Articles | Volume 13, issue 8
https://doi.org/10.5194/cp-13-1037-2017
https://doi.org/10.5194/cp-13-1037-2017
Research article
 | 
18 Aug 2017
Research article |  | 18 Aug 2017

Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

Henrik Carlson and Rodrigo Caballero

Related authors

Extreme weather anomalies and surface signatures associated with merged Atlantic-African jets during winter
Sohan Suresan, Nili Harnik, and Rodrigo Caballero
EGUsphere, https://doi.org/10.5194/egusphere-2024-2745,https://doi.org/10.5194/egusphere-2024-2745, 2024
Short summary
Large-scale perspective on extreme near-surface winds in the central North Atlantic
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024,https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
The link between European warm-temperature extremes and atmospheric persistence
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023,https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022,https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
RadNet 1.0: exploring deep learning architectures for longwave radiative transfer
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412, https://doi.org/10.5194/gmd-13-4399-2020,https://doi.org/10.5194/gmd-13-4399-2020, 2020
Short summary

Cited articles

Acosta-Navarro, J. C., Smolander, S., Struthers, H., Zorita, E., Ekman, A. M., Kaplan, J., Guenther, A., Arneth, A., and Riipinen, I.: Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium, J. Geophys. Res.-Ocean., 119, 6867–6885, 2014.
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., and Scott, J. D.: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans, J. Clim., 15, 2205–2231, 2002.
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, 2002.
Andreae, M. O.: ATMOSPHERE: Aerosols Before Pollution, Science, 315, 50–51, 2007.
Arnold, N. P., Branson, M., Burt, M. A., Abbot, D. S., Kuang, Z., Randall, D. A., and Tziperman, E.: Effects of explicit atmospheric convection at high CO2, P. Natl. Acad. Sci. USA, 111, 10943–10948, 2014.
Download
Short summary
Climate models are able to simulate the surface temperature of the early Eocene as reconstructed from paleoclimatology data, but only by using extremely high CO2 concentrations or clouds that are more transparent to solar radiation. We explore the potential for distinguishing among these two forcing agents via their impact on regional climate. Better constraining the radiative forcing that led to Eocene warmth has important implications for understanding Earth's climate sensitivity.