Articles | Volume 14, issue 3
https://doi.org/10.5194/cp-14-287-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-287-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Palaeoclimate evolution across the Cretaceous–Palaeogene boundary in the Nanxiong Basin (SE China) recorded by red strata and its correlation with marine records
Mingming Ma
Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
Key Laboratory for Subtropical Mountain Ecology (Funded by the Ministry of
Science and Technology and Fujian Province), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
Xiuming Liu
CORRESPONDING AUTHOR
Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
Key Laboratory for Subtropical Mountain Ecology (Funded by the Ministry of
Science and Technology and Fujian Province), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
Department of Environment and Geography, Macquarie University, NSW 2109, Sydney, Australia
Wenyan Wang
Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
Key Laboratory for Subtropical Mountain Ecology (Funded by the Ministry of
Science and Technology and Fujian Province), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Pre-Cenozoic
Development of longitudinal dunes under Pangaean atmospheric circulation
Million-year-scale alternation of warm–humid and semi-arid periods as a mid-latitude climate mode in the Early Jurassic (late Sinemurian, Laurasian Seaway)
Hiroki Shozaki and Hitoshi Hasegawa
Clim. Past, 18, 1529–1539, https://doi.org/10.5194/cp-18-1529-2022, https://doi.org/10.5194/cp-18-1529-2022, 2022
Short summary
Short summary
Atmospheric circulation in the supercontinent of Pangaea is thought to have been significantly different from today. We present the spatial distribution of palaeowind directions recorded in Lower Jurassic aeolian sandstones in the western US. This reveals the development of longitudinal dunes formed by a combination of westerly, northwesterly, and northeasterly palaeowinds. The reconstructed palaeowind pattern at ~19–27°N is consistent with the model-generated surface wind pattern in Pangaea.
Thomas Munier, Jean-François Deconinck, Pierre Pellenard, Stephen P. Hesselbo, James B. Riding, Clemens V. Ullmann, Cédric Bougeault, Mathilde Mercuzot, Anne-Lise Santoni, Émilia Huret, and Philippe Landrein
Clim. Past, 17, 1547–1566, https://doi.org/10.5194/cp-17-1547-2021, https://doi.org/10.5194/cp-17-1547-2021, 2021
Short summary
Short summary
Clay minerals are witnesses of alteration conditions in continental environments. Lacking high-resolution data on clay minerals, this work highlights wet and semi-arid cycles at mid-latitude in the upper Sinemurian. The higher proportion of kaolinite in the upper part of the obtusum zone and in the oxynotum zone indicates an increase in hydrolysis conditions in a warmer period confirmed by carbon isotopes.
Cited articles
Balsam, W. L. and Deaton, B. C.: Sediment dispersal in the Atlantic Ocean – evaluation by visible-light spectra, Rev. Aquat. Sci., 4, 411–447, 1991.
Balsam, W., Ji, J. F., and Chen, J.: Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility, Earth Planet. Sc. Lett., 223, 335–348, 2004.
Barrera, E. and Savin, S. M.: Evolution of late Campanian-Maastrichtian marine climates and oceans, in: Evolution of the Cretaceous Ocean-Climate System, edited by: Barrera, E. and Johnson, C., Geol. Soc. Am. Spec. Pap., 332, 245–282, 1999.
Bechtel, A., Jia, J., Strobl, S. A. I., Sachsenhofer, R. F., Liu, Z., Gratzer, R., and Püttmann, W.: Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis, Org. Geochem., 46, 76–95, 2012.
Bodin, S., Meissner, P., Janssen, N. M. M., Steuber, T., and Mutterlose, J.: Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous, Global Planet. Change, 133, 238–253, 2015.
Buck, B. J., Hanson, A. D., Hengst, R. A., and Hu, S.: “Tertiary Dinosaurs” in the Nanxiong Basin, Southern China, Are Reworked from the Cretaceous, J. Geol., 112, 111–118, 2004.
Chamberlain, C. P., Mix, H. T., Mulch, A., Hren, M. T., Kent-Corson, M. L., Davis, S. J., Horton, T. W., and Graham, S. A.: The Cenozoic climatic and topographic evolution of the western North American Cordillera, Am. J. Sci., 312, 213–262, 2012.
Chamberlain, C. P., Wan, X., Graham, S. A., Carroll, A. R., Doebbert, A. C., Sageman, B. B., Blisniuk, P., Kent-Corson, M. L., and Wang, Z.: Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao basin, China, Palaeogeogr. Palaeocl., 385, 106–124, 2013.
Chen, J., An, Z., Liu, L., Ji, J., Yang, J., and Chen, Y.: Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland, Sci. China Earth Sci., 44, 403–413, 2001.
Chen, J., Zhao, P., Wang, C., Huang, Y., and Cao, K.: Modeling East Asian climate and impacts of atmospheric CO2 concentration during the late Cretaceous (66 Ma), Palaeogeogr. Palaeocl., 385, 190–201, 2013.
Chen, T., Xu, H., Xie, Q., Chen, J., Ji, J., and Lu, H.: Characteristics and genesis of maghemite in Chinese loess and paleosols: mechanism for magnetic susceptibility enhancement in paleosols, Earth Planet. Sc. Lett., 240, 790–802, 2005.
Chumakov, N. M.: Climatic zones and climate of the Cretaceous period, in: Climate in the epochs of major biospheric transformations, edited by: Semikhatov, M. A. and Chumakov, N. M., Transactions of the Geological Institute of the Russian Academy of Sciences, 105–123, 2004.
Clyde, W. C., Ting, S., Snell, K. E., Bowen, G. J., Tong, Y., Koch, P. L., Li, Q., and Wang, Y.: New Paleomagnetic and Stable-Isotope Results from the Nanxiong Basin, China: Implications for the K/T Boundary and the Timing of Paleocene Mammalian Turnover, J. Geol., 118, 131–143, 2010.
Cogoini, M., Elmore, R. D., Soreghan, G. S., and Lewchuk, M. T.: Contrasting rock-magnetic characteristics of two Upper Paleozoic loessite–paleosol profiles, Phys. Chem. Earth Solid Earth Geod., 26, 905–910, 2001.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since the late cretaceous: inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, 43–47, 2009.
Ding, Z. L., Xiong, S. F., Sun, J. M., Yang, S. L., Gu, Z. Y., and Liu, T. S.: Pedostratigraphy and paleomagnetism of a ∼ 7.0 Ma eolian loess–red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution, Palaeogeogr. Palaeocl., 152, 49–66, 1999.
Ding, Z. L., Sun, J. M., Yang, S. L., and Liu, T. S.: Geochemistry of the pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change, Geochim. Cosmochim. Ac., 65, 901–913, 2001.
Erben, H. K., Ashraf, A. R., Böhm, H., Hahn, G., Hambach, U., Krumsiek, K., Stets, J., Thein, J., and Wuster, P.: Die Kreide/Tertiär-Grenze im Nanxiong-Becken (Kontinentalfazies, Südostchina), Erdwissenschaftliche Forschung, 32, 1–245, 1995.
Evans, M. E. and Heller, F.: Magnetism of loess/palaeosol sequences: recent developments, Earth Sci. Rev., 54, 129–144, 2001.
Evans, M. E. and Heller, F.: Environmental magnetismprinciples and applications of environmagnetics, Acdemic Press, San Diego, CA, USA, 2003.
Fagel, N., Allan, M., Roux, G. L., Mattielli, N., Piotrowska, N., and Sikorski, J.: Deciphering human–climate interactions in an ombrotrophic peat record: REE, ND and Pb isotope signatures of dust supplies over the last 2500 years (Misten bog, Belgium), Geochim. Cosmochim. Ac., 135, 288–306, 2014.
Fang, X., Zan, J., Appel, E., Lu, Y., Song, C., and Dai, S.: An Eocene–Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift, Geophys. J. Int., 201, 78–89, 2015.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late Cretaceous oceans – A 55 m.y. record of Earth's temperature and carbon cycle, Geology, 40, 107–110, 2012.
Fu, C., Bloemendal, J., Qiang, X., Hill, M. J., and An, Z.: Occurrence of greigite in the Pliocene sediments of Lake Qinghai, China, and its paleoenvironmental and paleomagnetic implications, Geochem. Geophy. Geosy., 16, 1293–1306, 2015.
Gao, Y., Ibarra, D. E., Caves, J. K., Wang, C., Caves, J. K., Chamberlain, C. P., Graham, S. A., and Wu, H.: Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous, Geology, 43, 287–290, 2015.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The geologic time scale, Elsevier, Amsterdam, the Netherlands, 2012.
Han, J., Keppens, E., Liu, T., Paepe, R., and Jiang, W.: Stable isotope composition of the carbonate concretion in loess and climate change, Quatern. Int., 37, 37–43, 1997.
Hao, Q. and Guo, Z.: Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr: implications for monsoon evolution, J. Geophys. Res.-Solid Earth, 110, B12101, https://doi.org/10.1029/2005JB003765, 2005.
Hao, Q. Z., Oldfield, F., Bloemendal, J., and Guo, Z. T.: A preliminary study of the magnetic properties of loess and palaeosol samples from the Chinese Loess Plateau spanning the last 22 million years, Palaeogeogr. Palaeocl., 260, 389–404, 2008.
Hasegawa, H., Tada, R., Jiang, X., Suganuma, Y., Imsamut, S., Charusiri, P., Ichinnorov, N., and Khand, Y.: Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse, Clim. Past, 8, 1323–1337, https://doi.org/10.5194/cp-8-1323-2012, 2012.
Hay, W. W.: Can humans force a return to a `Cretaceous' climate?, Sediment. Geol., 235, 5–26, 2011.
Hu, S., Goddu, S. R., Herb, C., Appel, E., Lleixner, G., Wang, S., Yang, X., and Zhu, X.: Climate variability and its magnetic response recorded in a lacustrine sequence in Heqing basin at the SE Tibetan Plateau since 900 ka, Geophys. J. Int., 201, 444–458, 2015.
Huang, C. M., Retallack, G. J., and Wang, C. S.: Early Cretaceous atmospheric pCO2 levels recorded from pedogenic carbonates, Cretaceous Res., 33, 42–49, 2012.
Huang, C., Retallack, G. J., Wang, C., and Huang, Q.: Paleoatmospheric pCO2, fluctuations across the Cretaceous–Tertiary boundary recorded from paleosol carbonates in NE china, Palaeogeogr. Palaeocl., 385, 95–105, 2013.
Huber, B. T., Hodell, D. A., and Hamilton, C. P.: Mid- to Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients, Geol. Soc. Am. Bull., 107, 392–417, 1995.
Huber, B. T., Norris, R. D., and Macleod, K. G.: Deep-sea paleotemperature record of extreme warmth during the Cretaceous, Geology, 30, 123–126, 2002.
Ji, J. F., Balsam, W., and Chen, J.: Mineralogic and climatic interpretations of the Luochuan loess section (China) based on diffuse reflectance spectrophotometry, Quat. Res., 56, 23–30, 2001.
Ji, J., Zhao, L., Balsam, W., Chen, J., Wu, T., and Liu, L.: Detecting chlorite in the Chinese loess sequence by diffuse reflectance spectroscopy, Clay. Clay Miner., 54, 266–273, 2006.
Jiang, X., Pan, Z., Xu, J., Li, X., Xie, G., and Xiao, Z.: Late Cretaceous aeolian dunes and reconstruction of palaeo-wind belts of the Xinjiang Basin, Jiangxi province, China, Palaeogeogr. Palaeocl., 257, 58–66, 2008.
Jiang, Z., Liu, Q., Barrón, V., Torrent, J., and Yu, Y.: Magnetic discrimination between Al-substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance, J. Geophys. Res.-Solid Earth, 117, 119–130, 2012.
Jiang, Z., Liu, Q., Zhao, X., Jin, C., Liu, C., and Li, S.: Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance, Geophys. J. Int., 200, 130–143, 2015.
Kraus, M. J. and Hasiotis, S. T.: Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from paleogene paleosols, Bighorn Basin, Wyoming, USA, J. Sediment. Res., 76, 633–646, 2006.
Larrasoaña, J. C., Roberts, A. P., and Rohling, E. J.: Magnetic susceptibility of eastern Mediterranean marine sediments as a proxy for Saharan dust supply?, Mar. Geol., 254, 224–229, 2008.
Levy, D., Giustetto, R., and Hoser, A.: Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study, Phys. Chem. Miner., 39, 169–176, 2012.
Li, G., Hirano, H., Batten, D. J., and Wan, X.: Biostratigraphic significance of spinicaudatans from the Upper Cretaceous Nanxiong Group in Guangdong, South China, Cretaceous Res., 31, 387–395, 2010.
Li, J., Wen, X. Y., and Huang, C. M.: Lower Cretaceous paleosols and paleoclimate in Sichuan Basin, China, Cretaceous Res., 62, 154–171, 2015.
Li, M.: Sporo-pollen from Shanghu Formation of Early Paleocene in Nanxiong Basin, Guangdong, Acta Palaeontologica Sinica, 28, 741–750, 1989 (in Chinese with English abstract).
Li, X., Xu, W., Liu, W., Zhou, Y., Wang, Y., Sun, Y., and Liu, L.: Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China, Palaeogeogr. Palaeocl., 385, 171–189, 2013.
Li, Y. W.: The Application of Ostracoda to the Location of the Non-marine Jurassic-Cretaceous Boundary in the Sichuan Basin of China, Developments Palaeontology Stratigraphy, 11, 1245–1260, 1988.
Linnert, C., Robinson, S. A., Lees, J. A., Bown, P. R., Pérez-Rodriguez, I., Petrizzo, M. R., Falzoni, F., Littler, K., Arz, J. A., and Russell, E. E.: Evidence for global cooling in the Late Cretaceous, Nat. Commun., 5, 1–7, 2014.
Liu, Q. S., Deng, C. L., Yu, Y. J., Torrent, J., Jackson, M. J., Banerjee, S. K., and Zhu, R.: Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols, Geophys. J. Int., 161, 102–112, 2005.
Liu, T. S.: Loess and Environment, Science Press, Beijing, 1–481, 1985 (in Chinese).
Liu, X., Shaw, J., Liu, T., Heller, F., and Yuan, B.: Magnetic mineralogy of Chinese loess and its significance, Geophys. J. Int., 108, 301–308, 1992.
Liu, X. M., Hesse, P., and Rolph, T.: Origin of maghaemite in Chinese loess deposits: Aeolian or pedogenic?, Phys. Earth Planet Inter., 112, 191–201, 1999.
Liu, X. M., Rolph, T., An, Z., and Hesse, P.: Paleoclimatic significance of magnetic properties on the Red Clay underlying the loess and paleosols in China, Palaeogeogr. Palaeocl., 199, 153–166, 2003.
Lu, H. M. and Meng, X. K.: Morin Temperature and Néel Temperature of Hematite Nanocrystals, J. Phys. Chem. C., 114, 21291–21295, 2010.
Ma, M., Liu, X., Pillans, Brad J., Hu, S., Lü, B., and Liu, H.: Magnetic properties of Dashing Rocks loess at Timaru, South Island, New Zealand, Geophys. J. Int., 195, 75–85, 2013.
Maher, B. A.: Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau, Quat. Sci. Rev., 154, 23–84, 2016.
Maher, B. A. and Possolo, A.: Statistical models for use of palaeosol magnetic properties as proxies of palaeorainfall, Global Planet. Change, 111, 280–287, 2013.
Maher, B. A., Thompson, R., and Zhou, L. P.: Spatial and temporal reconstructions of changes in the Asian palaeomonsoon – a new mineral magnetic approach, Earth Planet. Sc. Lett., 125, 461–471, 1994.
Nie, J., King, J. W., and Fang, X.: Enhancement mechanisms of magnetic susceptibility in the Chinese red-clay sequence, Geophys. Res. Lett., 341, 255–268, 2007.
Nie, J., King, J. W., and Fang, X.: Link between benthic oxygen isotopes and magnetic susceptibility in the red-clay sequence on the Chinese Loess Plateau, Geophys. Res. Lett., 35, 154–175, 2008.
Nie, J., Zhang, R., Necula, C., Heslop, D., Liu, Q., Gong, L., and Banerjee, S.: Late Miocene–early Pleistocene paleoclimate history of the Chinese Loess Plateau revealed by remanence unmixing, Geophys. Res. Lett., 41, 2163–2168, 2014.
Nie, J., Song, Y., and King, J.: A review of recent advances in red-clay environmental magnetism and paleoclimate history on the Chinese Loess Plateau, Front. Earth Sci., 4, 27, https://doi.org/10.3389/feart.2016.00027, 2016.
Peters, C., Austin, W. E. N., Walden, J., and Hibbert, F. D.: Magnetic characterisation and correlation of a Younger Dryas tephra in North Atlantic marine sediments, J. Quaternary Sci., 25, 339–347, 2010.
Rankey, E. C. and Farr, M. R.: Preserved pedogenic mineral magnetic signature, pedogenesis, and paleoclimate change. Pennsylvanian Roca Shale (Virgilian, Asselian), central Kansas, USA, Sediment. Geol., 114, 11–32, 1997.
Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S., Morgan, L. E., Mundil, R., and Smit, J.: Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary, Science, 339, 684–687, 2013.
Retallack, G. J.: Untangling the effects of burial alteration and ancient soil formation, Annu. Rev. Earth Planet. Sc., 19, 183–206, 1991.
Retallack, G. J.: Depth to pedogenic carbonate horizon as a paleoprecipitation indicator?: Comment and Reply, Geology, 27, 41–52, 1999.
Retallack, G. J.: Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols, Geology, 33, 333–336, 2005.
Retallack, G. J.: Greenhouse crises of the past 300 million years, Geol. Soc. Am. Bull., 121, 1441–1455, 2009.
Retallack, G. J., Sheldon, N. D., Cogoini, M., and Elmore, R. D.: Magnetic susceptibility of early Paleozoic and Precambrian paleosols, Palaeogeogr. Palaeocl., 198, 373–380, 2003.
Russell, D. A., Russell, D. E., and Sweet, A. R.: The end of the dinosaurian era in the Nanxiong Basin, Certebrata Palasiatica, 31, 139–145, 1993.
Schwartzmann, D. W. and Volk, T.: Biotic enhancement of weathering and surface temperatures of Earth since the origin of life, Palaeogeogr. Palaeocl., 90, 357–371, 1991.
Scotese, C. R.: KT Globe, (KT_Pgeog_357.kmz, Google Earth format), available at: www.globalgeology.com, PALEOMAP Project, Evanston, IL.KT_Pgeog_357, 2014.
Shu, L., Deng, P., Wang, B., Tan, Z., Yu, X., and Sun, Y.: Lithology, kinematics and geochronology related to Late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China, Sci. China Earth Sci., 47, 673–688, 2004.
Shunso, I., Hua, R., Mihoko, H., and Hiroyasu, M.: REE Abundance and REE Minerals in Granitic Rocks in the Nanling Range, Jiangxi Province, Southern China, and Generation of the REE-rich Weathered Crust Deposits, Resour. Geol., 58, 355–372, 2010.
Sidhu, P. S.: Transformation of trace element-substituted maghemite to hematite, Clay. Miner., 36, 31–38, 1988.
Smith, D. O.: Magnetization of a Magnetite Single Crystal Near the Curie Point, Phys. Rev., 102, 959–963, 1956.
Snowball, I., Sandgren, P., and Petterson, G.: The mineral magnetic properties of an annually laminated Holocene lake-sediment sequence in northern Sweden, Holocene, 9, 353–362, 1999.
Thompson, R. and Oldfield, F.: Environmental Magnetism, Allen & Unwin, London, 1–228, 1986.
Tong, Y., Li, Q., and Wang, Y. Q.: An Introduction to recent advance in the study of the continental Early Paleogene stages in China, J. Stratigraphy, 37, 428–440, 2013 (in Chinese with English abstract).
Torrent, J., Barrón, V., and Liu, Q. S.: Magnetic enhancement is linked to and precedes hematite formation in aerobic soils, Geophys. Res. Lett., 33, L02402, https://doi.org/10.1029/2005GL024818, 2006.
Torrent, J., Liu, Q. S., Bloemendal, J., and Barrón, V.: Magnetic enhancement and iron oxides in the upper luochuan loess-paleosol sequence, Chinese Loess Plateau, Soil Sci. Soc. Am. J., 71, 1570–1578, 2007.
Tramp, K. L., Soreghan, G. S., and Elmore, R. D.: Paleoclimatic inferences from paleopedology and magnetism of the Permian Maroon Formation loessite, Colorado, USA, Geol. Soc. Am. Bull., 116, 671–686, 2004.
Van Velzen, A. J. and Dekkers, M. J.: Low-temperature oxidation of magnetite in loess-paleosol sequences: a correction of rock magnetic parameters, Stud. Geophys. Geod., 43, 357–375, 1999.
Wan, X., Zhao, J., Scott, R. W., Wang, P., Feng, Z., Huang, Q., and Xi, D.: Late Cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores, Palaeogeogr. Palaeocl., 385, 31–43, 2013.
Wang, C., Feng, Z., Zhang, L., Huang, Y., Cao, K., Wang, P., and Zhao, B.: Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China, Palaeogeogr. Palaeocl., 385, 17–30, 2013a.
Wang, C., Scott, R. W., Wan, X., Graham, S. A., Huang, Y., Wang, P., Wu, H., Dean, W. E., and Zhang, L.: Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata, Earth-Sci. Rev., 126, 275–299, 2013b.
Wang, Y.: Paleoclimate changes of thr Late Cretaceous-Late Paleocene in the Nanxiong Basin, South China, Nanjing University, 2012 (in Chinese with English abstract).
Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., and Lin, Z.: Paleo-CO2 variation trends and the Cretaceous greenhouse climate, Earth-Sci. Rev., 129, 136–147, 2014.
Wang, Y., Li, X., Zhou, Y., and Liu, L.: Paleoclimate indication of Terrigenous clastic rock's component during the Late Cretaceous-Early Paleocene in the Nanxiong Basin, Acta Sedimentologica Sinica, 33, 116–123, 2015 (In Chinese with English abstract).
Wilson, P. A., Norris, R. D., and Cooper, M. J.: Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise, Geology, 30, 607–610, 2002.
Wu, H., Zhang, S., Jiang, G., and Huang, Q.: The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications, Earth Planet. Sc. Lett., 278, 308–323, 2009.
Xie, Q.: Nanominerals of the loess-red clay sequences in Chinese Loess Plateau, Hefei University of Technology, 2008 (in Chinese with English abstract).
Xiong, S., Ding, Z., Zhu, Y., Zhou, R., and Lu, H.: A ∼ 6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess–red clay deposit, Quaternary Sci. Rev., 29, 1911–1922, 2010.
Yan, Y., Xia, B., Lin, G., Cui, X., Hu, X., Yan, P., and Zhang, F.: Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary, Sediment. Geol., 197, 127–140, 2007.
Yang, W., Chen, N., Ni, S., Nan, J., Wu, M., Jiang, J., Ye, J., Feng, X., and Ran, Y.: Carbon and Oxygen Isotopic Compositions of the Carbonate Rocks and the Dinosaur Eggshells in the Cretaceous Red Beds and Their Implication for Paleoenvironment, Chinese Sci. Bull., 38, 1985–1989, 1993.
Ye, J.: Discussion on the problems of the K/T Boundary in the Nanxiong Basin, Certebrata Palasiatica, 38, 1–9, 2000.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693, 2001.
Zhang, L.: Paleoclimatic evolution and mechanism of the mass extinction during the K-Pg boundary: Evidences from several terrestrial basins in East China, China University of Geosciences (Beijing), 2016 (in Chinese with English abstract).
Zhang, Q.: Paleocene sporopollen assemblages in the Nanxiong Basin Guangdong Province, in: Bull. Yichang Inst. Geol. M. R., Chinese Acad. Geol. Sci. Sp. Iss. S. P., 106–117, 1981 (in Chinese with English abstract).
Zhan, T., Guo, Z. T., Wu, H. B., Ge, J., Zhou, X., Wu, C., and Zeng, F.: Thick Miocene eolian deposits on the Huajialing Mountains: The geomorphic evolution of the western Loess Plateau, Sci. China Earth Sci., 54, 241–248, 2011.
Zhang, W., Erwin, A., Fang, X., Yan, M., Song, C., and Cao, L.: Paleoclimatic implications of magnetic susceptibility in Late Pliocene–Quaternary sediments from deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau), J. Geophys. Res., 117, 6101, https://doi.org/10.1029/2011JB008949, 2012.
Zhang, X.: A study on Ostracod fauna of Shanghu Formation and Cretaceous-Tertiary Boundary in Nanxiong Basin, Guangdong, Acta Micropalaeontologica Sinica, 6, 678–702, 1992 (in Chinese with English abstract).
Zhang, X. and Li, G.: Discussion on geological age of the Pingling Member of Shanghu Formation in the Nanxiong Basin,Guangdong Province, J. Stratigraphy, 39, 74–80, 2015 (in Chinese with English abstract).
Zhang, X. and Li, S.: New progress in stratigraphic study of the western area of Nanxiong Basin, Guangdong Geology, 15, 9–18, 2000 (in Chinese with English abstract).
Zhang, X., Lin, J., Li, G., and Lin, Q.: Non-marine Cretaceous-Paleogene boundary section at Datang, Nanxiong, northern Guangdong, J. Stratigraphy, 30, 327–340, 2006 (in Chinese with English abstract).
Zhang, X., Zhang, X., Hou, M., Li, G., and Li, H.: Lithostratigraphic subdivision of red beds in Nanxiong Basin, Guangdong, China, J. Stratigraphy, 37, 441–451, 2013 (in Chinese with English abstract).
Zhao, G., Han, Y., Liu, X., Chang, L., Lü, B., Chen, Q., Guo, X., Yan, J., and Yan, J.: Can the magnetic susceptibility record of Chinese Red Clay sequence be used for palaeomonsoon reconstructions?, Geophys. J. Int., 204, 1421–1429, 2016.
Zhao, Z. and Yan, Z.: Stable isotopic studies of dinosaur eggshells from the Nanxiong Basin, South China, Sci. China Earth Sci., 43, 84–92, 2000.
Zhao, Z., Mao, X., Chai, Z., Yang, G., Zhang, F., and Yan, Z.: Geochemical environmental changes and dinosaur extinction during the Cretaceous-Paleogene (K/T) transition in the Nanxiong Basin, South China: Evidence from dinosaur eggshells, Chinese Sci. Bull., 54, 806–815, 2009.
Zhao, Z. K., Ye, J., and Li, H. M.: Extinction of the dinosaurs across the Cretaceous-Tertiary boundary in Nanxiong Basin, Guangdong Province, Certebrata Palasiatica, 29, 1–20, 1991 (in Chinese with English abstract).
Zhao, Z. K., Mao, X. Y., Chai, Z. F., Yang, G., Kong, P., Ebihara, M., and Zhao, Z.: A possible causal relationship between extinction of dinosaurs and K/T iridium enrichment in the Nanxiong Basin, South China: evidence from dinosaur eggshells, Palaeogeogr. Palaeocl., 178, 1–17, 2002.
Zhou, L. P., Oldfield, F., Wintle, A. G., Robinson, S. G., and Wang, J.: Partly pedogenic origin of magnetic variations in Chinese loess, Nature, 346, 737–739, 1990.
Short summary
Significant climate changes and biotic turnovers occurred across the Cretaceous–Paleogene boundary (KTB) interval. It is of great significance to carry out research on palaeoclimate evolution across the KTB in terrestrial basins because we lack many KTB records in this part of the world. Here we provide a new terrestrial record from the Nanxiong Basin (SE China) and compare it with marine records to provide reliable terrestrial records for future investigation of ocean–land climate interactions.
Significant climate changes and biotic turnovers occurred across the Cretaceous–Paleogene...