Articles | Volume 14, issue 11
https://doi.org/10.5194/cp-14-1625-2018
https://doi.org/10.5194/cp-14-1625-2018
Research article
 | 
05 Nov 2018
Research article |  | 05 Nov 2018

Burning-derived vanillic acid in an Arctic ice core from Tunu, northeastern Greenland

Mackenzie M. Grieman, Murat Aydin, Joseph R. McConnell, and Eric S. Saltzman

Abstract. In this study, vanillic acid was measured in the Tunu ice core from northeastern Greenland in samples covering the past 1700 years. Vanillic acid is an aerosol-borne aromatic methoxy acid, produced by the combustion of lignin during biomass burning. Air mass trajectory analysis indicates that North American boreal forests are likely the major source region for biomass burning aerosols deposited to the ice core site. Vanillic acid levels in the Tunu ice core range from  < 0.005 to 0.08 ppb. Tunu vanillic acid exhibits centennial-scale variability in pre-industrial ice, with elevated levels during the warm climates of the Roman Warm Period and Medieval Climate Anomaly, and lower levels during the cooler climates of the Late Antique Little Ice Age and the Little Ice Age. Analysis using a peak detection method revealed a positive correlation between vanillic acid in the Tunu ice core and both ammonium and black carbon in the North Greenland Eemian Ice Drilling (NEEM) project ice core from 600 to 1200 CE. The data provide multiproxy evidence of centennial-scale variability in North American high-latitude fire during this time period.

Download
Short summary
Vanillic acid is reported in the Tunu ice core from northeastern Greenland. It is an aerosol-borne acid produced by biomass burning. North American boreal forests are likely the source regions of the vanillic acid deposited at the ice core site. Vanillic acid levels were elevated during warm climate periods and lower during cooler climate periods. There is a positive correlation between the vanillic acid ice core record and ammonium and black carbon in the NEEM ice core from northern Greenland.