Articles | Volume 14, issue 4
https://doi.org/10.5194/cp-14-441-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-441-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event
Elsbeth E. van Soelen
CORRESPONDING AUTHOR
University of Oslo, Departments of Geosciences, P.O. Box 1047 Blindern, 0316 Oslo, Norway
Richard J. Twitchett
Natural History Museum, Earth Sciences Department, London, SW7 5BD, UK
Wolfram M. Kürschner
University of Oslo, Departments of Geosciences, P.O. Box 1047 Blindern, 0316 Oslo, Norway
Related authors
No articles found.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
Cited articles
Algeo, T. J. and Twitchett, R. J.: Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences, Geology, 38, 1023–1026, https://doi.org/10.1130/G31203.1, 2010.
Balme, B. E.: Palynology of Permian-Triassic boundary beds at Kap Stosch, East Greenland, Nyt nordisk forlag, 200, 37 p., 1979.
Benton, M. J. and Twitchett, R. J.: How to kill (almost) all life: the end-Permian extinction event, Trends Ecol. Evol., 18, 358–365, https://doi.org/10.1016/S0169-5347(03)00093-4, 2003.
Bond, D. P. G. and Wignall, P. B.: Pyrite framboid study of marine Permian–Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction, GSA Bulletin, 122, 1265–1279, https://doi.org/10.1130/B30042.1, 2010.
Bouimetarhan, I., Marret, F., Dupont, L., and Zonneveld, K.: Dinoflagellate cyst distribution in marine surface sediments off West Africa (17–6° N) in relation to sea-surface conditions, freshwater input and seasonal coastal upwelling, Mar. Micropaleontol., 71, 113–130, https://doi.org/10.1016/j.marmicro.2009.02.001, 2009.
Burgess, S. D. and Bowring, S. A.: High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction, Science Advances, 1, e1500470, https://doi.org/10.1126/sciadv.1500470, 2015.
Burgess, S. D., Muirhead, J. D., and Bowring, S. A.: Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction, Nat. Commun., 8, 164, https://doi.org/10.1038/s41467-017-00083-9, 2017.
Clapham, M. E. and Payne, J. L.: Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian, Geology, 39, 1059–1062, https://doi.org/10.1130/G32230.1, 2011.
Colbath, G. K. and Grenfell, H. R.: Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”), Rev. Palaeobot. Palyno., 86, 287–314, https://doi.org/10.1016/0034-6667(94)00148-D, 1995.
Cui, Y. and Kump, L. R.: Global warming and the end-Permian extinction event: Proxy and modeling perspectives, Earth-Sci. Rev., 149, 5–22, https://doi.org/10.1016/j.earscirev.2014.04.007, 2015.
de Vernal, A., Hillaire-Marcel, C., Turon, J.-L., and Matthiessen, J.: Reconstruction of sea-surface temperature, salinity, and sea-ice cover in the northern North Atlantic during the last glacial maximum based on dinocyst assemblages, Can. J. Earth Sci., 37, 725–750, https://doi.org/10.1139/e99-091, 2000.
Devillers, R. and de Vernal, A.: Distribution of dinoflagellate cysts in surface sediments of the northern North Atlantic in relation to nutrient content and productivity in surface waters, Mar. Geol., 166, 103–124, https://doi.org/10.1016/S0025-3227(00)00007-4, 2000.
Ellegaard, M.: Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark, Rev. Palaeobot. Palyno., 109, 65–81, https://doi.org/10.1016/S0034-6667(99)00045-7, 2000.
Ellegaard, M., Lewis, J., and Harding, I.: Cyst–theca relationship, life cycle, and effects of temperature and salinity on the cyst morphology of Gonyaulax Baltica Sp. Nov. (dinophyceae) from the Baltic Sea Area, J. Phycol., 38, 775–789, https://doi.org/10.1046/j.1529-8817.2002.01062.x, 2002.
Evitt, W. R.: A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I, P. Natl. Acad. Sci. USA, 49, 158–164, 1963.
Fischer, A. G.: Brackish oceans as the cause of the Permo-Triassic marine faunal crisis, in: Problems in Palaeoclimatology, edited by: Nairn, A. E. M., Interscience, London, 566–574, 1964.
Grard, A., François, L. M., Dessert, C., Dupré, B., and Goddéris, Y.: Basaltic volcanism and mass extinction at the Permo-Triassic boundary: Environmental impact and modeling of the global carbon cycle, Earth Planet. Sc. Lett., 234, 207–221, https://doi.org/10.1016/j.epsl.2005.02.027, 2005.
Grasby, S. E. and Beauchamp, B.: Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada, Chem. Geol., 264, 232–246, https://doi.org/10.1016/j.chemgeo.2009.03.009, 2009.
Grasby, S. E., Beauchamp, B., Bond, D. P. G., Wignall, P., Talavera, C., Galloway, J. M., Piepjohn, K., Reinhardt, L., and Blomeier, D.: Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction, Geol. Soc. Am. Bull., B31197.1, https://doi.org/10.1130/B31197.1, 2015.
Hallam, A. and Cohen, J. M.: The Case for Sea-Level Change as a Dominant Causal Factor in Mass Extinction of Marine Invertebrates [and Discussion], Philos. T. Roy. Soc. B, 325, 437–455, https://doi.org/10.2307/2396934, 1989.
Hammen, C. S. and Lum, S. C.: Salinity tolerance and pedicle regeneration of Lingula, J. Paleontol., 51, 548–551, 1977.
Hotinski, R. M., Bice, K. L., Kump, L. R., Najjar, R. G., and Arthur, M. A.: Ocean stagnation and end-Permian anoxia, Geology, 29, 7–10, https://doi.org/10.1130/0091-7613(2001)029<0007:OSAEPA>2.0.CO;2, 2001.
Isozaki, Y.: Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea, Science, 276, 235–238, https://doi.org/10.1126/science.276.5310.235, 1997.
Jansonius, J.: Palynology of permian and triassic sediments, Peace River area, Western Canada, Palaeontogr. Abt. B, PhD thesis, 35–98, 1962.
Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., and Sun, Y.: Climate warming in the latest Permian and the Permian–Triassic mass extinction, Geology, 40, 195–198, https://doi.org/10.1130/G32707.1, 2012.
Kearsey, T., Twitchett, R. J., Price, G. D., and Grimes, S. T.: Isotope excursions and palaeotemperature estimates from the Permian/Triassic boundary in the Southern Alps (Italy), Palaeogeogr. Palaeocl., 279, 29–40, https://doi.org/10.1016/j.palaeo.2009.04.015, 2009.
Korte, C. and Kozur, H. W.: Carbon-isotope stratigraphy across the Permian–Triassic boundary: A review, J. Asian Earth Sci., 39, 215–235, https://doi.org/10.1016/j.jseaes.2010.01.005, 2010.
Lei, Y., Servais, T., Feng, Q., and He, W.: The spatial (nearshore–offshore) distribution of latest Permian phytoplankton from the Yangtze Block, South China, Palaeogeogr. Palaeocl., 363–364, 151–162, https://doi.org/10.1016/j.palaeo.2012.09.010, 2012.
Lei, Y., Servais, T., and Feng, Q.: The diversity of the Permian phytoplankton, Rev. Palaeobot. Palyno., 198, 145–161, https://doi.org/10.1016/j.revpalbo.2013.03.004, 2013a.
Lei, Y., Servais, T., Feng, Q., and He, W.: Latest Permian acritarchs from South China and the Micrhystridium/Veryhachium complex revisited, Palynology, 37, 325–344, https://doi.org/10.1080/01916122.2013.793625, 2013b.
Li, J., Servais, T., Yan, K., and Zhu, H.: A nearshore–offshore trend in acritarch distribution from the Early–Middle Ordovician of the Yangtze Platform, South China, Rev. Palaeobot. Palyno., 130, 141–161, https://doi.org/10.1016/j.revpalbo.2003.12.005, 2004.
Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H., and Visscher, H.: Life in the end-Permian dead zone, P. Natl. Acad. Sci. USA, 98, 7879–7883, https://doi.org/10.1073/pnas.131218098, 2001.
McGhee, G. R., Sheehan, P. M., Bottjer, D. J., and Droser, M. L.: Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician, Geology, 40, 147–150, https://doi.org/10.1130/G32679.1, 2012.
Mertens, K. N., Ribeiro, S., Bouimetarhan, I., Caner, H., Combourieu Nebout, N., Dale, B., De Vernal, A., Ellegaard, M., Filipova, M., Godhe, A., Goubert, E., Grøsfjeld, K., Holzwarth, U., Kotthoff, U., Leroy, S. A. G., Londeix, L., Marret, F., Matsuoka, K., Mudie, P. J., Naudts, L., Peña-Manjarrez, J. L., Persson, A., Popescu, S.-M., Pospelova, V., Sangiorgi, F., van der Meer, M. T. J., Vink, A., Zonneveld, K. A. F., Vercauteren, D., Vlassenbroeck, J., and Louwye, S.: Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: Investigating its potential as salinity proxy, Mar. Micropaleontol., 70, 54–69, https://doi.org/10.1016/j.marmicro.2008.10.004, 2009.
Mertens, K. N., Dale, B., Ellegaard, M., Jansson, I.-M., Godhe, A., Kremp, A., and Louwye, S.: Process length variation in cysts of the dinoflagellate Protoceratium reticulatum, from surface sediments of the Baltic–Kattegat–Skagerrak estuarine system: a regional salinity proxy, Boreas, 40, 242–255, https://doi.org/10.1111/j.1502-3885.2010.00193.x, 2011.
Mertens, K. N., Bringué, M., Van Nieuwenhove, N., Takano, Y., Pospelova, V., Rochon, A., De Vernal, A., Radi, T., Dale, B., Patterson, R. T., Weckström, K., Andrén, E., Louwye, S., and Matsuoka, K.: Process length variation of the cyst of the dinoflagellate Protoceratium reticulatum in the North Pacific and Baltic-Skagerrak region: calibration as an annual density proxy and first evidence of pseudo-cryptic speciation, J. Quaternary Sci., 27, 734–744, https://doi.org/10.1002/jqs.2564, 2012.
Mettam, C., Zerkle, A. L., Claire, M. W., Izon, G., Junium, C. J., and Twitchett, R. J.: High-frequency fluctuations in redox conditions during the latest Permian mass extinction, Palaeogeogr. Palaeocl., 485, 210–223, https://doi.org/10.1016/j.palaeo.2017.06.014, 2017.
Mudie, P. J., Aksu, A. E., and Yasar, D.: Late Quaternary dinoflagellate cysts from the Black, Marmara and Aegean seas: variations in assemblages, morphology and paleosalinity, Mar. Micropaleontol., 43, 155–178, https://doi.org/10.1016/S0377-8398(01)00006-8, 2001.
Mudie, P. J., Rochon, A., Aksu, A. E., and Gillespie, H.: Dinoflagellate cysts, freshwater algae and fungal spores as salinity indicators in Late Quaternary cores from Marmara and Black seas, Mar. Geol., 190, 203–231, https://doi.org/10.1016/S0025-3227(02)00348-1, 2002.
Pacton, M., Gorin, G. E., and Vasconcelos, C.: Amorphous organic matter – Experimental data on formation and the role of microbes, Rev. Palaeobot. Palyno., 166, 253–267, https://doi.org/10.1016/j.revpalbo.2011.05.011, 2011.
Parrish, J. T., Ziegler, A. M., and Scotese, C. R.: Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic, Palaeogeogr. Palaeocl., 40, 67–101, https://doi.org/10.1016/0031-0182(82)90085-2, 1982.
Peng, Y., Shi, G. R., Gao, Y., He, W., and Shen, S.: How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath?, Palaeogeogr. Palaeocl., 252, 118–131, https://doi.org/10.1016/j.palaeo.2006.11.039, 2007.
Piasecki, S.: Preliminary palynostratigraphy of the Permian-Lower Triassic sediments in Jameson Land and Scoresby Land, East Greenland, B. Geol. Soc. Denmark, 32, 139–144, 1984.
Pospelova, V., Chmura, G. L., and Walker, H. A.: Environmental factors influencing the spatial distribution of dinoflagellate cyst assemblages in shallow lagoons of southern New England (USA), Rev. Palaeobot. Palyno., 128, 7–34, https://doi.org/10.1016/S0034-6667(03)00110-6, 2004.
Rodland, D. L. and Bottjer, D. J.: Biotic Recovery from the End-Permian Mass Extinction: Behavior of the Inarticulate Brachiopod Lingula as a Disaster Taxon, PALAIOS, 16, 95–101, https://doi.org/10.1669/0883-1351(2001)016<0095:BRFTEP>2.0.CO;2, 2001.
Sarjeant, W. A. S.: Acritarchs and tasmanitids form the Chhidru Formation, uppermost Permian of West Pakistan, Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan, Spec. Publ., 4, 277–304, 1970.
Sarjeant, W. A. S. and Stancliffe, R. P. W.: The Micrhystridium and Veryhachium Complexes (Acritarcha: Acanthomorphitae and Polygonomorphitae): A Taxonomic Reconsideration, Micropaleontology, 40, 1–77, https://doi.org/10.2307/1485800, 1994.
Schobben, M., Joachimski, M. M., Korn, D., Leda, L., and Korte, C.: Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction, Gondwana Res., 26, 675–683, https://doi.org/10.1016/j.gr.2013.07.019, 2014.
Sephton, M. A., Looy, C. V., Brinkhuis, H., Wignall, P. B., De Leeuw, J. W., and Visscher, H.: Catastrophic soil erosion during the end-Permian biotic crisis, Geology, 33, 941–944, 2005.
Servais, T., Stricanne, L., Montenari, M., and Pross, J.: Population dynamics of galeate acritarchs at the Cambrian–Ordovician transition in the Algerian Sahara, Palaeontology, 47, 395–414, https://doi.org/10.1111/j.0031-0239.2004.00367.x, 2004.
Shen, J., Lei, Y., Algeo, T. J., Feng, Q., Servais, T., Yu, J., and Zhou, L.: Volcanic effects on microplankton during the Permian-Triassic transition (Shangsi and Xinmin, South China), PALAIOS, 28, 552–567, https://doi.org/10.2110/palo.2013.p13-014r, 2013.
Sluijs, A. and Brinkhuis, H.: A dynamic climate and ecosystem state during the Paleocene–Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf, Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, 2009.
Stemmerik, L. A. R. S., Bendix-Almgreen, S. E., and Piasecki, S.: The Permian–Triassic boundary in central East Greenland: past and present views, B. Geol. Soc. Denmark, 48, 159–167, 2001.
Stevens, C. H.: Was development of brackish oceans a factor in Permian extinctions?, Geol. Soc. Am. Bull., 88, 133–138, https://doi.org/10.1130/0016-7606(1977)88<133:WDOBOA>2.0.CO;2, 1977.
Stricanne, L., Munnecke, A., Pross, J., and Servais, T.: Acritarch distribution along an inshore–offshore transect in the Gorstian (lower Ludlow) of Gotland, Sweden, Rev. Palaeobot. Palyno., 130, 195–216, https://doi.org/10.1016/j.revpalbo.2003.12.007, 2004.
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.: Lethally hot temperatures during the Early Triassic greenhouse, Science, 338, 366–370, https://doi.org/10.1126/science.1224126, 2012.
Surlyk, F., Piasecki, S., Rolle, F., Stemmerik, L., Thomsen, E., and Wrang, P.: The Permian base of East Greenland, in: Petroleum Geology of the North European Margin, edited by: Spencer, A. M., 303–315, Springer, the Netherlands, 1984.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sc. Lett., 277, 490–500, https://doi.org/10.1016/j.epsl.2008.11.015, 2009.
Tappan, H. and Loeblich, A. R.: Evolution of the oceanic plankton, Earth-Sci. Rev., 9, 207–240, https://doi.org/10.1016/0012-8252(73)90092-5, 1973.
Twitchett, R. J.: The Lilliput effect in the aftermath of the end-Permian extinction event, Palaeogeogr. Palaeocl., 252, 132–144, https://doi.org/10.1016/j.palaeo.2006.11.038, 2007.
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B.: Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis, Geology, 29, 351–354, https://doi.org/10.1130/0091-7613(2001)029<0351:RASCOM>2.0.CO;2, 2001.
Tyson, R. V.: Sedimentary Organic Matter, Organic Facies and Palynofacies, London, Chapman & Hall, 615 p., 1995.
Wall, D.: Microplankton, pollen, and spores from the lower Jurassic in Britain, Micropaleontology, 11, 151–190, https://doi.org/10.2307/1484516, 1965.
Westerbom, M., Kilpi, M., and Mustonen, O.: Blue mussels, Mytilus edulis, at the edge of the range: population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea, Mar. Biol., 140, 991–999, https://doi.org/10.1007/s00227-001-0765-6, 2002.
Wignall, P. B. and Hallam, A.: Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States, Palaeogeogr. Palaeocl., 93, 21–46, https://doi.org/10.1016/0031-0182(92)90182-5, 1992.
Wignall, P. B. and Twitchett, R. J.: Oceanic anoxia and the end Permian mass extinction, Science, 272, 1155–1158, 1996.
Wignall, P. B. and Twitchett, R. J.: Permian–Triassic sedimentology of Jameson Land, East Greenland: incised submarine channels in an anoxic basin, J. Geol. Soc., 159, 691–703, https://doi.org/10.1144/0016-764900-120, 2002.
Winguth, A. and Winguth, C.: Precession-driven monsoon variability at the Permian–Triassic boundary – Implications for anoxia and the mass extinction, Global. Planet. Change, 105, 160–170, https://doi.org/10.1016/j.gloplacha.2012.06.006, 2012.
Yin, H. (Ed.): The Palaeozoic-Mesozoic boundary, candidates of Global Stratotype Section and Point of the Permian-Triassic boundary, China University of Geosciences Press, Wuhan, 1996.
Zonneveld, J.-P., Beatty, T. W., and Pemberton, S. G.: Lingulide Brachiopods and the Trace Fossil Lingulichnus from the Triassic of Western Canada: Implications for Faunal Recovery After the End-Permian Mass Extinction, PALAIOS, 22, 74–97, https://doi.org/10.2110/palo.2005.p05-103r, 2007.
Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, S.-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.-L., Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern dinoflagellate cyst distribution based on 2405 data points, Rev. Palaeobot. Palyno., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.