Articles | Volume 12, issue 9
https://doi.org/10.5194/cp-12-1739-2016
https://doi.org/10.5194/cp-12-1739-2016
Research article
 | 
01 Sep 2016
Research article |  | 01 Sep 2016

Bering Sea surface water conditions during Marine Isotope Stages 12 to 10 at Navarin Canyon (IODP Site U1345)

Beth E. Caissie, Julie Brigham-Grette, Mea S. Cook, and Elena Colmenero-Hidalgo

Related authors

Biomarker proxy records of Arctic climate change during the Mid-Pleistocene transition from Lake El'gygytgyn (Far East Russia)
Kurt R. Lindberg, William C. Daniels, Isla S. Castañeda, and Julie Brigham-Grette
Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022,https://doi.org/10.5194/cp-18-559-2022, 2022
Short summary
A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015,https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Pliocene to Pleistocene climate and environmental history of Lake El'gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014,https://doi.org/10.5194/cp-10-1381-2014, 2014
Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014,https://doi.org/10.5194/cp-10-1017-2014, 2014
A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic – new insights into climate–vegetation relationships at the regional scale
P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles
Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013,https://doi.org/10.5194/cp-9-2759-2013, 2013

Related subject area

Subject: Atmospheric Dynamics | Archive: Historical Records | Timescale: Cenozoic
Millennium-long summer temperature variations in the European Alps as reconstructed from tree rings
C. Corona, J. Guiot, J. L. Edouard, F. Chalié, U. Büntgen, P. Nola, and C. Urbinati
Clim. Past, 6, 379–400, https://doi.org/10.5194/cp-6-379-2010,https://doi.org/10.5194/cp-6-379-2010, 2010

Cited articles

Aizawa, C., Tanimoto, M., and Jordan, R. W.: Living diatom assemblages from North Pacific and Bering Sea surface waters during summer 1999, Deep-Sea Res. Pt. I, 52, 2186–2205, 2005.
Alexander, V. and Chapman, T.: The role of epontic algal communities in Bering Sea ice, in: The Eastern Bering Sea Shelf: Oceanography and Resources, edited by: Hood, D. W. and Calder, J. A., University of Washington Press, Seattle, Washington, 1981.
Asahi, H., Kender, S., Ikehara, M., Sakamoto, T., Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A., Khim, B. K., and Leng, M. J.: Orbital-scale benthic foraminiferal oxygen isotope stratigraphy at the northern Bering Sea Slope Site U1343 (IODP Expedition 323) and its Pleistocene paleoceanographic significance, Deep-Sea Res. Pt. II, 125/126, 66–83, 2016.
Barr, I. D. and Clark, C. D.: Distribution and pattern of moraines in Far NE Russia reveal former glacial extent, Journal of Maps, 5, 186–193, 2009.
Barron, J. A., Bukry, D., Dean, W. E., Addison, J. A., and Finney, B.: Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry, Mar. Micropaleontol., 72, 176–195, 2009.
Download
Short summary
This paper presents the first millennial-scale reconstruction of Marine Isotope Stage (MIS) 11 (~400 ka) from the subarctic Pacific Ocean. We use diatoms, calcareous nannofossils, grain size, and carbon and nitrogen isotopes to examine changing productivity and sea ice. These change in sync with other regional and global records. Initially, MIS 11 is highly productive, due to increased upwelling. Sea ice declines gradually during this warm period, but is present throughout.