Articles | Volume 12, issue 7
https://doi.org/10.5194/cp-12-1459-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-1459-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA
Institute of Oceanology Polish Academy of Sciences, Sopot, 81–712,
Poland
Marek Zajączkowski
Institute of Oceanology Polish Academy of Sciences, Sopot, 81–712,
Poland
Magdalena Łącka
Institute of Oceanology Polish Academy of Sciences, Sopot, 81–712,
Poland
Franck Lejzerowicz
Department of Genetics and Evolution, University of Geneva, Geneva, CH
1211, Switzerland
Philippe Esling
Department of Genetics and Evolution, University of Geneva, Geneva, CH
1211, Switzerland
IRCAM, UMR 9912, Université Pierre et Marie Curie, Paris, France
Jan Pawlowski
Department of Genetics and Evolution, University of Geneva, Geneva, CH
1211, Switzerland
Related authors
Hasitha Nethupul, Magdalena Łącka, Marek Zajączkowski, Dhanushka Devendra, Ngoc-Loi Nguyen, Jan Pawłowski, and Joanna Pawłowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-3780, https://doi.org/10.5194/egusphere-2025-3780, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study addresses the gap by reconstructing the history of marine eukaryotic communities using sedaDNA metabarcoding analysis from Storfjordrenna, and the eukaryotic biodiversity remained relatively stable, with a notable exception during the transitions between major climatic intervals. Cercozoans and MAST emerged as dominant groups, highlighting their ecological flexibility and broad tolerance. Our findings highlight the potential of sedaDNA for reconstructing past eukaryotic communities.
Joanna Pawłowska, Magdalena Łącka, Małgorzata Kucharska, Jan Pawlowski, and Marek Zajączkowski
Clim. Past, 16, 487–501, https://doi.org/10.5194/cp-16-487-2020, https://doi.org/10.5194/cp-16-487-2020, 2020
Short summary
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Hasitha Nethupul, Magdalena Łącka, Marek Zajączkowski, Dhanushka Devendra, Ngoc-Loi Nguyen, Jan Pawłowski, and Joanna Pawłowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-3780, https://doi.org/10.5194/egusphere-2025-3780, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study addresses the gap by reconstructing the history of marine eukaryotic communities using sedaDNA metabarcoding analysis from Storfjordrenna, and the eukaryotic biodiversity remained relatively stable, with a notable exception during the transitions between major climatic intervals. Cercozoans and MAST emerged as dominant groups, highlighting their ecological flexibility and broad tolerance. Our findings highlight the potential of sedaDNA for reconstructing past eukaryotic communities.
Ewa Demianiuk, Mateusz Baca, Danijela Popović, Inès Barrenechea Angeles, Ngoc-Loi Nguyen, Jan Pawlowski, John B. Anderson, and Wojciech Majewski
Biogeosciences, 22, 2601–2620, https://doi.org/10.5194/bg-22-2601-2025, https://doi.org/10.5194/bg-22-2601-2025, 2025
Short summary
Short summary
Ancient foraminiferal DNA is studied in five Antarctic cores with sediments up to 25 kyr old. We use a standard and a new, more effective marker, which may become the next standard for paleoenvironmental studies. Much less diverse foraminifera occur on slopes of submarine moraines than in open-marine settings. Soft-walled foraminifera, not found in the fossil record, are especially abundant. There is no foraminiferal DNA in tills, suggesting its destruction during glacial redeposition.
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Dhanushka Devendra, Natalia Szymańska, Magdalena Łącka, Małgorzata Szymczak-Żyła, Magdalena Krajewska, Maciej M. Telesiński, and Marek Zajączkowski
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-52, https://doi.org/10.5194/cp-2024-52, 2024
Manuscript not accepted for further review
Short summary
Short summary
Our findings document four sediment-laden meltwater pulses between 14.7 and 8.2 kyr BP. These pulses, primarily driven by deglacial processes and supplemented by paleo-lake outbursts or paleo-tsunami currents, are marked by drops in sea surface temperatures, increased sea ice content, high terrigenous supply, and a limited influence of AW. One of the key highlights of our study is the evidence of the Storegga tsunami impact around 8.2 kyr BP, likely redistributed sediments in the NW Barents Sea.
Joanna Pawłowska, Magdalena Łącka, Małgorzata Kucharska, Jan Pawlowski, and Marek Zajączkowski
Clim. Past, 16, 487–501, https://doi.org/10.5194/cp-16-487-2020, https://doi.org/10.5194/cp-16-487-2020, 2020
Short summary
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Centennial-Decadal
A sub-fossil coral Sr∕Ca record documents northward shifts of the Tropical Convergence Zone in the eastern Indian Ocean
Can we use sea surface temperature and productivity proxy records to reconstruct Ekman upwelling?
Development of coccolithophore-based transfer functions in the western Mediterranean sea: a sea surface salinity reconstruction for the last 15.5 kyr
A high-resolution δ18O record and Mediterranean climate variability
Nutrient utilisation and weathering inputs in the Peruvian upwelling region since the Little Ice Age
Multidecadal to millennial marine climate oscillations across the Denmark Strait (~ 66° N) over the last 2000 cal yr BP
An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP25 in marine sediments: key outcomes and recommendations
Inferred changes in El Niño–Southern Oscillation variance over the past six centuries
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki K. Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan A. Brummer, and Sri Yudawati Cahyarini
Clim. Past, 21, 211–237, https://doi.org/10.5194/cp-21-211-2025, https://doi.org/10.5194/cp-21-211-2025, 2025
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the south-eastern tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1856–1918. We explain this with greater warming in the north-eastern Indian Ocean relative to the south-east, which strengthens surface winds and coastal upwelling in the eastern Indian Ocean, leading to greater cooling south of the Equator.
Anson Cheung, Baylor Fox-Kemper, and Timothy Herbert
Clim. Past, 15, 1985–1998, https://doi.org/10.5194/cp-15-1985-2019, https://doi.org/10.5194/cp-15-1985-2019, 2019
Short summary
Short summary
We test two assumptions that are often made in paleoclimate studies by using observations and ask whether temperature and productivity proxy records in the Southern California Current can be used to reconstruct Ekman upwelling. By examining the covariation between alongshore wind stress, temperature, and productivity, we found that the dominant covarying pattern does not reflect Ekman upwelling. Other upwelling patterns found are timescale dependent. Multiple proxies can improve reconstruction.
B. Ausín, I. Hernández-Almeida, J.-A. Flores, F.-J. Sierro, M. Grosjean, G. Francés, and B. Alonso
Clim. Past, 11, 1635–1651, https://doi.org/10.5194/cp-11-1635-2015, https://doi.org/10.5194/cp-11-1635-2015, 2015
Short summary
Short summary
Coccolithophore distribution in 88 surface sediment samples in the Atlantic Ocean and western Mediterranean was mainly influenced by salinity at 10m depth. A quantitative coccolithophore-based transfer function was developed and applied to a fossil sediment core to estimate sea surface salinity (SSS). The quality of this function and the reliability of the SSS reconstruction were assessed by statistical analyses and discussed. Several centennial SSS changes are identified for the last 15.5 ka.
C. Taricco, G. Vivaldo, S. Alessio, S. Rubinetti, and S. Mancuso
Clim. Past, 11, 509–522, https://doi.org/10.5194/cp-11-509-2015, https://doi.org/10.5194/cp-11-509-2015, 2015
Short summary
Short summary
The key to gaining information on climate over the last millennia is the study of proxy records in ice and sediment cores, trees, etc. We measured the oxygen isotopic ratio in planktonic foraminifera of a high-resolution, well-dated central Mediterranean core.
The comparison between the variability detected in this core and that characterizing the Northern Hemisphere allows for local and global (hemispheric) climate variations to be distinguished.
C. Ehlert, P. Grasse, D. Gutiérrez, R. Salvatteci, and M. Frank
Clim. Past, 11, 187–202, https://doi.org/10.5194/cp-11-187-2015, https://doi.org/10.5194/cp-11-187-2015, 2015
J. T. Andrews and A. E. Jennings
Clim. Past, 10, 325–343, https://doi.org/10.5194/cp-10-325-2014, https://doi.org/10.5194/cp-10-325-2014, 2014
S. T. Belt, T. A. Brown, L. Ampel, P. Cabedo-Sanz, K. Fahl, J. J. Kocis, G. Massé, A. Navarro-Rodriguez, J. Ruan, and Y. Xu
Clim. Past, 10, 155–166, https://doi.org/10.5194/cp-10-155-2014, https://doi.org/10.5194/cp-10-155-2014, 2014
S. McGregor, A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg
Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, https://doi.org/10.5194/cp-9-2269-2013, 2013
Cited articles
Alve, E.: Benthic foraminiferal responses to absence of fresh phytodetritus: A two – year experiment, Mar. Micropaleontol., 76, 67–76, 2010.
Berben, S. M. P., Husum, K., Cabedo-Sanz, P., and Belt, S. T.: Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea, Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, 2014.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512–518, 2010.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26, 1237–1248, 2001.
Boere, A. C., Rijpstra, W. I. C., De Lange, G. J., Sinninghe Damsté, J. S., and Coolen, M. J. L.: Preservation potential of ancient plankton DNA in Pleistocene marine sediments, Geobiology, 9, 377–393, 2011.
Cedhagen, T., Goldstein, S. T., and Gooday, A. J.: A theme issue of the biology and biodiversity of “allogromiid” foraminifera, J. Foramin. Res., 32, 331–333, 2002.
Coolen, J. M. L., Boere, A., Abbas, B., Baas, M., Wakeham, S. G., and Sinninghe Damsté, J. S.: Ancient DNA derived from alkenone-biosynthesizing haptophytes abd other algae in Holocene sediments from the Black Sea, Paleoceanography, 21, PA1005, https://doi.org/10.1029/2005PA001188, 2006.
Coolen, M. J. L, Orsi, W. D., Balkema, C., Quince, C., Harris, K., Sylva, S. P., Filipova-Marinova, M., and Giosan, L.: Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene, P. Natl. Acad. Sci. USA, 110, 8609–8614, https://doi.org/10.1073/pnas.1219283110, 2013.
Cottier, F. R., Tverberg, V., Inall, M. E., Svendsen, H., and Griffiths, C.: Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard, J. Geophys. Res., 110, C12005, https://doi.org/10.1029/2004JC002757, 2005.
D'Andrea, W. J., Vaillencourt, D. A., Balascio, N. L., Werner, A., Roof, S. R., Retelle, M., and Bradley, R. S.: Mid Little Ice Age and unprecedented recent warmth in 1800 year sediment lake record from Svalbard, Geology, 40, 1007–1010, 2012.
Divine, D., Isaksson, E., Martma, T., Meijer, H. A. J., Moore, J., Pohjola, V., van de Wal, R. S. W., and Godtliebsen, F.: Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data, Polar Res., 30, 7379, https://doi.org/10.3402/polar.v30i0.7379, 2011.
Gooday, A. J.: Organic-walled allogromiids: aspects of their occurrence, diversity and ecology in marine habitats, J. Foramin. Res., 32, 384–399, 2002.
Gooday, A. J., Bowser, S. S., Cedhagen, T., Cornelius, N., Hald, M., Korsun, S., and Pawłowski, J.: Monothalamous foraminiferans and gromiids (Protista) from western Svalbard: A preliminary survey, Mar. Biol. Res., 1, 290–312, 2005.
Gooday, A. J., Anikeeva, O. V., and Pawlowski, J.: New genera and species of monothalamous Foraminfera from Balaclava and Kazach'ya Bays (Crimean Peninsula, Black Sea), Mar. Biodiv., 41, 481–494, 2011.
Gouy, M., Guindon, S., and Gascuel, O.: SeaView Version 4: a multiplatform graphical use of interface for sequence aligment and phylogenetic tree building, Mol. Biol. Evol., 27, 221–224, 2010.
Groot, D. E., Aagaard-Sørensen, S., and Husum, K.: Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea, Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, 2014.
Hagen, J. O., Liestøl, O., Roland, E., and Jørgensen, T.: Glacier atlas of Svalbard and Jan Mayen, Norsk Polarinstitutt Meddelelser, 129, 1993.
Hald, M. and Korsun, S.: Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic, J. Foramin. Res. 27, 101–122, 1997.
Hald, M., Anderson, C., Ebbesen, H., Janstein, E., Klitgaard-Kristensen, D., Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and Telford, R. J.: Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene, Quaternary Sci. Rev. 26, 3423–3440, 2007.
Humlum, O., Elberling, B., Hormes, A., Fjordheim, K., Hansen, O. H., and Heinemeier, J.: Late Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes, Holocene 15, 396–407, 2005.
Hunt, A. S. and Corliss, B. H.: Distribution and microhabitats of living (stained) benthic foraminifera from the Canadian Arctic Archipelago, Mar. Micropaleontol., 20, 321–346, 1993.
Isaksson, E., Hermanson, M., Hicks, S., Igarashi, M., Kamiyama, K., Moore, J., Motoyama, H., Muir, D., Pohjola, V., Vaikmäe, R., van de Wal, R. S. W., and Watanabe, O.: Ice cores from Svalbard – useful archives of past climate and pollution history, Phys. Chem. Earth., 28, 1217–1228, 2003.
Ivanova, E. V., Ovsepyan, E. A., Riserbroakken, B., and Vetrov, A. A.: Downcore distribution of living calcareous foraminifera and stable isotopes in western Barents Sea, J. Foramin. Res., 38, 337–509, 2008.
Jernas, P., Klitgaard-Kristensen, D., Husum, K., Wilson, L., and Koç, N.: Paleoenvironmental changes of the last two millennia on the western and northern Svalbard shelf, Boreas, 42, 236–255, 2013.
Kelly, M., Funder, S., Houmark–Nielsen, M., Knudsen, K. L., Kronborg, C., Landvik, J., and Sorby, L.: Quaternary glacial and marine environmental history of northwestern Greenland: a review and reappraisal, Quaternary Sci. Rev., 18, 373–392, 1999.
Koppes, M. N. and Hallet, B.: Influence of rapid glacial retreat on the rate of erosion by tidewater glaciers, Geology, 30, 47–50, 2002.
Korsun, S. and Hald, M.: Modern benthic Foraminifera off Novaya Zemlya tidewater glaciers, Arct. Antarct. Alp. Res., 30, 61–77, 1998.
Korsun, S. and Hald, M.: Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European Arctic., J. Foramin. Res., 30, 251–271, 2000.
Korsun, S., Pogodina, I. A., Forman, S. L., and Lubinski, D. J.: Recent foraminifera in glaciomarine sediments from three arctic fjords of Novaja Zemlja and Svalbard, Polar Res., 14, 15–31, 2005.
Kubischta, F., Knudsen, K. L., Ojala, A. E., and Salonen, V.-P.: Holocene benthic foraminiferal record from a high-arctic fjord, Nordaustlandet, Svalbard, Geogr. Ann. A, 93, 227–242, 2011.
Łącka, M., Zajączkowski, M., Forwick, M., and Szczucinski, W.: Late Weichselian and Holocene palaeoceanography of Storfjordrenna, southern Svalbard, Clim. Past, 11, 587–603, https://doi.org/10.5194/cp-11-587-2015, 2015.
Lejzerowicz, F., Voltski, I., and Pawlowski, J.: Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach, Deep-Sea Res., 86–87, 214–220, 2013a.
Lejzerowicz, F., Esling, P., Majewski, W., Szczuciński, W., Decelle, J., Obadia, C., Martinez Arbizu, P., and Pawlowski, J.: Ancient DNA complements microfossil record in deep-sea subsurface sediments, Biol. Lett., 9, 20130283, https://doi.org/10.1098/rsbl.2013.0283, 2013b.
Linder, L., Marks, L., and Szczęsny, R.: Quaternary landforms and sediments, and morphogenetic evolution of Treskelen-Hyrnefjellet-Kruseryggen area, Wedel Jarlsberg Land, Spitsbergen, Pol. Polar Res., 11, 389–400, 1990.
Lloyd, J. M.: Modern distribution of benthic foraminifera from Disco Bugt, West Greenland, J. Foramin. Res., 36, 315–331, 2006.
Lund, D. C., Lynch-Stieglitz, J., and Curry, W. B.: Gulf Stream density structure and transport during the past millennium, Nature, 444, 601–604, 2006.
Majewski, W. and Zajączkowski, M.: Benthic foraminifera Adventfjorden, Svalbard: Last 50 years of local hydrographic changes, J. Foramin. Res., 37, 107–124, 2007.
Majewski, W., Pawłowski, J., Zajączkowski, M.: Monothalamous foraminifera from West Spitsbergen fjords: a brief overview, Pol. Polar Res., 26, 269–285, 2005.
Majewski, W., Szczuciński, W., and Zajączkowski, M.: Interactions of Arctic and Atlantic water-masses and associated environmental changes during the last millennium, Hornsund, Boreas, 38, 529–544, 2009.
Malmgren, B. A. and Haq, B. U.: Assessment of quantitative techniques in paleobiogeography, Mar. Micropaleontol., 7, 213–236, 1982.
Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A. K., and Høseter, T.: Marine 14C reservoir ages for 19th century whales and mollusks from the North Atlantic, Quaternary Sci. Rev., 25, 3228–3245, 2006.
Marks, L. and Pękala, K.: New datings of Quaternary sediments from Bogstranda and Treskelodden, southern Spitsbergen, B. Pol. Acad. Sci.–Earth., 34, 419–425, 1986.
Oerlemans, J.: Extracting a climate signal from 169 glacier records, Science, 308, 675–677, 2005.
Pälli, A., Moore, J. C., Jania, J., and Głowacki, P.: Glacier changes in southern Spitsbergen, Svalbard, 1901–200, Ann. Glaciol., 37, 219–225, 2003.
Pawlowski J. and Lecroq, B.: Short rDNA barcodes for species identification in Foraminifera, J. Eukaryot. Microbiol., 57, 197–502, 2010.
Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Cedhagen, T., and Bowser, S. S.: Phylogeny of alogromiid Foraminifera inferred from SSU rRNA gene sequences, J. Foramin. Res., 32, 334–343, 2002.
Pawlowski, J., Christen, R., Lecroq, B., Bachar, D., Shahbazkia, H. R., Amaral-Zettler, L., and Guillou, L.: Eukaryotic richness in the abyss: Insights from pyrotag sequencing, PLoS ONE, 6, e18169, https://doi.org/10.1371/journal.pone.0018169, 2011.
Pawłowska, J., Lejzerowicz, F., Esling, P., Szczuciński, W., Zajączkowski, M., and Pawlowski, J.: Ancient DNA sheds new light on the Svalbard foraminiferal fossil record from the last millennium, Geobiology, 12, 277–288, 2014.
Pogodina, I. A.: Benthic Foraminifera in Hornsund fjord (West Spitsbergen), Oceanology, 45, 559–566, 2005.
Rasmussen, T. L., Forwick, M., and Mackensen, A.: Reconstruction of inflow of Atlantic Water to Isfjorden during the Holocene: Correlation to climate and seasonality, Mar. Micropaleontol., 94–95, 80–90, 2012.
Reimer, P. J., Bard, E., Bayliss, A., Beck, W. J., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffman, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Sabbattini, A., Morigi, C., Negri, A., and Gooday, A. J.: Distribution and biodiversity of stained Monothalamous foraminifera from Tempelfjord, Svalbard, J. Foramin. Res., 37, 93–106, 2007.
Sabbattini, A., Bonatto, S., Gooday, A. J., Morigi, C., Pancotti, I., Pucci, F., and Negri, A.: Modern benthic foraminifers at Northern shallow sites of Adriatic Sea and soft-walled, monothalamous taxa: a brief overview, Micropaleontology, 59, 359–376, 2010.
Steinsund, P. I.: Distribution of calcareous benthic foraminifera in recent sediments of the Barents and Kara Sea, PhD Thesis, University of Tromsø, Norway, 1994.
Svendsen, H., Beszczyńska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Ørbæk, J. B., Bischof, K., Papucci, C., Zajączkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.-G., and Dallmann, W.: The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard, Polar Res., 21, 133–166, 2002.
Syvitski, J. P. M.: On the deposition of sediment within glacier-influenced fjords: oceanographic controls, Mar. Geol., 85, 301–329, 1989.
Szczuciński, W., Schellter, G., and Zajączkowski, M.: Sediment accumulation rates, geochemistry and provenance in complex High Arctic fjord, Hornsund, Svalbard, in: Sediments, Morphology and Sedimentary Processes on Continental Shelves, edited by: Li, M., Sherwood, C., and Hill, P., IAS Special Publication, Wiley-Blackwell Publishing, 2006.
Szczuciński, W., Zajączkowski, M., and Scholten, J.: Sediment accumulation rates in subpolar fjords – impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard, Estuar. Coast. Shelf S., 85, 345–356, 2009.
Voltski, I., Korsun, S., and Pawlowski, J.: Toxisarcon taimyr sp. nov., a new large monothalamous foraminifer from the Kara Sea inner shelf, Mar. Biodiv., 44, 213–221, 2014.
Wanamaker Jr., A. D., Butler, P. G., Scourse, J. D., Heinemeier, J., Eiríksson, J., Knudsen K. L., and Richardson C. A.: Surface changes in the North Atlantic meridional overturning circulation during the last millennium, Nat. Commun., 3, 899, https://doi.org/10.1038/ncomms1901, 2012.
Weber, A. A.-T. and Pawlowski, J.: Can abundance of Protists be inferred from sequence data: A case study of Foraminifera, PLoS ONE, 8, e56739, https://doi.org/10.1371/journal.pone.0056739, 2013.
Wollenburg, J. E. and Kuhnt, W.: The response of benthic foraminifers to carbon flux and primary production in the Arctic Ocean, Mar. Micropaleontol., 40, 189–231, 2000.
Zajączkowski, M., Szczuciński, W., Jernas, P., and Plessen, B.: Benthic foraminifera in Hornsund – implications for paleoenvironmental reconstructions, Pol. Polar Res., 31, 349–375, 2010.
Ziaja, W.: Glacial recession in Sørkappland and central Nordenskiöldland, Spitsbergen, Svalbard, during the 20th century, Arct. Antarct. Alp. Res., 33, 36–41, 2001.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(409 KB) - Full-text XML
- Corrigendum
-
Supplement
(103 KB) - BibTeX
- EndNote
Short summary
The presented study focuses on the last millennium of the palaeoclimatic history of Svalbard region. The investigation was based on classical palaeoceanographic proxies, strengthened by the analysis of ancient foraminiferal DNA in down-core sediment samples. This study is the first attempt to implement the aDNA record in the palaeoenvironmental reconstruction. The aDNA data revealed even small environmetal changes that were not evidenced in the sedimentological and micropalaeontological record.
The presented study focuses on the last millennium of the palaeoclimatic history of Svalbard...