Articles | Volume 14, issue 12
https://doi.org/10.5194/cp-14-1961-2018
https://doi.org/10.5194/cp-14-1961-2018
Research article
 | 
11 Dec 2018
Research article |  | 11 Dec 2018

Ocean carbon inventory under warmer climate conditions – the case of the Last Interglacial

Augustin Kessler, Eirik Vinje Galaasen, Ulysses Silas Ninnemann, and Jerry Tjiputra

Related authors

AERA-MIP: Emission pathways, remaining budgets and carbon cycle dynamics compatible with 1.5 ºC and 2 ºC global warming stabilization
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernadello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-488,https://doi.org/10.5194/egusphere-2024-488, 2024
Short summary
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024,https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Natural marine bromoform emissions in the fully coupled ocean-atmosphere-model NorESM2
Dennis Booge, Jerry F. Tjiputra, Dirk J. L. Olivié, Birgit Quack, and Kirstin Krüger
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-3,https://doi.org/10.5194/esd-2024-3, 2024
Revised manuscript accepted for ESD
Short summary
Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11
Michelle J. Curran, Christophe Colin, Megan Murphy O’Connor, Ulysses S. Ninnemann, and Audrey Morley
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-101,https://doi.org/10.5194/cp-2023-101, 2024
Preprint under review for CP
Short summary
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2947,https://doi.org/10.5194/egusphere-2023-2947, 2023
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Modelling only | Timescale: Millenial/D-O
Impact of iron fertilisation on atmospheric CO2 during the last glaciation
Himadri Saini, Katrin J. Meissner, Laurie Menviel, and Karin Kvale
Clim. Past, 19, 1559–1584, https://doi.org/10.5194/cp-19-1559-2023,https://doi.org/10.5194/cp-19-1559-2023, 2023
Short summary
The atmospheric bridge communicated the δ13C decline during the last deglaciation to the global upper ocean
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021,https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Mysteriously high Δ14C of the glacial atmosphere: influence of 14C production and carbon cycle changes
Ashley Dinauer, Florian Adolphi, and Fortunat Joos
Clim. Past, 16, 1159–1185, https://doi.org/10.5194/cp-16-1159-2020,https://doi.org/10.5194/cp-16-1159-2020, 2020
Short summary
The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian
Jodie Pall, Sabin Zahirovic, Sebastiano Doss, Rakib Hassan, Kara J. Matthews, John Cannon, Michael Gurnis, Louis Moresi, Adrian Lenardic, and R. Dietmar Müller
Clim. Past, 14, 857–870, https://doi.org/10.5194/cp-14-857-2018,https://doi.org/10.5194/cp-14-857-2018, 2018
Short summary
Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions
N. Towles, P. Olson, and A. Gnanadesikan
Clim. Past, 11, 991–1007, https://doi.org/10.5194/cp-11-991-2015,https://doi.org/10.5194/cp-11-991-2015, 2015
Short summary

Cited articles

Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. a
Bernadello, R., Marinov, I., Palter, J. B., Sarmiento, J. L., Galbraith, E. D., and Slater, R. D.: Response of the Ocean Natural Carbon Storage to Projected Twenty–First–Century Climate Change, J. Climate, 27, 2033–2053, https://doi.org/10.1175/JCLI-D-13-00343.1, 2014. a
Bleck, R., Rooth, C., Hu, D., and Smith, L. T.: Salinity-driven thermocline transients in a wind– and thermohaline–forced isopycnic coordinate model of the north Atlantic, J. Pys. Oceanogr., 22, 1486–1505, https://doi.org/10.1175/1520-0485(1992)022<1486:SDTTIA>2.0.CO;2, 1992. a, b
Born, A., Nisancioglu, K. H., and Risebrobakken, B.: Late Eemian warming in the Nordic Seas as seen in proxy data and climate models, Paleoceanography, 26, PA2207, https://doi.org/10.1073/pnas.1322103111, 2011. a
Broecker, W. S.: ”NO”, A conservative water-mass tracer, Earth Planet. Sc. Lett., 23, 100–107, https://doi.org/10.1016/0012-821X(74)90036-3, 1974. a, b
Download
Short summary
We analyze the changes in oceanic carbon dynamics, using a state-of-the-art Earth system model, by comparing two quasi-equilibrium states: the early, warm Eemian (125 ka) versus the cooler, late Eemian (115 ka). Our results suggest a considerably weaker ocean dissolved inorganic carbon storage at 125 ka, an alteration of the deep-water geometry and ventilation in the South Atlantic, and heterogeneous changes in phosphate availability and carbon export between the Pacific and Atlantic basins.