Articles | Volume 12, issue 2
https://doi.org/10.5194/cp-12-201-2016
https://doi.org/10.5194/cp-12-201-2016
Research article
 | 
05 Feb 2016
Research article |  | 05 Feb 2016

Significant recent warming over the northern Tibetan Plateau from ice core δ18O records

W. An, S. Hou, W. Zhang, Y. Wang, Y. Liu, S. Wu, and H. Pang

Abstract. Stable oxygen isotopic records in ice cores provide valuable information about past temperature, especially for regions with scarce instrumental measurements. This paper presents the δ18O result of an ice core drilled to bedrock from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). We reconstructed the temperature series for 1951–2008 from the δ18O records. In addition, we combined the ZK δ18O records with those from three other ice cores in the northern TP (Muztagata, Puruogangri, and Geladaindong) to reconstruct a regional temperature history for the period 1951–2002 (RTNTP). The RTNTP showed significant warming at 0.51 ± 0.07 °C (10 yr)−1 since 1970, a higher rate than the trend of instrumental records of the northern TP (0.43 ± 0.08 °C (10 yr)−1) and the global temperature trend (0.27 ± 0.03°C (10 yr)−1) at the same time. In addition, the ZK temperature record, with extra length until 2008, seems to suggest that the rapid elevation-dependent warming continued for this region during the last decade, when the mean global temperature showed very little change. This could provide insights into the behavior of the recent warming hiatus at higher elevations, where instrumental climate records are lacking.

Download
Short summary
This paper presents the δ18O result of an ice core recovered from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). We combined the δ18O series of ZK and three other nearby Tibetan ice cores to reconstruct a regional temperature history of 1951–2008, which captured the continuous rapid warming since 1970, even during the global warming hiatus period. It implied that temperature change could have behaved differently at high elevations.