Articles | Volume 12, issue 2
https://doi.org/10.5194/cp-12-543-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-543-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation
Willem P. Sijp
CORRESPONDING AUTHOR
ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
Matthew H. England
ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
Related authors
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Andrew E. Kiss, Andrew McC. Hogg, Nicholas Hannah, Fabio Boeira Dias, Gary B. Brassington, Matthew A. Chamberlain, Christopher Chapman, Peter Dobrohotoff, Catia M. Domingues, Earl R. Duran, Matthew H. England, Russell Fiedler, Stephen M. Griffies, Aidan Heerdegen, Petra Heil, Ryan M. Holmes, Andreas Klocker, Simon J. Marsland, Adele K. Morrison, James Munroe, Maxim Nikurashin, Peter R. Oke, Gabriela S. Pilo, Océane Richet, Abhishek Savita, Paul Spence, Kial D. Stewart, Marshall L. Ward, Fanghua Wu, and Xihan Zhang
Geosci. Model Dev., 13, 401–442, https://doi.org/10.5194/gmd-13-401-2020, https://doi.org/10.5194/gmd-13-401-2020, 2020
Short summary
Short summary
We describe new computer model configurations which simulate the global ocean and sea ice at three resolutions. The coarsest resolution is suitable for multi-century climate projection experiments, whereas the finest resolution is designed for more detailed studies over time spans of decades. The paper provides technical details of the model configurations and an assessment of their performance relative to observations.
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, https://doi.org/10.5194/gmd-11-1257-2018, 2018
Short summary
Short summary
MetROMS and FESOM are two ocean/sea-ice models which resolve Antarctic ice-shelf cavities and consider thermodynamics at the ice-shelf base. We simulate the period 1992–2016 with both models, and with two options for resolution in FESOM, and compare output from the three simulations. Ice-shelf melt rates, sub-ice-shelf circulation, continental shelf water masses, and sea-ice processes are compared and evaluated against available observations.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
L. Menviel, A. Timmermann, T. Friedrich, and M. H. England
Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, https://doi.org/10.5194/cp-10-63-2014, 2014
S. McGregor, A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg
Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, https://doi.org/10.5194/cp-9-2269-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Pre-Cenozoic
Effect of the Ordovician paleogeography on the (in)stability of the climate
A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation
A. Pohl, Y. Donnadieu, G. Le Hir, J.-F. Buoncristiani, and E. Vennin
Clim. Past, 10, 2053–2066, https://doi.org/10.5194/cp-10-2053-2014, https://doi.org/10.5194/cp-10-2053-2014, 2014
R. P. M. Topper, J. Trabucho Alexandre, E. Tuenter, and P. Th. Meijer
Clim. Past, 7, 277–297, https://doi.org/10.5194/cp-7-277-2011, https://doi.org/10.5194/cp-7-277-2011, 2011
Cited articles
Abbot, D. and Tziperman, E.: A high latitude convective cloud feedback and
equable climates, J. Roy. Meteorol. Soc., 134, 165–185, https://doi.org/10.1002/qj.211, 2008.
Abbot, D., Huber, M., Bousquet, G., and Walker, C. C.: High-CO2 cloud
radiative forcing feedback over both land and ocean in a global climate
model, Geophys. Res. Lett., 36, L05702, https://doi.org/10.1029/2008GL036703, 2009.
Albert, J. S.: A model for the thermodynamic growth of sea ice in numerical
investigations of climate, J. Phys. Oceanogr., 6, 379–389, 1976.
Alexeev, V. A.: Sensitivity to CO2 doubling of an atmospheric GCM
coupled to an oceanic mixed layer: a linear analysis, Clim. Dynam., 20, 775–787, 2003.
Alexeev, V. A.: Polar amplification of surface warming on an aquaplanet in
ghost forcing experiments without sea ice feedbacks, Clim. Dynam., 24,
655–666, https://doi.org/10.1007/s00382-005-0018-3, 2005.
Barron, E. J.: A warm, equable Cretaceous: the nature of the problem,
Earth-Sci. Rev., 19, 305–338, 1983.
Barron, E. J.: Eocene equator-to-pole surface ocean temperatures: a
significant climate problem?, Paleoceanography, 2, 729–739, 1987.
Bice, K. L., Huber, B. T., and Norris, R. D.: Extreme polar warmth during the
Cretaceous greenhouse?: Paradox of the late Turonian δ18O record at
DSDP site 511, Paleoceanography, 18, 1031, https://doi.org/10.1029/2002PA000848, 2003.
Bijl, P. K., Schouten, S. S., and Sluijs, A.: Early palaeogene temperature
evolution of the Southwest Pacific Ocean, Nature, 461, 776–779, 2009.
Blanke, B. and Delecluse, P.: Variability of the tropical atlantic ocean
simulated by a general circulation model with two different mixed-layer
physics, J. Phys. Oceanogr., 23, 1363–1388, 1993.
Brass, G. W., Southam, J. R., and Peterson, W. H.: Warm saline bottom water
in the ancient ocean, Nature, 296, 620–623, 1982.
Caballero, R. and Langen, P.: The dynamic range of poleward energy transport
in an atmospheric general circulation model, Geophys. Res. Lett., 32, L02705,
https://doi.org/10.1029/2004GL021581, 2005.
Clarke, L. J. and Jenkyns, H. C.: New oxygen isotope evidence for long-term
Cretaceous climatic change in the Southern Hemisphere, Geology, 27, 699–702, 1999.
Corfield, R. M. and Norris, R. D.: Deep water circulation in the
Paleocene ocean, Geol. Soc. Lond. Spec. Publ., 101, 443–456, 1996.
Coxall, H. K. and Pearson, P. N.: The Eocene-Oligocene transition,
in: Deep Time Perspectives on Climate Change: Marrying the signal from
computer models and biological proxies, edited by: Williams, M., Haywood, A. M.,
Gregory, F. J., and Schmidt, D. N., The Micropaleontological Society
Special Publication, The Geological Society, London, 351–389, 2007.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller,
K. G.: Ocean overturning since the late cretaceous: Inferences from a new
benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216,
https://doi.org/10.1029/2008PA001683, 2009.
Douglas, P. M. J., Affek, H. P., and Ivany, L. C.: Pronounced zonal
heterogeneity in Eocene southern high-latitude sea surface temperatures,
P. Natl. Acad. Sci., 111, 6582–6587, 2014.
Enderton, D. and Marshall, J.: Controls on the total dynamical heat
transport of the atmosphere and oceans, J. Atmos. Sci., 66, 1593–1611, 2009.
Floegel, S., Hay, W. W., DeConto, R. M., and Balukhovsky, A. N.: Formation of
sedimentary bedding couplets in the western interior seaway of North
America-implications from climate system modeling, Palaeogeogr. Palaeocl.,
218, 125–143, https://doi.org/10.1016/j.palaeo.2004.12.011, 2005.
Gaspar, P., Gregoris, Y., and Lefevre, J. M.: A simple eddy kinetic energy
model for simulations of the oceanic vertical mixing: tests at station papa
and long-term upper ocean study site, J. Geophys. Res., 95, 16179–16193, 1990.
Gnanadesikan, A.: A simple predictive model for the structure of the oceanic
pycnocline, Science, 283, 2077–2079, 1999.
Greenwood, D. R. and Wing, S. L.: Eocene continental climates and latitudinal
temperature gradients, Geology, 23, 1044–1048, 1995.
Herweijer, C., Seager, R., Winton, M., and Clement, A.: Why ocean heat
transport warms the global mean climate, Tellus A, 57, 662–675, 2005.
Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in
coupled models, Clim. Dynam., 21, 221–232, 2003.
Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E. G., Baker, J. A.,
Creech, J., Collins, K. S., Gibbs, S. J., Huber, M., Schouten, S., Zachos,
J. C., and Pancost, R. D.: Tropical sea temperatures in the high-latitude south
pacific during the eocene, Geology, 37, 99–102, 2009.
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M.,
Creech, J. B., Hines, B. R., Crouch, E. M., Morgans, H. E. G., Crampton, J. S.,
Gibbs, S., Pearson, P. N., and Zachos, J. C.: Early Paleogene temperature
history of the Southwest Pacific Ocean: Reconciling proxies and models, Earth
Planet. Sc. Lett., 349, 53–66, 2012.
Hotinski, R. M. and Toggweiler, J. R.: Impact of a Tethyan circumglobal
passage on ocean heat transport and “equable” climates, Paleoceanography,
18, 1007, https://doi.org/10.1029/2001PA000730, 2003.
Huber, B. T., Norris, R. D., and McLeod, K. G.: Deep-sea paleotemperature
record of extreme warmth during the cretaceous, Geology, 30, 123–126, 2001.
Huber, M. and Caballero, R.: Eocene El Nino: evidence for robust tropical
dynamics in the “hothouse”, Science, 299, 877–881, 2003.
Huber, M. and Caballero, R.: The early Eocene equable climate problem
revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and
Rahmstorf, S.: On the driving processes of the Atlantic meridional
overturning circulation, Rev. Geophys., 45, RG2001, https://doi.org/10.1029/2004RG000166, 2007.
Langen, P. and Alexeev, V.: Polar amplification as a preferred response in an
idealized aquaplanet GCM, Clim. Dynam., 29, 305–317, 2007.
Lear, C. H., Elderfield, H., and Wilson, P. A.: Cenozoic deep-sea
temperatures and global ice volumes from Mg/Ca in benthic foraminiferal
calcite, Science, 287, 269–272, 2000.
Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J., and Pancost, R.
D.: High sea-surface temperatures during the early cretaceous epoch, Nat.
Geosci., 4, 169–172, 2011.
Lunt, D. J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A.,
Winguth, A., Loptson, C., Marotzke, J., Roberts, C. D., Tindall, J.,
Valdes, P., and Winguth, C.: A model–data comparison for a multi-model
ensemble of early Eocene atmosphere–ocean simulations: EoMIP, Clim. Past, 8,
1717–1736, https://doi.org/10.5194/cp-8-1717-2012, 2012.
Miller, K. G., Fairbanks, R. G., and Mountain, G. S.: Tertiary oxygen isotope
synthesis, sea level history, and continental margin erosion,
paleoceanography, Paleoceanography, 2, 1–19, https://doi.org/10.1029/PA002i001p00001, 1987.
Norris, R. D., Bice, K. L., Magno, E. A., and Wilson, P. A.: Jiggling the
tropical thermostat in the Cretaceous hothouse, Geology, 30, 299–302, 2002.
Pacanowski, R.: MOM2 Documentation User's Guide and Reference Manual: GFDL Ocean
Group Technical Report 3, 3rd Edn., NOAA, GFDL, Princeton, 232 pp., 1995.
Rahmstorf, S.: On the freshwater forcing and transport of the Atlantic
thermohaline circultion, Clim. Dynam., 12, 799–811, 1996.
Roberts, C. D., LeGrande, A. N., and Tripati, A. K.: Climate sensitivity to
Arctic seaway restriction during the early Paleogene, Earth Planet. Sc.
Lett., 286, 576–585, 2009.
Robinson, A. R.: The general thermal circulation in equatorial regions,
Deep-Sea Res., 6, 311–317, 1960.
Robinson, A. R. and Stommel, H.: The oceanic thermocline and the associated
thermohaline circulation, Tellus, 11, 295–308, 1959.
Rose, B. E. J. and Ferreira, D.: Ocean heat transport and water vapor
greenhouse in a warm equable climate: a new look at the low gradient paradox,
J. Climate, 26, 2117–2136, 2013.
Schewe, J. and Levermann, A.: The role of meridional density differences for
a wind-driven overturning circulation, Clim. Dynam., 34, 547–556, 2010.
Schouten, S., Hopmans, E. C., Forster, A., van Breugel, Y., Kuypers, M. M.,
and Damste, J. S. S.: Extremely high sea-surface temperatures at low
latitudes during the middle Cretaceous as revealed by archaeal membrane
lipids, Geology, 31, 1069–1072, 2003.
Sijp, W. P. and England, M. H.: Effect of the Drake Passage throughflow
on global climate, J. Phys. Oceanogr., 34, 1254–1266, 2004.
Sijp, W. P., England, M. H., and Gregory, J. M.: Precise calculations of the
existence of multiple AMOC equilibria in coupled climate models part I:
equilibrium states, J. Climate, 25, 282–298, 2011a.
Sijp, W. P., England, M. H., and Huber, M.: Effect of deepening of the
Tasman Gateway on the global ocean, Paleoceanography, 26, PA4207,
https://doi.org/10.1029/2011PA002143, 2011b.
Sijp, W. P., von der Heydt, A. S., Dijkstra, H. A., Flögel, S.,
Douglas, P., and Bijl, P. K.: The role of ocean gateways on cooling climate
on long time scales, Global Planet. Change, 119, 1–22, 2014.
Thomas, D.: Evidence for deep-water production in the north pacific
ocean during the early cenozoic warm interval, Nature, 430, 65–68, 2004.
Thomas, D., Bralower, T. J., and Jones, C. E.: Neodymium isotopic
reconstruction of the late paleocene- early eocene thermohaline circulation,
Earth Planet. Sc. Lett., 209, 309–322, 2003.
Toggweiler, J. R. and Samuels, B. L.: Effect of Drake Passage on the
global thermohaline circulation, Deep-Sea Res. Pt. I, 42, 477–500, 1995.
Valdes, P.: Built for stability, Nat. Geosci., 4, 414–416, 2011.
Via, R. and Thomas, D.: Evolution of atlantic thermohaline: Early
oligocene circulation onset of deep-water production in the north atlantic,
Geology, 34, 441–444, 2006.
Weaver, A. J., M. Eby, Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L.,
Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K.
J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The UVic
Earth System Climate Model: model description, climatology, and
applications to past, present and future climates, Atmos. Ocean, 39, 1067–1109, 2001.
Wilson, P. A., Norris, R. D., and Cooper, M. J.: Testing the Cretaceous
greenhouse hypothesis using glassy foraminiferal calcite from the core of the
Turonian tropics on Demerara Rise, Geology, 30, 607–610, 2002.
Wolfe, J.: Paleoclimate estimates from Tertiary leaf assemblages, Annu.
Rev. Earth Pl. Sc., 23, 119–142, 1995.
Yang, S., Galbraith, E., and Palter, J.: Coupled climate impacts of the
Drake Passage and the Panama Seaway, Clim. Dynam., 43, 37–52, 2013.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, 2001a.
Short summary
The polar warmth of the greenhouse climates in the Earth's past represents a fundamentally different climate state to that of today, with a strongly reduced temperature difference between the Equator and the poles. It is commonly thought that this would lead to a more quiescent ocean, with much reduced ventilation of the abyss. Surprisingly, using a Cretaceous cimate model, we find that ocean overturning is not weaker under a reduced temperature gradient arising from amplified polar heat.
The polar warmth of the greenhouse climates in the Earth's past represents a fundamentally...