Articles | Volume 12, issue 8
https://doi.org/10.5194/cp-12-1635-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-1635-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic
IMAU, Utrecht University, Princetonplein 5, 3584CC Utrecht, the Netherlands
Douwe J. J. van Hinsbergen
Department of Earth Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
Anna S. von der Heydt
IMAU, Utrecht University, Princetonplein 5, 3584CC Utrecht, the Netherlands
Henk A. Dijkstra
IMAU, Utrecht University, Princetonplein 5, 3584CC Utrecht, the Netherlands
Appy Sluijs
Department of Earth Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
Hemmo A. Abels
Department of Geosciences and Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Peter K. Bijl
Department of Earth Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
Viewed
Total article views: 4,406 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Oct 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,289 | 1,859 | 258 | 4,406 | 613 | 168 | 165 |
- HTML: 2,289
- PDF: 1,859
- XML: 258
- Total: 4,406
- Supplement: 613
- BibTeX: 168
- EndNote: 165
Total article views: 3,616 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Aug 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,874 | 1,507 | 235 | 3,616 | 423 | 145 | 145 |
- HTML: 1,874
- PDF: 1,507
- XML: 235
- Total: 3,616
- Supplement: 423
- BibTeX: 145
- EndNote: 145
Total article views: 790 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Oct 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
415 | 352 | 23 | 790 | 190 | 23 | 20 |
- HTML: 415
- PDF: 352
- XML: 23
- Total: 790
- Supplement: 190
- BibTeX: 23
- EndNote: 20
Cited
41 citations as recorded by crossref.
- The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0) D. Lunt et al. 10.5194/gmd-10-889-2017
- The Piedra Chamana fossil woods and leaves: a record of the vegetation and palaeoenvironment of the Neotropics during the late middle Eocene D. Woodcock & H. Meyer 10.1093/aob/mcaa039
- Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma F. Poblete et al. 10.1016/j.earscirev.2021.103508
- Efficient computation of past global ocean circulation patterns using continuation in paleobathymetry T. Mulder et al. 10.1016/j.ocemod.2017.05.010
- DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data D. Lunt et al. 10.5194/cp-17-203-2021
- Climate variability, heat distribution, and polar amplification in the warm unipolar “icehouse” of the Oligocene D. Jenny et al. 10.5194/cp-20-1627-2024
- How high were these mountains? D. van Hinsbergen & L. Boschman 10.1126/science.aaw7705
- Resilient Antarctic monsoonal climate prevented ice growth during the Eocene M. Baatsen et al. 10.5194/cp-20-77-2024
- Scleractinian Corals as an Indicator of Vertical Density of the Antarctic Circumpolar Current N. Keller et al. 10.1134/S0001437022010064
- Global Cenozoic Paleobathymetry with a focus on the Northern Hemisphere Oceanic Gateways E. Straume et al. 10.1016/j.gr.2020.05.011
- Triassic (Anisian and Rhaetian) palaeomagnetic poles from the Germanic Basin (Winterswijk, the Netherlands) L. van Hinsbergen et al. 10.1186/s42501-019-0046-2
- How Can Climate Models Be Used in Paleoelevation Reconstructions? S. Botsyun & T. Ehlers 10.3389/feart.2021.624542
- Late Eocene Southern Ocean Cooling and Invigoration of Circulation Preconditioned Antarctica for Full‐Scale Glaciation A. Houben et al. 10.1029/2019GC008182
- Andean mountain building since the Late Cretaceous: A paleoelevation reconstruction L. Boschman 10.1016/j.earscirev.2021.103640
- Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation H. Coxall et al. 10.1038/s41561-018-0069-9
- A historical account of how continental drift and plate tectonics provided the framework for our current understanding of palaeogeography G. MEINHOLD & A. CELÂL ŞENGÖR 10.1017/S0016756818000043
- Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition D. Hutchinson et al. 10.1038/s41467-019-11828-z
- The Evolving Paleobathymetry of the Circum‐Antarctic Southern Ocean Since 34 Ma: A Key to Understanding Past Cryosphere‐Ocean Developments K. Hochmuth et al. 10.1029/2020GC009122
- Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1 D. Hutchinson et al. 10.5194/cp-14-789-2018
- GPlates: Building a Virtual Earth Through Deep Time R. Müller et al. 10.1029/2018GC007584
- The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5 M. Baatsen et al. 10.5194/cp-16-2573-2020
- The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons D. Hutchinson et al. 10.5194/cp-17-269-2021
- A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0 J. Van Breedam et al. 10.5194/gmd-14-6373-2021
- The origin of Asian monsoons: a modelling perspective D. Tardif et al. 10.5194/cp-16-847-2020
- DeepMIP-Eocene-p1: multi-model dataset and interactive web application for Eocene climate research S. Steinig et al. 10.1038/s41597-024-03773-4
- Deep ocean temperatures through time P. Valdes et al. 10.5194/cp-17-1483-2021
- Influence of plate reference frames on deep-time climate simulations Z. Zhang et al. 10.1016/j.gloplacha.2023.104352
- Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry M. Cramwinckel et al. 10.5194/cp-16-1667-2020
- Paleogeographic reconstructions using QGIS: Introducing Terra Antiqua plugin and its application to 30 and 50 Ma maps J. Aminov et al. 10.1016/j.earscirev.2023.104401
- Bayesian Calibration of the Mg/Ca Paleothermometer in Planktic Foraminifera J. Tierney et al. 10.1029/2019PA003744
- The sensitivity of the Eocene–Oligocene Southern Ocean to the strength and position of wind stress Q. Xing et al. 10.5194/cp-18-2669-2022
- Multiple states in the late Eocene ocean circulation M. Baatsen et al. 10.1016/j.gloplacha.2018.02.009
- Middle to Late Eocene Changes of the Ocean Carbonate Cycle C. Borrelli et al. 10.1029/2020PA004168
- Hysteresis and orbital pacing of the early Cenozoic Antarctic ice sheet J. Van Breedam et al. 10.5194/cp-19-2551-2023
- Early Eocene Ocean Meridional Overturning Circulation: The Roles of Atmospheric Forcing and Strait Geometry Y. Zhang et al. 10.1029/2021PA004329
- A Typology of Vessel Patterning in Trees with Examples from the Fossil Record D. Woodcock 10.1086/718086
- Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and <i>p</i>CO<sub>2</sub> M. Amoo et al. 10.5194/cp-18-525-2022
- Modelling evidence for late Eocene Antarctic glaciations J. Van Breedam et al. 10.1016/j.epsl.2022.117532
- An alternative model for CaCO3 over-shooting during the PETM: Biological carbonate compensation Y. Luo et al. 10.1016/j.epsl.2016.08.012
- A new high‐resolution seafloor age grid for the South Atlantic L. Pérez‐Díaz & G. Eagles 10.1002/2016GC006750
- Effects of Drake Passage on a strongly eddying global ocean J. Viebahn et al. 10.1002/2015PA002888
39 citations as recorded by crossref.
- The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0) D. Lunt et al. 10.5194/gmd-10-889-2017
- The Piedra Chamana fossil woods and leaves: a record of the vegetation and palaeoenvironment of the Neotropics during the late middle Eocene D. Woodcock & H. Meyer 10.1093/aob/mcaa039
- Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma F. Poblete et al. 10.1016/j.earscirev.2021.103508
- Efficient computation of past global ocean circulation patterns using continuation in paleobathymetry T. Mulder et al. 10.1016/j.ocemod.2017.05.010
- DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data D. Lunt et al. 10.5194/cp-17-203-2021
- Climate variability, heat distribution, and polar amplification in the warm unipolar “icehouse” of the Oligocene D. Jenny et al. 10.5194/cp-20-1627-2024
- How high were these mountains? D. van Hinsbergen & L. Boschman 10.1126/science.aaw7705
- Resilient Antarctic monsoonal climate prevented ice growth during the Eocene M. Baatsen et al. 10.5194/cp-20-77-2024
- Scleractinian Corals as an Indicator of Vertical Density of the Antarctic Circumpolar Current N. Keller et al. 10.1134/S0001437022010064
- Global Cenozoic Paleobathymetry with a focus on the Northern Hemisphere Oceanic Gateways E. Straume et al. 10.1016/j.gr.2020.05.011
- Triassic (Anisian and Rhaetian) palaeomagnetic poles from the Germanic Basin (Winterswijk, the Netherlands) L. van Hinsbergen et al. 10.1186/s42501-019-0046-2
- How Can Climate Models Be Used in Paleoelevation Reconstructions? S. Botsyun & T. Ehlers 10.3389/feart.2021.624542
- Late Eocene Southern Ocean Cooling and Invigoration of Circulation Preconditioned Antarctica for Full‐Scale Glaciation A. Houben et al. 10.1029/2019GC008182
- Andean mountain building since the Late Cretaceous: A paleoelevation reconstruction L. Boschman 10.1016/j.earscirev.2021.103640
- Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation H. Coxall et al. 10.1038/s41561-018-0069-9
- A historical account of how continental drift and plate tectonics provided the framework for our current understanding of palaeogeography G. MEINHOLD & A. CELÂL ŞENGÖR 10.1017/S0016756818000043
- Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition D. Hutchinson et al. 10.1038/s41467-019-11828-z
- The Evolving Paleobathymetry of the Circum‐Antarctic Southern Ocean Since 34 Ma: A Key to Understanding Past Cryosphere‐Ocean Developments K. Hochmuth et al. 10.1029/2020GC009122
- Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1 D. Hutchinson et al. 10.5194/cp-14-789-2018
- GPlates: Building a Virtual Earth Through Deep Time R. Müller et al. 10.1029/2018GC007584
- The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5 M. Baatsen et al. 10.5194/cp-16-2573-2020
- The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons D. Hutchinson et al. 10.5194/cp-17-269-2021
- A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0 J. Van Breedam et al. 10.5194/gmd-14-6373-2021
- The origin of Asian monsoons: a modelling perspective D. Tardif et al. 10.5194/cp-16-847-2020
- DeepMIP-Eocene-p1: multi-model dataset and interactive web application for Eocene climate research S. Steinig et al. 10.1038/s41597-024-03773-4
- Deep ocean temperatures through time P. Valdes et al. 10.5194/cp-17-1483-2021
- Influence of plate reference frames on deep-time climate simulations Z. Zhang et al. 10.1016/j.gloplacha.2023.104352
- Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry M. Cramwinckel et al. 10.5194/cp-16-1667-2020
- Paleogeographic reconstructions using QGIS: Introducing Terra Antiqua plugin and its application to 30 and 50 Ma maps J. Aminov et al. 10.1016/j.earscirev.2023.104401
- Bayesian Calibration of the Mg/Ca Paleothermometer in Planktic Foraminifera J. Tierney et al. 10.1029/2019PA003744
- The sensitivity of the Eocene–Oligocene Southern Ocean to the strength and position of wind stress Q. Xing et al. 10.5194/cp-18-2669-2022
- Multiple states in the late Eocene ocean circulation M. Baatsen et al. 10.1016/j.gloplacha.2018.02.009
- Middle to Late Eocene Changes of the Ocean Carbonate Cycle C. Borrelli et al. 10.1029/2020PA004168
- Hysteresis and orbital pacing of the early Cenozoic Antarctic ice sheet J. Van Breedam et al. 10.5194/cp-19-2551-2023
- Early Eocene Ocean Meridional Overturning Circulation: The Roles of Atmospheric Forcing and Strait Geometry Y. Zhang et al. 10.1029/2021PA004329
- A Typology of Vessel Patterning in Trees with Examples from the Fossil Record D. Woodcock 10.1086/718086
- Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and <i>p</i>CO<sub>2</sub> M. Amoo et al. 10.5194/cp-18-525-2022
- Modelling evidence for late Eocene Antarctic glaciations J. Van Breedam et al. 10.1016/j.epsl.2022.117532
- An alternative model for CaCO3 over-shooting during the PETM: Biological carbonate compensation Y. Luo et al. 10.1016/j.epsl.2016.08.012
Saved (preprint)
Latest update: 09 Sep 2024
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
One of the major difficulties in modelling palaeoclimate is constricting the boundary...