Articles | Volume 12, issue 2
https://doi.org/10.5194/cp-12-429-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-429-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Late Cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea
Department of Geosciences and Natural Resource Management,
University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen,
Denmark
Rikke Harlou
Department of Geosciences and Natural Resource Management,
University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen,
Denmark
Niels H. Schovsbo
Geological Survey of Denmark and Greenland, Øster
Voldgade 10, 1350 Copenhagen, Denmark
Lars Stemmerik
Statens Naturhistoriske Museum, University of Copenhagen,
Øster Voldgade 5–7, 1350 Copenhagen, Denmark
Finn Surlyk
Department of Geosciences and Natural Resource Management,
University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen,
Denmark
Related authors
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Flor Vermassen, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen
Clim. Past, 15, 1171–1186, https://doi.org/10.5194/cp-15-1171-2019, https://doi.org/10.5194/cp-15-1171-2019, 2019
Short summary
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Flor Vermassen, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen
Clim. Past, 15, 1171–1186, https://doi.org/10.5194/cp-15-1171-2019, https://doi.org/10.5194/cp-15-1171-2019, 2019
Short summary
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pre-Cenozoic
Warming drove the expansion of marine anoxia in the equatorial Atlantic during the Cenomanian leading up to Oceanic Anoxic Event 2
Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361)
Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks
Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK
Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation
Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
"OAE 3" – regional Atlantic organic carbon burial during the Coniacian–Santonian
Bridging the Faraoni and Selli oceanic anoxic events: late Hauterivian to early Aptian dysaerobic to anaerobic phases in the Tethys
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
James S. Eldrett, Paul Dodsworth, Steven C. Bergman, Milly Wright, and Daniel Minisini
Clim. Past, 13, 855–878, https://doi.org/10.5194/cp-13-855-2017, https://doi.org/10.5194/cp-13-855-2017, 2017
Short summary
Short summary
This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes for the Cenomanian to Coniacian stages of the Late Cretaceous, along a north–south transect from the Cretaceous Western Interior Seaway to the equatorial western Atlantic and Southern Ocean. Distinct palynological assemblages and geochemical signatures allow insights into palaeoenvironmental conditions and water-mass evolution during this greenhouse climate period.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
M. Wagreich
Clim. Past, 8, 1447–1455, https://doi.org/10.5194/cp-8-1447-2012, https://doi.org/10.5194/cp-8-1447-2012, 2012
K. B. Föllmi, M. Bôle, N. Jammet, P. Froidevaux, A. Godet, S. Bodin, T. Adatte, V. Matera, D. Fleitmann, and J. E. Spangenberg
Clim. Past, 8, 171–189, https://doi.org/10.5194/cp-8-171-2012, https://doi.org/10.5194/cp-8-171-2012, 2012
Cited articles
Abramovich, S., Keller, G., Stüben, D., and Berner, Z.: Characterization
of late Campanian foraminiferal depth habitats and vital activities based on
stable isotopes, Palaeogeogr. Palaeoecol., 202, 1–29, 2003.
Anderson, T. F. and Arthur, M. A.: Stable isotopes of oxygen and carbon and
their application to sedimentologic and environmental problems, in: Stable
isotopes in sedimentary geology, edited by: Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S., SEPM Short
Course Notes, 10, 1–151, 1983.
Barrera, E. and Savin, S. M.: Evolution of late Campanian–Maastrichtian
marine climates and oceans, in: Evolution of the Cretaceous ocean-climate
system, edited by: Barrera, E. and Johnson, C. C., GSA Special Paper, 332,
245–282, 1999.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160,
1998.
Billups, K. and Schrag, D. P.: Paleotemperatures and ice volume of the past
27 Myr revisited with paired Mg ∕ Ca and 18O ∕ 16O
measurements on benthic foraminifera, Paleoceanography, 17, 1003, https://doi.org/10.1029/2000PA000567, 2002.
Bolton, C. T., Stoll, H. M., and Mendez-Vicente, A.: Vital effects in coccolith
calcite: Cenozoic climate-pCO2 drove the diversity of carbon acquisition
strategies in coccolithophores?, Paleoceanography, 27, PA4204, https://doi.org/10.1029/2012PA002339, 2012.
Bowman, V. C., Francis, J. E., and Riding, J. B.: Late Cretaceous winter sea ice
in Antarctica?, Geology, 41, 1227–1230, 2013.
Chenet, A.-L., Courtillot, V., Fluteau, F., Gérard, M., Quidelleur, X.,
Khadri, S. F. R., Subbarao, K. V., and Thordarson, T.: Determination of rapid
Deccan eruptions across the Cretaceous- Tertiary boundary using
paleomagnetic secular variation: 2. Constraints from analysis of eight new
sections and synthesis for a 3500-m-thick composite section, J. Geophys.
Res., 114, B6103, https://doi.org/10.1029/2008JB005644, 2009.
Davies, A., Kemp, A. E. S., and Pike, J.: Late Cretaceous seasonal ocean
variability from the Arctic, Nature, 460, 254–258, 2009.
Erba, E., Castradori, F., Guasti, G., and Ripepe, M.: Calcareous nannofossils
and Milankovitch cycles: the example of the Gault Clay Formation (southern
England), Palaeogeogr. Palaeoecol., 93, 47–69, 1992.
Esmerode, E. V., Lykke-Andersen, H., and Surlyk, F.: Ridge and valley systems
in the Upper Cretaceous chalk of the Danish Basin: contourites in an epireic
sea, in: Economic and Palaeoceanographic Significance of Contourite
Deposits, edited by: Viana, A. R. and Rebesco, M., Geol. Soc.
Lond. Spec. Publ., 276, 265–282, 2007.
Falzoni, F., Petrizzo, M. R., Huber, B. T., and MacLeod, K. G.: Insight into the
meridional ornamentation of the planktonic foraminiferal genus
Rugoglobigerina (Late Cretaceous) and implications for taxonomy, Cretaceous
Res., 47, 87–104, 2014.
Friedrich, O., Herrle, J. O., Cooper, M. J., Erbacher, J., Wilson, P. A., and
Hemleben, C.: The early Maastrichtian carbon cycle perturbation and cooling
event: Implications from the South Atlantic Ocean, Paleoceanography, 24,
PA221, https://doi.org/10.12/2008PA001654, 2009.
Gallagher, S. J., Wagstaff, B. E., Barid, J. G., Wallace, M. W., and Li, C. L.:
Southern high latitude climate variability in the Late Cretaceous greenhouse
world, Glob. Planet. Change, 60, 351–364, 2008.
Gao, Y., Ibarra, D. E., Wang, C., Caves, J. K., Chamberlain, C. P., Graham,
S. A., and Wu, H.: Mid-latitude terrestrial climate of East Asia linked to
global climate in the Late Cretaceous, Geology, 43, 287–290, 2015.
Haq, B. U.: Cretaceous Eustasy revisited, Glob. Planet. Change, 113,
44–58, 2014.
Hermoso, M., Horner, T. J., Minoletti, F., and Rickaby, R. E. M.: Constraints on
the vital effect in coccolithophore and dinoflagellate calcite by oxygen
isotopic modification of seawater, Geochim. Cosmochim. Ac., 141, 612–627,
2014.
Hermoso, M., Chau, I. Z. X., McClelland, H. L. O., Heureux, A. M. C., and Rickaby,
R. E. M.: Vanishing coccolith vital effect with alleviated carbon limitation,
Biogeosciences, 13, 1–12, https://doi.org/10.5194/bg-13-1-2016, 2016.
Jarvis, I., Mabrouk, A., Moody, R. T. J., and de Cabrera, S.: Late Cretaceous
(Campanian) carbon isotope events, sea-level change and correlation of the
Tethyan and Boreal realms, Palaeogeogr. Palaeoecol., 188,
215–248, 2002.
Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., and Pearce, M. A.:
Black shale deposition, atmospheric CO2 drawdown, and cooling during the
Cenomanian-Turonian Oceanic Anoxic Event, Paleoceanography, 26, PA3201, https://doi.org/10.1029/2010PA002081, 2011.
Jarvis, I., Trabucho-Alexandre, J., Gröcke, D. R., Ulicny, D., and
Laurin, J.: Intercontinental correlation of organic carbon and carbonate
stable isotope records: evidence of climate and sea-level change during the
Turonian (Cretaceous), The Depositional Record, 1, 53–90, 2015.
Koch, M. C. and Friedrich, O.: Campanian–Maastrichtian intermediate- to
deep-water changes in the high latitudes: Benthic foraminiferal evidence,
Paleoceanography, 27, PA2209, https://doi.org/10.1029/2011PA002259, 2012.
Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintsevaw,
S.,
and Scotese, C. R.: Late Cretaceous to Miocene sea-level estimates from the
New Jersey and Delaware coastal plain coreholes: an error analysis, Basin
Res., 20, 211–226, 2008.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: A new orbital
solution for the long-term motion of the Earth, Astron. Astrophys., 532, A89,
https://doi.org/10.1051/0004-6361/201116836, 2011.
Lees, J. A.: Calcareous nannofossils biogeography illustrates palaeoclimate
change in the Late Cretaceous Indian Ocean, Cretaceous Res., 23, 537–634,
2002.
Li, L. and Keller, G.: Abrupt deep-sea warming at the end of the Cretaceous,
Geology, 26, 995–998, 1998a.
Li, L. and Keller, G.: Maastrichtian climate, productivity and faunal
turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21,
Mar. Micropaleontol., 33, 55–86, 1998b.
Li, L. and Keller, G.: Variability in Late Cretaceous and deep waters:
evidence from stable isotopes, Mar. Geol., 161, 171–190, 1999.
Lykke-Andersen, H. and Surlyk, F.: The Cretaceous–Paleogene boundary at
Stevns Klint, Denmark: inversion tectonics or sea-floor topography?, J.
Geol. Soc. London, 161, 343–352, 2004.
MacLeod, K. G., Huber, B. T., and Isaza-Londoño, C.: North Atlantic
warming during global cooling at the end of the Cretaceous, Geology, 33,
437–440, 2005.
Markwick, P. J. and Valdes, P. J.: Palaeo-digital elevation models for use as
boundary conditions in coupled ocean–atmosphere GCM experiments: a
Maastrichtian (late Cretaceous) example, Palaeogeogr. Palaeoecol., 213, 3763, https://doi.org/10.1016/j.palaeo.2004.06.015, 2004.
Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J., and Savin, S. M.:
Does ice drive early Maastrichtian eustasy?, Geology, 27, 783–786, 1999.
Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Guiraud, M., Voigt,
S., Deconinck, J.-F., and Monna, F.: Evolution of neodymium isotopic
signature of seawater during the Late Cretaceous: Implications for
intermediate and deep circulation, Gondwana Res., in press, https://doi.org/10.1016/j.gr.2015.08.005, 2016.
Nordt, L., Atchley, S., and Dworkin, S.: Terrestrial evidence for two greenhouse events in the latest Cretaceous, GSA Today, 13, 4–9,
2003.
Pospichal, J. J. and Wise Jr., S. W.: Calcareous nannofossils across the K–T
boundary, ODP Hole 690C, Maud Rise, Weddell Sea, Proc. Ocean Drill. Program.
Sci. Results, 113, 515–532, 1990.
Price, G. D.: The evidence and implications of polar ice during the Mesozoic,
Earth-Sci. Rev., 48, 183–210, 1999.
Punekar, J., Mateo, P., and Keller, G.: Effects of Deccan volcanism on
paleoenvironment and planktic foraminifera: a global survey, in: Volcanism,
impacts, and mass extinctions: causes and effects, edited by: Keller, G. and
Kerr, A. C., GSA Spec. Pap., 505, 91–116, 2014.
Rasmussen, S. L. and Surlyk, F.: Facies and ichnology of an Upper Cretaceous
chalk contourite drift complex, eastern Denmark, and the validity of
contourite facies models, J. Geol. Soc. London, 169, 435–447, 2012.
Reghellin, D., Coxall, H. K., Dickens, G. R., and Backman, J.: Carbon and
Oxygen isotopes of bulk carbonate in sediment deposited beneath the eastern
equatorial Pacific over the last 8 million years, Paleoceanography, 30,
1261–1286, 2015.
Rickaby, R. E. M., Henderiks, J., and Young, J. N.: Perturbing phytoplankton:
response and isotopic fractionation with changing carbonate chemistry in two
coccolithophore species, Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010,
2010.
Robinson, N., Ravizza, G., Coccioni, R., Peucker-Ehrenbrink, B., and Norris,
R.: A high resolution marine 187Os ∕ 188Os record for the late Maastrichtian:
distinguishing the chemical fingerprints of Deccan volcanism and the KP
impact event, Earth Planet. Sc. Lett., 281, 159–168, 2009.
Robinson, S. A., Murphy, D. P., Vance, D., and Thomas, D. J.: Formation of
“Southern Component Water” in the Late Cretaceous: evidence from
Nd-isotopes, Geology, 38, 871–874, 2010.
Sheldon, E., Ineson, J., and Bown, P.: Late Maastrichtian warming in the
Boreal Realm: Calcareous nannofossil evidence from Denmark, Palaeogeogr. Palaeoecol., 295, 55–75, 2010.
Surlyk, F., Dons, T., Clausen, C. K., and Higham, J.: Upper Cretaceous, in:
The Millennium Atlas: petroleum geology of the central and northern North
Sea, edited by: Evans, D., Graham, C., Armour, A. and Bathurst, P., Geol.
Soc. London, 213–233, 2003.
Surlyk, F., Damholt, T., and Bjerager, M.: Stevns Klint, Denmark: Uppermost
Maastrichtian chalk, Cretaceous–Tertiary boundary, and lower Danian bryozoan
mound complex, B. Geol. Soc. Denmark, 54, 1–48, 2006.
Surlyk, F., Rasmussen, S. L., Boussaha, M., Schiøler, P., Schovsbo, N. H.,
Sheldon, E., Stemmerik, L., and Thibault, N.: Upper Campanian–Maastrichtian
holostratigraphy of the eastern Danish Basin, Cretaceous Res., 46, 232–256,
2013.
Thibault, N. and Gardin, S.: Maastrichtian calcareous nannofossil
biostratigraphy and paleoecology in the Equatorial Atlantic (Demerara Rise,
ODP Leg 207 Hole 1258A), Rev. Micropaleontol., 49, 199–214, 2006.
Thibault, N. and Gardin, S.: The calcareous nannofossil response to the
end-Cretaceous warm event in the Tropical Pacific, Palaeogeogr. Palaeoecol., 291, 239–252, 2010.
Thibault, N. and Husson, D.: Climatic fluctuations and sea surface water
circulation patterns at the end of the Cretaceous era: calcareous nannofossil
evidence, Palaeogeogr. Palaeoecol., 441, 152–164, 2015.
Thibault, N., Gardin, S., and Galbrun, B.: Latitudinal migration of
calcareous nannofossil Micula murus in the Maastrichtian: Implications for
global climate change, Geology, 38, 203–206, 2010.
Thibault, N., Husson, D., Harlou, R., Gardin, S., Galbrun, B., Huret, E., and
Minoletti, F.: Astronomical calibration of upper Campanian–Maastrichtian
carbon isotope events and calcareous plankton biostratigraphy in the Indian
Ocean (ODP Hole 762C): Implication for the age of the
Campanian–Maastrichtian boundary, Palaeogeogr. Palaeoecol., 337–338,
52–71, 2012a.
Thibault, N., Harlou, R., Schovsbo, N., Schiøler, P., Minoletti, F.,
Galbrun, B., Lauridsen, B. W., Sheldon, E., Stemmerik, L., and Surlyk, F.:
Upper Campanian–Maastrichtian nannofossil biostratigraphy and
high-resolution carbon-isotope stratigraphy of the Danish Basin: towards a
standard δ13C curve for the Boreal Realm, Cretaceous Res., 33,
72–90, 2012b.
Thibault, N., Anderskouv, K., Bjerager, M., Boldreel, L. O., Jelby, M. E.,
Stemmerik, L., and Surlyk, F.: Upper Campanian–Maastrichtian
chronostratigraphy of the Skælskør-1 core, Denmark: correlation at the
basinal and global scale and implications for changes in sea-surface
temperatures, Lethaia, 48, 549–560, 2015.
Thierstein, H. R.: Late Cretaceous nannoplankton and the change at the
Cretaceous–Tertiary boundary, in: The Deep Sea Drilling Project: a Decade of
Progress, edited by: Warme, J. E., Douglas, R. G., and Winterer, E. L., SEPM
Special Publication, 32, 355–394, 1981.
Wagreich, M., Lein, R., and Sames, B.: Eustasy, its controlling factors, and
the limno-eustatic hypothesis – concepts inspired by Eduard Suess, Austr. J.
Earth Sci., 107, 115–131, 2014.
Watkins, D. K.: Upper Cretaceous nannofossils from Leg 120, Kerguelen
Plateau, Southern Ocean, Proc. Ocean Drill. Program Sci. Results, 120,
343–370, 1992.
Wendler, J. E. and Wendler, I.: What drove sea-level fluctuations during the
mid-Cretaceous greenhouse climate?, Palaeogeogr. Palaeoecol., 441,
412–419, 2016.
Wendler, J. E., Wendler, I., Vogt, C., and Kuss, J.: Link between cyclic
eustatic sea-level change and continental weathering: Evidence for
aquifer-eustasy in the Cretaceous, Palaeogeogr. Palaeoecol., 441,
430–447, 2016.
Williams, J. R. and Bralower, T. J.: Nannofossil assemblages, fine-fraction
stable isotopes, and the paleoceanography of the Valanginian–Barremian
(Early Cretaceous) North Sea Basin, Paleoceanography, 10, 815–839, 1995.
Wind, F. H.: Maestrichtian–Campanian nannofloral provinces of the southern
Atlantic and Indian Oceans, in: Deep Drilling Results in the Atlantic Ocean:
Continental Margins and Paleoenvironment, edited by: Talwani, M., Hay, W. W.,
and Ryan, W. B. F., AGU, Maurice Ewing. Ser., 3, 123–137, 1979.
Zakharov, Y. D., Popov, A. M., Shigeta, Y., Smyshlyaeva, O. P., Sokolova, E.
P., Nagendra, R., Velivetskaya, T. A., and Afanasyeva, T. B.: New
Maastrichtian oxygen and carbon isotope record: Additional evidence for warm
low latitudes, Geosci. J., 10, 347–367, 2006.
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
We present here for the first time a very high-resolution record of sea-surface temperature...