Open, 1, p. 13, https://doi.org/10.5772/intechopen.73509, 2018.
Short summary
Salgada Lagoon is a hypersaline lake investigated for its sedimentation history in order to interpret past climatic events. We studied the geochemistry of sediments from 5800 years ago until the present and found sea level oscillations, different climatic conditions, and proxies for vegetation cover and productivity, which highlight a dry event 4200 years ago that matches a global event of the same age, marking changes to favorable conditions for carbonates microbial mats and stromatolites.
Salgada Lagoon is a hypersaline lake investigated for its sedimentation history in order to...