Articles | Volume 13, issue 11
https://doi.org/10.5194/cp-13-1635-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-1635-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation
Martin Schobben
CORRESPONDING AUTHOR
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115 Berlin, Germany
Sebastiaan van de Velde
Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Jana Gliwa
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115 Berlin, Germany
Lucyna Leda
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115 Berlin, Germany
Dieter Korn
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115 Berlin, Germany
Ulrich Struck
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115 Berlin, Germany
Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74–100, 12249 Berlin, Germany
Clemens Vinzenz Ullmann
College of Engineering, Mathematics and Physical Sciences, Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
Vachik Hairapetian
Department of Geology, Esfahan (Khorasgan) Branch, Islamic Azad University, P.O. Box 81595-158, Esfahan, Iran
Abbas Ghaderi
Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Azadi Square, 9177948974, Mashhad, Iran
Christoph Korte
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
Robert J. Newton
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
Simon W. Poulton
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
Paul B. Wignall
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
Related authors
Dieter Korn, Lucyna Leda, Franziska Heuer, Hemen Moradi Salimi, Elham Farshid, Amir Akbari, Martin Schobben, Abbas Ghaderi, Ulrich Struck, Jana Gliwa, David Ware, and Vachik Hairapetian
Foss. Rec., 24, 171–192, https://doi.org/10.5194/fr-24-171-2021, https://doi.org/10.5194/fr-24-171-2021, 2021
Short summary
Short summary
Permian–Triassic boundary sections at Baghuk Mountain are investigated with respect to their lithological succession, biostratigraphy and chemostratigraphy. Ammonoids enable the clear separation of Wuchiapingian, Changhsingian and Dienerian assemblages. Early Triassic microbialites occur in various horizons. The carbon isotope curve shows a late Changhsingian negative excursion and the lightest values at the base of the Triassic.
Jana Gliwa, Abbas Ghaderi, Lucyna Leda, Martin Schobben, Sara Tomás, William J. Foster, Marie-Béatrice Forel, Nahideh Ghanizadeh Tabrizi, Stephen E. Grasby, Ulrich Struck, Ali Reza Ashouri, and Dieter Korn
Foss. Rec., 23, 33–69, https://doi.org/10.5194/fr-23-33-2020, https://doi.org/10.5194/fr-23-33-2020, 2020
Short summary
Short summary
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary succession, bearing great potential for studying the change of environmental conditions that paralleled the end-Permian mass extinction. The lithological succession; carbonate microfacies characteristics; stable isotope dynamics; and conodont, ostracod, and ammonoid stratigraphy allow for a detailed study of the chronological succession of the events.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Teuntje P. Hollaar, Stephen P. Hesselbo, Jean-François Deconinck, Magret Damaschke, Clemens V. Ullmann, Mengjie Jiang, and Claire M. Belcher
Clim. Past, 19, 979–997, https://doi.org/10.5194/cp-19-979-2023, https://doi.org/10.5194/cp-19-979-2023, 2023
Short summary
Short summary
Palaeoclimatological reconstructions aid our understanding of current and future climate change. In the Pliensbachian (Early Jurassic) a climatic cooling event occurred globally. We show that this cooling event has a significant impact on the depositional environment of the Cardigan Bay basin but that the 405 kyr eccentricity cycle remained the dominant control on terrestrial and marine depositional processes.
Adam Woodhouse, Frances A. Procter, Sophie L. Jackson, Robert A. Jamieson, Robert J. Newton, Philip F. Sexton, and Tracy Aze
Biogeosciences, 20, 121–139, https://doi.org/10.5194/bg-20-121-2023, https://doi.org/10.5194/bg-20-121-2023, 2023
Short summary
Short summary
This study looked into the regional and global response of planktonic foraminifera to the climate over the last 5 million years, when the Earth cooled significantly. These single celled organisms exhibit the best fossil record available to science. We document an abundance switch from warm water to cold water species as the Earth cooled. Moreover, a closer analysis of certain species may indicate higher fossil diversity than previously thought, which has implications for evolutionary studies.
Thomas Munier, Jean-François Deconinck, Pierre Pellenard, Stephen P. Hesselbo, James B. Riding, Clemens V. Ullmann, Cédric Bougeault, Mathilde Mercuzot, Anne-Lise Santoni, Émilia Huret, and Philippe Landrein
Clim. Past, 17, 1547–1566, https://doi.org/10.5194/cp-17-1547-2021, https://doi.org/10.5194/cp-17-1547-2021, 2021
Short summary
Short summary
Clay minerals are witnesses of alteration conditions in continental environments. Lacking high-resolution data on clay minerals, this work highlights wet and semi-arid cycles at mid-latitude in the upper Sinemurian. The higher proportion of kaolinite in the upper part of the obtusum zone and in the oxynotum zone indicates an increase in hydrolysis conditions in a warmer period confirmed by carbon isotopes.
Dieter Korn, Lucyna Leda, Franziska Heuer, Hemen Moradi Salimi, Elham Farshid, Amir Akbari, Martin Schobben, Abbas Ghaderi, Ulrich Struck, Jana Gliwa, David Ware, and Vachik Hairapetian
Foss. Rec., 24, 171–192, https://doi.org/10.5194/fr-24-171-2021, https://doi.org/10.5194/fr-24-171-2021, 2021
Short summary
Short summary
Permian–Triassic boundary sections at Baghuk Mountain are investigated with respect to their lithological succession, biostratigraphy and chemostratigraphy. Ammonoids enable the clear separation of Wuchiapingian, Changhsingian and Dienerian assemblages. Early Triassic microbialites occur in various horizons. The carbon isotope curve shows a late Changhsingian negative excursion and the lightest values at the base of the Triassic.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Astrid Hylén, Sebastiaan J. van de Velde, Mikhail Kononets, Mingyue Luo, Elin Almroth-Rosell, and Per O. J. Hall
Biogeosciences, 18, 2981–3004, https://doi.org/10.5194/bg-18-2981-2021, https://doi.org/10.5194/bg-18-2981-2021, 2021
Short summary
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
Sebastiaan J. van de Velde, Rebecca K. James, Ine Callebaut, Silvia Hidalgo-Martinez, and Filip J. R. Meysman
Biogeosciences, 18, 1451–1461, https://doi.org/10.5194/bg-18-1451-2021, https://doi.org/10.5194/bg-18-1451-2021, 2021
Short summary
Short summary
Some 540 Myr ago, animal life evolved in the ocean. Previous research suggested that when these early animals started inhabiting the seafloor, they retained phosphorus in the seafloor, thereby limiting photosynthesis in the ocean. We studied salt marsh sediments with and without animals and found that their impact on phosphorus retention is limited, which implies that their impact on the global environment might have been less drastic than previously assumed.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Jana Gliwa, Abbas Ghaderi, Lucyna Leda, Martin Schobben, Sara Tomás, William J. Foster, Marie-Béatrice Forel, Nahideh Ghanizadeh Tabrizi, Stephen E. Grasby, Ulrich Struck, Ali Reza Ashouri, and Dieter Korn
Foss. Rec., 23, 33–69, https://doi.org/10.5194/fr-23-33-2020, https://doi.org/10.5194/fr-23-33-2020, 2020
Short summary
Short summary
The Permian–Triassic boundary section of the Aras Valley (NW Iran) shows a complete sedimentary succession, bearing great potential for studying the change of environmental conditions that paralleled the end-Permian mass extinction. The lithological succession; carbonate microfacies characteristics; stable isotope dynamics; and conodont, ostracod, and ammonoid stratigraphy allow for a detailed study of the chronological succession of the events.
Michael Wegerer, Kenneth De Baets, and Dieter Korn
Foss. Rec., 21, 223–236, https://doi.org/10.5194/fr-21-223-2018, https://doi.org/10.5194/fr-21-223-2018, 2018
Short summary
Short summary
Two morphometric methods are applied for the analysis of suture lines in Early Carboniferous ammonoids: (1) classic metric data using multivariate statistic methods and (2) outline data are analysed using the elliptic Fourier analysis. Both methods lead to similar results and demonstrate ontogenetic and phylogenetic trends in these ammonoids: (1) a general decrease in the amplitude of lobes and saddles, (2) a proportional widening of the external lobe, and (3) a heightening of the median saddle.
Michael Ramming, Dieter Korn, Carina Klein, and Christian Klug
Foss. Rec., 21, 67–77, https://doi.org/10.5194/fr-21-67-2018, https://doi.org/10.5194/fr-21-67-2018, 2018
Short summary
Short summary
Selected specimens from the Jurassic ammonoid Pararnioceras sp. revealed striking changes in the conch morphology due to a syn vivo growth through a parasitic serpulid. Changes in its ontogenetic development are compared with specimens without epizoans. The ecological interpretation of the morphometric data allows the conclusion that the host possessed the ability to counteract the parasitic conch abnormalities by adapting the housing growth, thus ensuring its survival.
Clemens Vinzenz Ullmann and Philip A. E. Pogge von Strandmann
Biogeosciences, 14, 89–97, https://doi.org/10.5194/bg-14-89-2017, https://doi.org/10.5194/bg-14-89-2017, 2017
Short summary
Short summary
This study documents how much control growth rate has on the chemical composition of fossil shell material. Using a series of chemical analyses of the fossil hard part of a belemnite, an extinct marine predator, a clear connection between the rate of calcite formation and its magnesium and strontium contents was found. These findings provide further insight into biomineralization processes and help better understand chemical signatures of fossils as proxies for palaeoenvironmental conditions.
A. Gamper, U. Struck, F. Ohnemueller, C. Heubeck, and S. Hohl
Foss. Rec., 18, 105–117, https://doi.org/10.5194/fr-18-105-2015, https://doi.org/10.5194/fr-18-105-2015, 2015
A. L. Titus, D. Korn, J. E. Harrell, and L. L. Lambert
Foss. Rec., 18, 81–104, https://doi.org/10.5194/fr-18-81-2015, https://doi.org/10.5194/fr-18-81-2015, 2015
F. Heuer, D. Korn, Z. Belka, and V. Hairapetian
Foss. Rec., 18, 57–72, https://doi.org/10.5194/fr-18-57-2015, https://doi.org/10.5194/fr-18-57-2015, 2015
Short summary
Short summary
The Devonian reef limestone complex of Rösenbeck near Brilon (Rhenish Mountains) shows numerous neptunian dykes and other hollows which have been filled with Carboniferous siliciclastic as well as fossil-rich carbonate sediments with ammonoids, conodonts, and chondrichthyan fish. These carbonates represent erratic blocks of sediments which were deposited in elevated areas but subsequently eroded and transported as erratic blocks into the karstic cavities.
A. Ghaderi, L. Leda, M. Schobben, D. Korn, and A. R. Ashouri
Foss. Rec., 17, 41–57, https://doi.org/10.5194/fr-17-41-2014, https://doi.org/10.5194/fr-17-41-2014, 2014
C. Klein and D. Korn
Foss. Rec., 17, 1–32, https://doi.org/10.5194/fr-17-1-2014, https://doi.org/10.5194/fr-17-1-2014, 2014
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pre-Cenozoic
Warming drove the expansion of marine anoxia in the equatorial Atlantic during the Cenomanian leading up to Oceanic Anoxic Event 2
Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361)
Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks
Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK
Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic
Late Cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
"OAE 3" – regional Atlantic organic carbon burial during the Coniacian–Santonian
Bridging the Faraoni and Selli oceanic anoxic events: late Hauterivian to early Aptian dysaerobic to anaerobic phases in the Tethys
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
James S. Eldrett, Paul Dodsworth, Steven C. Bergman, Milly Wright, and Daniel Minisini
Clim. Past, 13, 855–878, https://doi.org/10.5194/cp-13-855-2017, https://doi.org/10.5194/cp-13-855-2017, 2017
Short summary
Short summary
This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes for the Cenomanian to Coniacian stages of the Late Cretaceous, along a north–south transect from the Cretaceous Western Interior Seaway to the equatorial western Atlantic and Southern Ocean. Distinct palynological assemblages and geochemical signatures allow insights into palaeoenvironmental conditions and water-mass evolution during this greenhouse climate period.
Nicolas Thibault, Rikke Harlou, Niels H. Schovsbo, Lars Stemmerik, and Finn Surlyk
Clim. Past, 12, 429–438, https://doi.org/10.5194/cp-12-429-2016, https://doi.org/10.5194/cp-12-429-2016, 2016
Short summary
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
M. Wagreich
Clim. Past, 8, 1447–1455, https://doi.org/10.5194/cp-8-1447-2012, https://doi.org/10.5194/cp-8-1447-2012, 2012
K. B. Föllmi, M. Bôle, N. Jammet, P. Froidevaux, A. Godet, S. Bodin, T. Adatte, V. Matera, D. Fleitmann, and J. E. Spangenberg
Clim. Past, 8, 171–189, https://doi.org/10.5194/cp-8-171-2012, https://doi.org/10.5194/cp-8-171-2012, 2012
Cited articles
Algeo, T. J. and Twitchett, R. J.: Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences, Geology, 38, 1023–1026, https://doi.org/10.1130/G31203.1, 2010.
Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J., and Maynard, J. B.: Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 65–83, https://doi.org/10.1016/j.palaeo.2010.07.007, 2011.
Algeo, T. J., Henderson, C. M., Tong, J., Feng, Q., Yin, H., and Tyson, R. V.: Plankton and productivity during the Permian–Triassic boundary crisis: An analysis of organic carbon fluxes, Global Planet. Change, 105, 52–67, https://doi.org/10.1016/j.gloplacha.2012.02.008, 2013.
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C.: Phanerozoic trends in the global diversity of marine invertebrates, Science, 321, 97–100, https://doi.org/10.1126/science.1156963, 2008.
Arp, G., Reimer, A., and Reitner, J.: Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans, Science, 292, 1701–1704, https://doi.org/10.1126/science.1057204, 2001.
Auguie, B.: gridExtra: Miscellaneous Functions for “Grid” Graphics, available at: http://CRAN.R-project.org/package=gridExtra (last access: November 2017), r package version 2.0.0, 2016.
Banner, J. L. and Hanson, G. N.: Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Ac., 54, 3123–3137, https://doi.org/10.1016/0016-7037(90)90128-8, 1990.
Bathurst, R. G. C.: Cementation, in: Developments in sedimentology 12: Carbonate sediments annd their diagenesis, 10, 415–457, Elsevier, https://doi.org/10.1016/S0070-4571(08)70904-X, 1975.
Bathurst, R. G. C.: Microfabrics in Carbonate Diagenesis: A Critical Look at Forty Years in Research, Springer New York, New York, https://doi.org/10.1007/978-1-4684-9421-1_1, 1993.
Baud, A., Magaritz, M., and Holser, W. T.: Permian-Triassic of the Tethys: Carbon isotope studies, Geologische Rundschau, 78, 649–677, 1989.
Baud, A., Cirilli, S., and Marcoux, J.: Biotic response to mas extinction: the lowermost Triasic microbialites, Facies, 36, 238–242, 1997.
Berg, P., Rysgaard, S., and Thamdrup, B.: Dynamic modeling of early diagenesis and nutrient cycling. A case study in an Arctic marine sediment, Am. J. Sci., 303, 905–955, https://doi.org/10.2475/ajs.303.10.905, 2003.
Berner, R. A.: An idealized model of dissolved sulfate distribution in recent sediments, Geochim. Cosmochim. Ac., 28, 1497–1503, https://doi.org/10.1016/0016-7037(64)90164-4, 1964.
Berner, R. A.: Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling, Proc. Natl. Acad. Sci. USA, 99, 4172–4177, https://doi.org/10.1073/pnas.032095199, 2002.
Berner, R. A., Scott, M. R., and Thomlinson, C.: Carbonate alkalinity in the pore waters of anoxic marine sediments, Limnol. Oceanogr., 15, 544–549, https://doi.org/10.4319/lo.1970.15.4.0544, 1970.
Birgel, D., Meister, P., Lundberg, R., Horath, T. D., Bontognali, T. R. R., Bahniuk, A. M., de Rezende, C. E., Vasconcelos, C., and McKenzie, J. A.: Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo-/Neoproterozoic stromatolites?, Geobiology, 13, 245–266, https://doi.org/10.1111/gbi.12130, 2015.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.: A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
Bolker, B. M.: Ecological Models and Data in R, Princeton University Press, 2008.
Bolker, B.: emdbook: Ecological Models and Data in R, available at: https://CRAN.R-project.org/package=emdbook (last access: November 2017), r package version 1.3.9., 2016.
Bontognali, T. R. R., Mckenzie, J. A., Warthmann, R. J., and Vasconcelos, C.: Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria, Terra Nova, 26, 72–77, https://doi.org/10.1111/ter.12072, 2014.
Boudreau, B. P.: On the equivalence of nonlocal and radial-diffusion models for porewater irrigation, J. Mar. Res., 42, 731–735, https://doi.org/10.1357/002224084788505924, 1984.
Boudreau, B. P.: A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments, Comput. Geosci., 22, 479–496, https://doi.org/10.1016/0098-3004(95)00115-8, 1996.
Boudreau, B. P.: Diagenetic models and their implementation. Modelling transport and reactions in aquatic sediments, 3, Springer, New York, https://doi.org/10.I007/97S-3-642-60421-S, 1997.
Boudreau, B. P. and Meysman, F. J. R.: Predicted tortuosity of muds, Geology, 34, 693–696, https://doi.org/10.1130/G22771.1, 2006.
Brand, U. and Veizer, J.: Chemical diagenesis of a multicomponent carbonate system-1: Trace elements, J. Sediment. Res., 50, 1219–1236, https://doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1865D, 1980.
Brand, U. and Veizer, J.: Chemical diagenesis of a multicomponent carbonate system-2: Stable isotopes, J. Sediment. Petrol., 51, 987–997, https://doi.org/10.1306/212F7DF6-2B24-11D7-8648000102C1865D, 1981.
Brand, U., Jiang, G., Azmy, K., Bishop, J., and Montañez, I. P.: Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U.S.A.) – 1: Brachiopod and whole rock comparison, Chem. Geology, 308–309, 26–39, https://doi.org/10.1016/j.chemgeo.2012.03.017, 2012a.
Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K., and Farabegoli, E.: The end-Permian mass extinction: A rapid volcanic CO2 and CH4 climatic catastrophe, Chem. Geology, 322, 121–144, https://doi.org/10.1016/j.chemgeo.2012.06.015, 2012b.
Brosse, M., Bucher, H., and Goudemand, N.: Quantitative biochronology of the Permian-Triassic boundary in South China based on conodont unitary associations, Earth Sci. Rev., 155, 153–171, https://doi.org/10.1016/j.earscirev.2016.02.003, 2016.
Brown, P. N. and Hindmarsh, A. C.: Reduced storage matrix methods in stiff ODE systems, Appl. Math. Comput., 31, 40–91, https://doi.org/10.1016/0096-3003(89)90110-0, 1989.
Bundeleva, I. A., Shirokova, L. S., Pokrovsky, O. S., Bénézeth, P., Ménez, B., Gérard, E., and Balor, S.: Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp., Chem. Geology, 374–375, 44–60, https://doi.org/10.1016/j.chemgeo.2014.03.007, 2014.
Busenberg, E. and Plummer, L. N.: Thermodynamics of magnesian calcite solid-solutions at 25 °C and 1 atm total pressure, Geochim. Cosmochim. Ac., 53, 1189–1208, https://doi.org/10.1016/0016-7037(89)90056-2, 1989.
Canfield, D. E.: Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments, Deep Sea Res., 36, 121–138, https://doi.org/10.1016/0198-0149(89)90022-8, 1989.
Canfield, D. E., Jørgensen, B. B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N. B., Thamdrup, B., Hansen, J. W., Nielsen, L. P., and Hall, P. O.: Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geology, 113, 27–40, https://doi.org/10.1016/0025-3227(93)90147-N, 1993.
Cao, C., Wang, W., and Jin, Y.: Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China, Chinese Sci. B., 47, 1125–1129, https://doi.org/10.1360/02tb9252, 2002.
Cao, C., Love, G. D., Hays, L. E., Wang, W., Shen, S., and Summons, R. E.: Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event, Earth Planet. Sci. Lett., 281, 188–201, https://doi.org/10.1016/j.epsl.2009.02.012, 2009.
Chen, J.-S., Chu, X.-L., Shao, M.-R., and Zhong, H.: Carbon isotope study of the Permian-Triassic boundary sequences in China, Chem. Geology: Isotope Geoscience Section, 86, 239–251, https://doi.org/10.1016/0168-9622(91)90052-X, 1991.
Clarkson, M. O., Kasemann, S. A., Wood, R. A., Lenton, T. M., Daines, S. J., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S. W., and Tipper, E. T.: Ocean acidification and the Permo-Triassic mass extinction, Science, 348, 229–232, https://doi.org/10.1126/science.aaa0193, 2015.
Contreras, S., Meister, P., Liu, B., Prieto-mollar, X., Hinrichs, K.-u., and Khalili, A.: subsea floor redox zonation on the Peruvian shelf, Proc. Natl. Acad. Sci., 110, 1–6, https://doi.org/10.1073/pnas.1305981110, 2013.
Dale, A. W., Boyle, R. A., Lenton, T. M., Ingall, E. D., and Wallmann, K.: A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic, Geochim. Cosmochim. Ac., 189, 251–268, https://doi.org/10.1016/j.gca.2016.05.046, 2016.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965–971, https://doi.org/10.1029/95PA02087, 1995.
Emrich, K., Ehhalt, D. H., and Vogel, J. C.: Carbon isotope fractionation during the precipitation of calcium carbonate, Earth Planet. Sci. Lett., 8, 363–371, https://doi.org/10.1016/0012-821X(70)90109-3, 1970.
Erwin, D. H.: The great Paleozoic crisis. Life and Death in the Permian, Columbia University Press, New York, 1993.
Fantle, M. S. and DePaolo, D. J.: Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years, Geochim. Cosmochim. Ac., 70, 3883–3904, https://doi.org/10.1016/j.gca.2006.06.009, 2006.
Fantle, M. S. and DePaolo, D. J.: Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments, Geochim. Cosmochim. Ac., 71, 2524–2546, https://doi.org/10.1016/j.gca.2007.03.006, 2007.
Flügel, E.: Microfacies of Carbonate Rocks, Springer-Verlag, Berlin Heidelberg, 2nd edn., https://doi.org/10.1007/978-3-662-08726-8, 2010.
Fossing, H., Berg, P., Thamdrup, B., Rysgaard, S., and Munk, H.: A model set-up for an oxygen and nutrient flux model for Aarhus Bay (Denmark), 483, National Environmental Research Institute, available at: http://www.2.dmu.dk/1_Viden/2_Publikationer/3_fagrapporter/rapporter/FR483.PDF (last access: November 2017), 2004.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Garcia-Pichel, F., Al-Horani, F. A., Farmer, J. D., Ludwig, R., and Wade, B. D.: Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites, Geobiology, 2, 49–57, https://doi.org/10.1111/j.1472-4669.2004.00017.x, 2004.
Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y.: Photic zone euxinia during the Permian-Triassic superanoxic event, Science, 307, 706–9, https://doi.org/10.1126/science.1104323, 2005.
Gruszczyński, M., Małkowski, K., Szaniawski, H., and Cheng-Yuan, W.: The carbon biogeochemical cycle across the Permian–Triassic boundary strata and its implications: Isotope record from the Changhsingian Stage at Meishan, south China, Acta Geologica Polonica, 53, 167–179, 2003.
Heindel, K., Richoz, S., Birgel, D., Brandner, R., Klügel, A., Krystyn, L., Baud, A., Horacek, M., Mohtat, T., and Peckmann, J.: Biogeochemical formation of calyx-shaped carbonate crystal fans in the subsurface of the Early Triassic seafloor, Gondwana Research, https://doi.org/10.1016/j.gr.2013.11.004, 2013.
Hermann, E., Hochuli, P. A., Bucher, H., Vigran, J. O., Weissert, H., and Bernasconi, S. M.: A close-up view of the Permian–Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform), Global Planet. Change, 74, 156–167, https://doi.org/10.1016/j.gloplacha.2010.10.007, 2010.
Heydari, E., Hassandzadeh, J., and Wade, W. J.: Geochemistry of central tethyan Upper Permian and Lower Triassic strata, Abadeh region, Iran, Sediment. Geol., 137, 85–99, https://doi.org/10.1016/S0037-0738(00)00138-X, 2000.
Heydari, E., Wade, W. J., and Hassanzadeh, J.: Diagenetic origin of carbon and oxygen isotope compositions of Permian-Triassic boundary strata, Sediment. Geol., 143, 191–197, https://doi.org/10.1016/S0037-0738(01)00095-1, 2001.
Heydari, E., Arzani, N., and Hassanzadeh, J.: Mantle plume: The invisible serial killer – Application to the Permian–Triassic boundary mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 264, 147–162, https://doi.org/10.1016/j.palaeo.2008.04.013, 2008.
Heydari, E., Arzani, N., Safaei, M., and Hassanzadeh, J.: Ocean's response to a changing climate: Clues from variations in carbonate mineralogy across the Permian-Triassic boundary of the Shareza Section, Iran, Global Planet. Change, 105, 79–90, https://doi.org/10.1016/j.gloplacha.2012.12.013, 2013.
Hoffman, A., Gruszczynskj, M., Malkowskj, K., and Wski, H. S.: Should the Permian/Triassic boundary be defined by the carbon isotope shift?, Acta Geologica Polonica, 48, 141–148, 1998.
Hofmann, R., Buatois, L., MacNaughton, R., and Mángano, M.: Loss of the sedimentary mixed layer as a result of the end-Permian extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 428, 1–11, https://doi.org/10.1016/j.palaeo.2015.03.036, 2015.
Horacek, M., Richoz, S., Brandner, R., Krystyn, L., and Spötl, C.: Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: The δ13C record from marine sections in Iran, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 355–369, https://doi.org/10.1016/j.palaeo.2006.11.052, 2007.
Hsiang, S. M.: Visually-Weighted Regression, available at: http://www.fight-entropy.com/2012/08/watercolor-regression.html (last access: 2016), 2012.
Huang, J., Luo, G., Bai, X., and Tang, X.: Organic fraction of the total carbon burial flux deduced from carbon isotopes across the Permo-Triassic boundary at Meishan, Zhejiang Province, China, Frontiers of Earth Science in China, 1, 425–430, https://doi.org/10.1007/s11707-007-0052-z, 2007.
Irwin, H., Curtis, C., and Coleman, M.: Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments, Nature, 269, 209–213, https://doi.org/10.1038/269209a0, 1977.
James, N. and Choquette, P.: Limestones: introduction, in: Diagenesis, 5, 159–161, Geoscience Canada, 1983.
Jin, Y., Wang, Y., Wang, W., Shang, Q., Cao, C., and Erwin, D.: Pattern of marine mass extinction near the Permian-Triassic boundary in South China, Science, 289, 432–436, https://doi.org/10.1126/science.289.5478.432, 2000.
Kaiho, K., Kajiwara, Y., Chen, Z.-Q., and Gorjan, P.: A sulfur isotope event at the end of the Permian, Chem. Geol., 235, 33–47, https://doi.org/10.1016/j.chemgeo.2006.06.001, 2006.
Kakuwa, Y. and Matsumoto, R.: Cerium negative anomaly just before the Permian and Triassic boundary event – The upward expansion of anoxia in the water column, Palaeogeogr. Palaeoclimatol. Palaeoecol., 229, 335–344, https://doi.org/10.1016/j.palaeo.2005.07.005, 2006.
Kershaw, S., Li, Y., Crasquin-soleau, S., Feng, Q., Mu, X., Collin, P.-Y., Reynolds, A., and Guo, L.: Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution, Facies, 53, 409–425, https://doi.org/10.1007/s10347-007-0105-5, 2007.
Kershaw, S., Crasquin, S., Collin, P.-Y., Li, Y., Feng, Q., and Forel, M.-B.: Microbialites as disaster forms in anachronistic facies following the end-Permian mass extinction: a discussion, Aust. J. Earth Sci., 56, 809–813, https://doi.org/10.1080/08120090903002623, 2009.
Knauth, L. P. and Kennedy, M. J.: The late Precambrian greening of the Earth, Nature, 460, 728–32, https://doi.org/10.1038/nature08213, 2009.
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P.: Comparative Earth history and Late Permian mass extinction, Science, 273, 452–457, https://doi.org/10.1126/science.273.5274.452, 1996.
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.: Paleophysiology and end-Permian mass extinction, Earth Planet. Sci. Lett., 256, 295–313, https://doi.org/10.1016/j.epsl.2007.02.018, 2007.
Korte, C. and Kozur, H. W.: Carbon isotope stratigraphy across the Permian/Triassic at Jolfa (NW-Iran, Peitlerkofel (Sas de Pütia, Sass de Putia, Pufels (Bula, Bulla), Tesero (all three Southern Alps Italy) and Gerennavár (Bükk Mts., Hungary), J. Alpine Geol., 47, 119–135, 2005.
Korte, C., Kozur, H. W., Joachimski, M. M., Strauss, H., Veizer, J., and Schwark, L.: Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran, Int. J. Earth Sci., 93, 565–581, https://doi.org/10.1007/s00531-004-0406-7, 2004a.
Korte, C., Kozur, H., and Mohtat-Aghai, P.: Dzhulfian to lowermost Triassic δ13C record at the Permian/Triassic boundary section at Shahreza , Central Iran, Hallesches Jahrbuch Geowissenschaften, Reihe B, 18, 73–78, 2004b.
Korte, C., Kozur, H. W., and Partoazar, H.: Negative carbon isotope excursion at the Permian/Triassic boundary section at Zal, NW-Iran, Hallesches Jahrbuch Geowissenschaften, Reihe B, Beiheft 18, 69–71, 2004c.
Korte, C., Jasper, T., Kozur, H. W., and Veizer, J.: δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 224, 333–351, https://doi.org/10.1016/j.palaeo.2005.03.015, 2005.
Korte, C., Pande, P., Kalia, P., Kozur, H. W., Joachimski, M. M., and Oberhänsli, H.: Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere, J. Asian Earth Sci., 37, 293–311, https://doi.org/10.1016/j.jseaes.2009.08.012, 2010.
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C. O., and Banta, G. T.: What is bioturbation? the need for a precise definition for fauna in aquatic sciences, Mar. Ecol. Progress Series, 446, 285–302, https://doi.org/10.3354/meps09506, 2012.
Krull, E. S. and Retallack, G. J.: δ13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence for methane release, Bull. Geol. Soc. Am., 112, 1459–1472, https://doi.org/10.1130/0016-7606(2000)112<1459:CDPFPA>2.0.CO;2, 2000.
Kump, L. R. and Arthur, M. A.: Interpreting carbon-isotope excursions: carbonates and organic matter, Chem. Geol., 161, 181–198, https://doi.org/10.1016/S0009-2541(99)00086-8, 1999.
Leda, L., Korn, D., Ghaderi, A., Hairapetian, V., Struck, U., and Reimold, W. U.: Lithostratigraphy and carbonate microfacies across the Permian–Triassic boundary near Julfa (NW Iran) and in the Baghuk Mountains (Central Iran), Facies, 60, 295–325, https://doi.org/10.1007/s10347-013-0366-0, 2014.
Li, M., Ogg, J., Zhang, Y., Huang, C., Hinnov, L., Chen, Z.-Q., and Zou, Z.: Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany, Earth Planet. Sci. Lett., 441, 10–25, https://doi.org/10.1016/j.epsl.2016.02.017, 2016.
Li, R. and Jones, B.: Diagenetic overprint on negative δ13C excursions across the Permian/Triassic boundary: A case study from Meishan section, China, Palaeogeogr. Palaeoclimatol. Paleoecol., 468, 18–33, https://doi.org/10.1016/j.palaeo.2016.11.044, 2017.
Liu, X.-C., Wang, W., Shen, S.-Z., Gorgij, M. N., Ye, F.-C., Zhang, Y.-C., Furuyama, S., Kano, A., and Chen, X.-Z.: Late Guadalupian to Lopingian (Permian) carbon and strontium isotopic chemostratigraphy in the Abadeh section, central Iran, Gondwana Research, 24, 222–232, https://doi.org/10.1016/j.gr.2012.10.012, 2013.
Luo, G., Kump, L. R., Wang, Y., Tong, J., Arthur, M. A., Yang, H., Huang, J., Yin, H., and Xie, S.: Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction, Earth Planet. Sci. Lett., 300, 101–111, https://doi.org/10.1016/j.epsl.2010.09.041, 2010.
Marshall, J. D.: Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation, Geology Magazine, 129, 143–160, https://doi.org/10.1017/S0016756800008244, 1992.
Mayhew, P. J., Bell, M. A., Benton, T. G., and McGowan, A. J.: Biodiversity tracks temperature over time, Proc. Natl. Acad. Sci. USA, 109, 15141–5, https://doi.org/10.1073/pnas.1200844109, 2012.
Melim, L., Swart, P., Munnecke, a., Eberli, G., and Westphal, H.: Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas, Mar. Geol., 185, 27–53, https://doi.org/10.1016/S0025-3227(01)00289-4, 2002.
Meyer, K., Kump, L., and Ridgwell, A.: Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction, Geology, 36, 747, https://doi.org/10.1130/G24618A.1, 2008.
Meyer, K., Yu, M., Jost, A. B., Kelley, B., and Payne, J.: δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction, Earth Planet. Sci. Lett., 302, 378–384, https://doi.org/10.1016/j.epsl.2010.12.033, 2011.
Meysman, F. J., Middelburg, J. J., Herman, P. M., and Heip, C. H.: Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis, Comput. Geosci., 29, 301–318, https://doi.org/10.1016/S0098-3004(03)00007-4, 2003.
Meysman, F. J. R., Boudreau, B. P., and Middelburg, J. J.: When and why does bioturbation lead to diffusive mixing?, J. Marine Res., 68, 881–920, https://doi.org/10.1357/002224010796673885, 2010.
Meysman, F. J. R., Risgaard-Petersen, N., Malkin, S. Y., and Nielsen, L. P.: The geochemical fingerprint of microbial long-distance electron transport in the seafloor, Geochim. Cosmochim. Ac., 152, 122–142, https://doi.org/10.1016/j.gca.2014.12.014, 2015.
Müller, P. J. and Suess, E.: Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation, Deep Sea Res. Part A, 26, 1347–1362, https://doi.org/10.1016/0198-0149(79)90003-7, 1979.
Munnecke, A. and Samtleben, C.: The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden, Facies, 34, 159–176, https://doi.org/10.1007/BF02546162, 1996.
Payne, J. L., Turchyn, A. V., Paytan, A., Depaolo, D. J., Lehrmann, D. J., Yu, M., and Wei, J.: Calcium isotope constraints on the end-Permian mass extinction, Proc. Natl. Acad. Sci. USA, 107, 8543–8548, https://doi.org/10.1073/pnas.0914065107, 2010.
Prokoph, A., Shields, G. A., and Veizer, J.: Compilation and time-series analysis of a marine carbonate δ18O , δ13C , 87Sr/86Sr and δ34S database through Earth history, Earth Sci. Rev., 87, 113–133, https://doi.org/10.1016/j.earscirev.2007.12.003, 2008.
Pruss, S. B., Bottjer, D. J., Corsetti, F. A., and Baud, A.: A global marine sedimentary response to the end-Permian mass extinction: Examples from southern Turkey and the western United States, Earth Sci. Rev., 78, 193–206, https://doi.org/10.1016/j.earscirev.2006.05.002, 2006.
Rampino, M. R. and Caldeira, K.: Major perturbation of ocean chemistry and a “Strangelove Ocean” after the end-Permian mass extinction, Terra Nova, 17, 554–559, https://doi.org/10.1111/j.1365-3121.2005.00648.x, 2005.
R Core Team: R: A Language and Environment for Statistical Computing, available at: https://www.r-project.org (last access: November 2017), 2016.
Reimers, C. E. and Suess, E.: The partitioning of organic carbon fluxes and sedimentary organic matter decomposition in the ocean, Mar. Chem., 13, 141–168, https://doi.org/10.1016/0304-4203(83)90022-1, 1983.
Reitner, J., Peckmann, J., Reimer, A., Schumann, G., and Thiel, V.: Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea), Facies, 51, 66–79, https://doi.org/10.1007/s10347-005-0059-4, 2005.
Renne, P. R., Black, M. T., Zichao, Z., Richards, M. A., and Basu, A. R.: Synchrony and causal relations between Permian–Triassic boundary crises and siberian flood volcanism, Science, 269, 1413–1416, https://doi.org/10.1126/science.269.5229.1413, 1995.
Retallack, G. J. and Jahren, A. H.: Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events, The Journal of Geology, 116, 1–20, https://doi.org/10.1086/524120, 2008.
Riccardi, A., Kump, L. R., Arthur, M. A., and D'Hondt, S.: Carbon isotopic evidence for chemocline upward excursions during the end-Permian event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 248, 73–81, https://doi.org/10.1016/j.palaeo.2006.11.010, 2007.
Richoz, S., Krystyn, L., Baud, A., Brandner, R., Horacek, M., and Mohtat-Aghai, P.: Permian–Triassic boundary interval in the Middle East (Iran and N. Oman): Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution, J. Asian Earth Sci., 39, 236–253, https://doi.org/10.1016/j.jseaes.2009.12.014, 2010.
Ridgwell, A.: A Mid Mesozoic Revolution in the regulation of ocean chemistry, Mar. Geol., 217, 339–357, https://doi.org/10.1016/j.margeo.2004.10.036, 2005.
Riding, R. and Liang, L.: Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic, Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 101–115, https://doi.org/10.1016/j.palaeo.2004.11.018, 2005.
Ries, J. B., Anderson, M. A., and Hill, R. T.: Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential proxy for calcite-aragonite seas in Precambrian time, Geobiology, 6, 106–119, https://doi.org/10.1111/j.1472-4669.2007.00134.x, 2008.
Rothman, D. H., Fournier, G. P., French, K. L., Alm, E. J., Boyle, E. A., Cao, C., and Summons, R. E.: Methanogenic burst in the end-Permian carbon cycle, Proc. Natl. Acad. Sci. USA, 111, 5462–7, https://doi.org/10.1073/pnas.1318106111, 2014.
Saltzman, M. R.: Late Paleozoic ice age; Oceanic gateway or pCO2?, Geology, 31, 151–154, https://doi.org/10.1130/0091-7613(2003)031<0151:LPIAOG>2.0.CO;2, 2001.
Sarmiento, J. L. and Gruber, N.: Calcium carbonate cycling, in: Ocean Biogeochemical Dynamics, chap. 9, 1–44, Princeton University Press, New York, available at: http://press.princeton.edu/titles/8223.html (last access: 2016), 2004.
Schobben, M.: carbonate project, https://doi.org/10.5281/zenodo.888754, available at: https://github.com/MartinSchobben/carbonate, https://github.com/MartinSchobben/carbonate, last access: 2017.
Schobben, M., Joachimski, M. M., Korn, D., Leda, L., and Korte, C.: Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction, Gondwana Research, 26, 675–683, https://doi.org/10.1016/j.gr.2013.07.019, 2014.
Schobben, M., Stebbins, A., Ghaderi, A., Strauss, H., Korn, D., and Korte, C.: Flourishing ocean drives the end-Permian marine mass extinction, Proc. Natl. Acad. Sci., 112, 10298–10303, https://doi.org/10.1073/pnas.1503755112, 2015.
Schobben, M., Ullmann, C. V., Leda, L., Korn, D., Struck, U., Reimold, W. U., Ghaderi, A., Algeo, T. J., and Korte, C.: Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: An example from the Permian–Triassic boundary of Iran, Chem. Geol., 422, 94–107, https://doi.org/10.1016/j.chemgeo.2015.12.013, 2016.
Schobben, M., Stebbins, A., Algeo, T. J., Strauss, H., Leda, L., Haas, J., Struck, U., Korn, D., and Korte, C.: Volatile earliest Triassic sulfur cycle: A consequence of persistent low seawater sulfate concentrations and a high sulfur cycle turnover rate?, Palaeogeogr. Palaeoclimatol. Palaeoecol., https://doi.org/10.1016/j.palaeo.2017.02.025, 2017.
Schönbrodt, F.: Visually weighted/Watercolor Plots, new variants: Please vote!, available at: http://www.nicebread.de/ (last access: 2016), 2012.
Schrag, D. P., Higgins, J. A., Macdonald, F. A., and Johnston, D. T.: Authigenic carbonate and the history of the global carbon cycle, Science, 339, 540–543, https://doi.org/10.1126/science.1229578, 2013.
Soetaert, K. and Meysman, F.: Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software R, Environ. Model. Softw., 32, 49–60, https://doi.org/10.1016/j.envsoft.2011.08.011, 2012.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: A model of early diagenetic processes from the shelf to abyssal depths, Geochim. Cosmochim. Ac., 60, 1019–1040, https://doi.org/10.1016/0016-7037(96)00013-0, 1996.
Soetaert, K., Petzoldt, T., and Setzer, R.: Package deSolve: solving initial value differential equations in R, J. Stat. Softw., 33, 1–25, https://doi.org/10.18637/jss.v033.i09, 2010.
Soetaert, K., Petzoldt, T., and Meysman, F.: marelac: Tools for Aquatic Sciences, available at: https://CRAN.R-project.org/package=marelac (last access: November 2017), r package version 2.1.6, 2016.
Song, H., Tong, J., Algeo, T. J., Horacek, M., Qiu, H., Song, H., Tian, L., and Chen, Z. Q.: Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism, Global Planet. Change, 105, 7–20, https://doi.org/10.1016/j.gloplacha.2012.10.023, 2013.
Song, H., Tong, J., Algeo, T. J., Song, H., Qiu, H., Zhu, Y., Tian, L., Bates, S., Lyons, T. W., Luo, G., and Kump, L. R.: Early Triassic seawater sulfate drawdown, Geochim. Cosmochim. Ac., 128, 95–113, https://doi.org/10.1016/j.gca.2013.12.009, 2014.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 490–500, https://doi.org/10.1016/j.epsl.2008.11.015, 2009.
Ullrich, T. S.: xyscan, available at: http://rhig.physics.yale.edu/~ullrich/software/xyscan/ (last access: 2016), 2016.
Van Cappellen, P. and Wang, Y.: Cycling of iron and manganese in surface sediments: A general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese, Am. J. Sci., 296, 197–243, https://doi.org/10.2475/ajs.296.3.197, 1996.
van de Velde, S. and Meysman, F. J.: The influence of bioturbation on iron and sulphur cycling in marine sediments: a model analysis, Aquat. Geochem., 22, 469–504, https://doi.org/10.1007/s10498-016-9301-7, 2016.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H.: 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 161, 59–88, https://doi.org/10.1016/S0009-2541(99)00081-9, 1999.
Visscher, P. T., Reid, P. R., and Bebout, B. M.: Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites, Geology, 28, 919–922, https://doi.org/10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO, 2000.
Wacey, D., Wright, D. T., and Boyce, A. J.: A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia, Chem. Geol., 244, 155–174, https://doi.org/10.1016/j.chemgeo.2007.06.032, 2007.
Wang, Y., Sadler, P. M., Shen, S. Z., Erwin, D. H., Zhang, Y. C., Wang, X. D., Wang, W., Crowley, J. L., and Henderson, C. M.: Quantifying the process and abruptness of the end-Permian mass extinction, Paleobiology, 40, 113–129, https://doi.org/10.1666/13022, 2014.
Wickham, H.: Reshaping Data with the reshape Package, J. Stat. Softw., 21, 1–20, 2007.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, available at: http://ggplot2.org (last access: 2017), 2009.
Wickham, H.: The Split-Apply-Combine Strategy for Data Analysis, J. Stat. Softw., 40, 1–29, 2011.
Wignall, P. B. and Twitchett, R. J.: Oceanic anoxia and the End Permian mass extinction, Science, 272, 1155–1158, https://doi.org/10.1126/science.272.5265.1155, 1996.
Winguth, A. M. E., Shields, C. A., and Winguth, C.: Transition into a Hothouse World at the Permian-Triassic boundary-A model study, Palaeogeogr. Palaeocl., 440, 316–327, https://doi.org/10.1016/j.palaeo.2015.09.008, 2015.
Woods, A. D., Bottjer, D. J., Mutti, M., and Morrison, J.: Lower Triassic large sea-floor carbonate cements: Their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction, Geology, 27, 645, https://doi.org/10.1130/0091-7613(1999)027<0645:LTLSFC>2.3.CO;2, 1999.
Xie, S., Pancost, R. D., Huang, J., Wignall, P. B., Yu, J., Tang, X., Chen, L., Huang, X., and Lai, X.: Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis, Geology, 35, 1083–1086, https://doi.org/10.1130/G24224A.1, 2007.
Xu, D.-Y. and Yan, Z.: Carbon isotope and iridium event markers near the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 104, 171–176, https://doi.org/10.1016/0031-0182(93)90128-6, 1993.
Yin, H., Jiang, H., Xia, W., Feng, Q., Zhang, N., and Shen, J.: The end-Permian regression in South China and its implication on mass extinction, Earth Sci. Rev., 137, 19–33, https://doi.org/10.1016/j.earscirev.2013.06.003, 2014.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zeebe, R. E. and Westbroek, P.: A simple model for the CaCO3 saturation state of the ocean; the “Strangelove,” the “Neritan,” and the “Cretan” ocean, Geochem. Geophys. Geosyst., 4, 1–26, https://doi.org/10.1029/2003GC000538, 2003.
Zhao, M.-Y., Zheng, Y.-F., and Zhao, Y.-Y.: Seeking a geochemical identifier for authigenic carbonate, Nature Comm., 7, 10885, https://doi.org/10.1038/ncomms10885, 2016.
Zuo, J.-X., Tong, J.-N., Qiu, H.-o., and Zhao, L.-S.: Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China, Science in China Series D: Earth Sciences, 49, 225–241, https://doi.org/10.1007/s11430-006-0225-8, 2006.
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as...