Articles | Volume 12, issue 3
https://doi.org/10.5194/cp-12-729-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-729-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
Lucie Bazin
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212,
CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, France
now at: School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
Amaelle Landais
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212,
CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, France
Emilie Capron
British Antarctic Survey, NERC, Cambridge, UK
Valérie Masson-Delmotte
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212,
CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, France
Catherine Ritz
Laboratoire de Glaciologie et Géophysique de l'Environnement,
UMR 5183, Univ. Grenoble Alpes–CNRS, Grenoble, France
Ghislain Picard
Laboratoire de Glaciologie et Géophysique de l'Environnement,
UMR 5183, Univ. Grenoble Alpes–CNRS, Grenoble, France
Jean Jouzel
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212,
CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, France
Marie Dumont
Météo–France–CNRS, CNRM–GAME UMR 3589, CEN, Grenoble,
France
Markus Leuenberger
Climate and Environmental Physics, Physics Institute and
Oeschger Center for Climate Change Research, University of Bern,
Bern, Switzerland
Frédéric Prié
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212,
CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, France
Viewed
Total article views: 3,985 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Apr 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,306 | 1,491 | 188 | 3,985 | 173 | 184 |
- HTML: 2,306
- PDF: 1,491
- XML: 188
- Total: 3,985
- BibTeX: 173
- EndNote: 184
Total article views: 2,917 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Mar 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,818 | 927 | 172 | 2,917 | 160 | 170 |
- HTML: 1,818
- PDF: 927
- XML: 172
- Total: 2,917
- BibTeX: 160
- EndNote: 170
Total article views: 1,068 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Apr 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
488 | 564 | 16 | 1,068 | 13 | 14 |
- HTML: 488
- PDF: 564
- XML: 16
- Total: 1,068
- BibTeX: 13
- EndNote: 14
Cited
14 citations as recorded by crossref.
- Exceptionally high biosphere productivity at the beginning of Marine Isotopic Stage 11 M. Brandon et al. 10.1038/s41467-020-15739-2
- On the relationship between δO2∕N2 variability and ice sheet surface conditions in Antarctica R. Harris Stuart et al. 10.5194/tc-18-3741-2024
- On the use of δ18Oatm for ice core dating T. Extier et al. 10.1016/j.quascirev.2018.02.008
- Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka E. Huang et al. 10.1126/sciadv.aba4823
- Formal subdivision of the Quaternary System/Period: Present status and future directions M. Head 10.1016/j.quaint.2019.05.018
- Late Holocene glacier variations indicated by the δ18O of ice core enclosed gaseous oxygen in the central Tibetan Plateau J. Li et al. 10.1007/s11629-022-7705-y
- The Antarctic Ice Core Chronology 2023 (AICC2023) chronological framework and associated timescale for the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core M. Bouchet et al. 10.5194/cp-19-2257-2023
- Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4ice core records M. Bock et al. 10.1073/pnas.1613883114
- A Pleistocene ice core record of atmospheric O 2 concentrations D. Stolper et al. 10.1126/science.aaf5445
- Early Pleistocene East Antarctic temperature in phase with local insolation Y. Yan et al. 10.1038/s41561-022-01095-x
- Discovery of argon in air-hydrate crystals in a deep ice core using scanning electron microscopy and energy-dispersive X-ray spectroscopy T. Uchida et al. 10.1017/jog.2021.115
- The Dome Fuji ice core DF2021 chronology (0–207 kyr BP) I. Oyabu et al. 10.1016/j.quascirev.2022.107754
- Fractionation of O<sub>2</sub>∕N<sub>2</sub> and Ar∕N<sub>2</sub> in the Antarctic ice sheet during bubble formation and bubble–clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core I. Oyabu et al. 10.5194/tc-15-5529-2021
- Reconstruction du climat et de l’environnement des derniers 800 000 ans à partir des carottes de glace – variabilité orbitale et millénaire. A. Landais 10.4000/quaternaire.7664
13 citations as recorded by crossref.
- Exceptionally high biosphere productivity at the beginning of Marine Isotopic Stage 11 M. Brandon et al. 10.1038/s41467-020-15739-2
- On the relationship between δO2∕N2 variability and ice sheet surface conditions in Antarctica R. Harris Stuart et al. 10.5194/tc-18-3741-2024
- On the use of δ18Oatm for ice core dating T. Extier et al. 10.1016/j.quascirev.2018.02.008
- Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka E. Huang et al. 10.1126/sciadv.aba4823
- Formal subdivision of the Quaternary System/Period: Present status and future directions M. Head 10.1016/j.quaint.2019.05.018
- Late Holocene glacier variations indicated by the δ18O of ice core enclosed gaseous oxygen in the central Tibetan Plateau J. Li et al. 10.1007/s11629-022-7705-y
- The Antarctic Ice Core Chronology 2023 (AICC2023) chronological framework and associated timescale for the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core M. Bouchet et al. 10.5194/cp-19-2257-2023
- Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4ice core records M. Bock et al. 10.1073/pnas.1613883114
- A Pleistocene ice core record of atmospheric O 2 concentrations D. Stolper et al. 10.1126/science.aaf5445
- Early Pleistocene East Antarctic temperature in phase with local insolation Y. Yan et al. 10.1038/s41561-022-01095-x
- Discovery of argon in air-hydrate crystals in a deep ice core using scanning electron microscopy and energy-dispersive X-ray spectroscopy T. Uchida et al. 10.1017/jog.2021.115
- The Dome Fuji ice core DF2021 chronology (0–207 kyr BP) I. Oyabu et al. 10.1016/j.quascirev.2022.107754
- Fractionation of O<sub>2</sub>∕N<sub>2</sub> and Ar∕N<sub>2</sub> in the Antarctic ice sheet during bubble formation and bubble–clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core I. Oyabu et al. 10.5194/tc-15-5529-2021
Saved (preprint)
Discussed (final revised paper)
Latest update: 23 Nov 2024
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC...