Articles | Volume 11, issue 6
https://doi.org/10.5194/cp-11-803-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-11-803-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg / Ca and stable carbon and oxygen isotopes of benthic foraminifera
Y. Kubota
CORRESPONDING AUTHOR
Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba-shi, Ibaraki 305-0005, Japan
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
K. Kimoto
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
T. Itaki
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Central 7, Higashi 1-1-1, Tsukuba-shi, Ibaraki 305-8567, Japan
Y. Yokoyama
Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
Y. Miyairi
Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
H. Matsuzaki
Department of Nuclear Engineering and Management, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
Related authors
Taiga Matsushita, Mariko Harada, Hiroaki Ueda, Takeshi Nakagawa, Yoshimi Kubota, Yoshiaki Suzuki, and Youichi Kamae
Clim. Past, 20, 2017–2029, https://doi.org/10.5194/cp-20-2017-2024, https://doi.org/10.5194/cp-20-2017-2024, 2024
Short summary
Short summary
We present a climate simulation using version 2.3 of the Meteorological Research Institute's Coupled General Circulation Model (MRI-CGCM2.3) to examine the impact of insolation changes on East Asian summer monsoon variability over the past 450 kyr. We show that changes in summer insolation over East Asia led to distinct climatic responses in China and Japan, driven by altered atmospheric circulation due to the intensification of the North Pacific subtropical high and the North Pacific High.
Y. Kubota, R. Tada, and K. Kimoto
Clim. Past, 11, 265–281, https://doi.org/10.5194/cp-11-265-2015, https://doi.org/10.5194/cp-11-265-2015, 2015
Taiga Matsushita, Mariko Harada, Hiroaki Ueda, Takeshi Nakagawa, Yoshimi Kubota, Yoshiaki Suzuki, and Youichi Kamae
Clim. Past, 20, 2017–2029, https://doi.org/10.5194/cp-20-2017-2024, https://doi.org/10.5194/cp-20-2017-2024, 2024
Short summary
Short summary
We present a climate simulation using version 2.3 of the Meteorological Research Institute's Coupled General Circulation Model (MRI-CGCM2.3) to examine the impact of insolation changes on East Asian summer monsoon variability over the past 450 kyr. We show that changes in summer insolation over East Asia led to distinct climatic responses in China and Japan, driven by altered atmospheric circulation due to the intensification of the North Pacific subtropical high and the North Pacific High.
Takeshige Ishiwa, Jun’ichi Okuno, Yuki Tokuda, Satoshi Sasaki, Takuya Itaki, and Yusuke Suganuma
EGUsphere, https://doi.org/10.5194/egusphere-2024-275, https://doi.org/10.5194/egusphere-2024-275, 2024
Short summary
Short summary
Changes in the East Antarctic Ice Sheet are key to understanding ice sheet behavior and climate response. Recent studies show ice thinning in East Antarctica around 9,000 to 6,000 years ago, revealing the temporal gap with a widely used model. Our refined model matches sea-level reconstructions, showing different sea-level peaks in East Antarctica. This suggests that ice changes in East Antarctica vary across the region, challenging the idea of simultaneous ice growth and decay.
Mutsumi Iizuka, Takuya Itaki, Osamu Seki, Ryosuke Makabe, Motoha Ojima, and Shigeru Aoki
J. Micropalaeontol., 43, 37–53, https://doi.org/10.5194/jm-43-37-2024, https://doi.org/10.5194/jm-43-37-2024, 2024
Short summary
Short summary
Radiolarian fossils are valuable tools for understanding water mass distribution. However, they have not been used in the high-latitude Southern Ocean due to unclear radiolarian assemblages. Our study identifies four assemblages related to water masses and ice edge environments in the high-latitude Southern Ocean, offering insights for water mass reconstruction in this region.
Evan Tam and Yusuke Yokoyama
Earth Syst. Sci. Data, 13, 1477–1497, https://doi.org/10.5194/essd-13-1477-2021, https://doi.org/10.5194/essd-13-1477-2021, 2021
Short summary
Short summary
Changes in sea level during Marine Isotope Stage (MIS) 5e are comparable to modern sea levels in our global climate. Contributing to the World Atlas of Last Interglacial Shorelines (WALIS), this paper reviewed data from over 70 studies detailing sea-level markers for MIS 5e around Japan. Most sea-level markers were found as marine terraces and are often dated by comparison to dated volcanic ash or sediment layers, which has connected Japan’s landforms to global patterns of sea-level change.
Haruka Takagi, Katsunori Kimoto, Tetsuichi Fujiki, Hiroaki Saito, Christiane Schmidt, Michal Kucera, and Kazuyoshi Moriya
Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019, https://doi.org/10.5194/bg-16-3377-2019, 2019
Short summary
Short summary
Photosymbiosis (endosymbiosis with algae) is an evolutionary important ecology for many marine organisms but has poorly been identified among planktonic foraminifera. In this study, we identified and characterized photosymbiosis of various species of planktonic foraminifera by focusing on their photosynthesis–related features. We finally proposed a new framework showing a potential strength of photosymbiosis, which will serve as a basis for future ecological studies of planktonic foraminifera.
Anthony Bouton, Emmanuelle Vennin, Julien Boulle, Aurélie Pace, Raphaël Bourillot, Christophe Thomazo, Arnaud Brayard, Guy Désaubliaux, Tomasz Goslar, Yusuke Yokoyama, Christophe Dupraz, and Pieter T. Visscher
Biogeosciences, 13, 5511–5526, https://doi.org/10.5194/bg-13-5511-2016, https://doi.org/10.5194/bg-13-5511-2016, 2016
Short summary
Short summary
The modern hypersaline Great Salt Lake shows an extended modern and ancient microbial sedimentary system. This study on aerial images and field observations discusses the non-random distribution patterns of microbial deposits along linear alignments following isobaths, polygonal geometry or straight alignments along a topographic drop-off. This particular distribution of microbial deposits brings further insights to the reconstruction of paleoenvironments and paleoclimatic changes.
N. F. Ishikawa, M. Yamane, H. Suga, N. O. Ogawa, Y. Yokoyama, and N. Ohkouchi
Biogeosciences, 12, 6781–6789, https://doi.org/10.5194/bg-12-6781-2015, https://doi.org/10.5194/bg-12-6781-2015, 2015
Short summary
Short summary
We determined the isotopic composition of chlorophyll a in periphytic algae attached to a streambed substrate (periphyton). Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95% algal carbon and 5 to 11% terrestrial organic carbon. We show that the chlorophyll a isotopic composition is a useful tracer for the aquatic food web studies.
J. I. Martínez, S. Obrochta, Y. Yokoyama, and R. W. Battarbee
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-2649-2015, https://doi.org/10.5194/cpd-11-2649-2015, 2015
Preprint withdrawn
Short summary
Short summary
The San Nicolás laminated sediments of the Cauca paleolake in the northern Andes were deposited in a ria lake environment at 3750-350 yr BP. Wavelet analysis of the San Nicolás-1 core evidences a 70 yr Atlantic Multidecadal Oscillation (AMO) periodicity, analogous to the Cariaco Basin. This supports a correlation between enhanced precipitation and ENSO variability with a positive AMO phase during the 2000-1500 yr BP interval. Increased precipitation occurred ca. 3000 yr BP.
T. Ikenoue, K. R. Bjørklund, S. B. Kruglikova, J. Onodera, K. Kimoto, and N. Harada
Biogeosciences, 12, 2019–2046, https://doi.org/10.5194/bg-12-2019-2015, https://doi.org/10.5194/bg-12-2019-2015, 2015
Y. Kubota, R. Tada, and K. Kimoto
Clim. Past, 11, 265–281, https://doi.org/10.5194/cp-11-265-2015, https://doi.org/10.5194/cp-11-265-2015, 2015
L.-J. Shiau, S. C. Clemens, M.-T. Chen, M. Yamamoto, and Y. Yokoyama
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-1857-2014, https://doi.org/10.5194/cpd-10-1857-2014, 2014
Revised manuscript has not been submitted
M. Wakita, S. Watanabe, M. Honda, A. Nagano, K. Kimoto, K. Matsumoto, M. Kitamura, K. Sasaki, H. Kawakami, T. Fujiki, K. Sasaoka, Y. Nakano, and A. Murata
Biogeosciences, 10, 7817–7827, https://doi.org/10.5194/bg-10-7817-2013, https://doi.org/10.5194/bg-10-7817-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Millenial/D-O
Leeuwin Current dynamics over the last 60 kyr – relation to Australian ecosystem and Southern Ocean change
Plateaus and jumps in the atmospheric radiocarbon record – potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis
Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate
Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr
Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events
Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka)
Stratification of surface waters during the last glacial millennial climatic events: a key factor in subsurface and deep-water mass dynamics
Parallelisms between sea surface temperature changes in the western tropical Atlantic (Guiana Basin) and high latitude climate signals over the last 140 000 years
Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1
Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C)
Millennial meridional dynamics of the Indo-Pacific Warm Pool during the last termination
Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation
Persistent millennial-scale link between Greenland climate and northern Pacific Oxygen Minimum Zone under interglacial conditions
Deglacial intermediate water reorganization: new evidence from the Indian Ocean
Water mass evolution of the Greenland Sea since late glacial times
Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr
An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway
Timing and magnitude of equatorial Atlantic surface warming during the last glacial bipolar oscillation
Dirk Nürnberg, Akintunde Kayode, Karl J. F. Meier, and Cyrus Karas
Clim. Past, 18, 2483–2507, https://doi.org/10.5194/cp-18-2483-2022, https://doi.org/10.5194/cp-18-2483-2022, 2022
Short summary
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
M. Wary, F. Eynaud, M. Sabine, S. Zaragosi, L. Rossignol, B. Malaizé, E. Palis, J. Zumaque, C. Caulle, A. Penaud, E. Michel, and K. Charlier
Clim. Past, 11, 1507–1525, https://doi.org/10.5194/cp-11-1507-2015, https://doi.org/10.5194/cp-11-1507-2015, 2015
Short summary
Short summary
This study reports the hydrological variations recorded at different depths of the water column SW of the Faeroe Is. during the last glacial abrupt climatic events (Heinrich events and Dansgaard-Oeschger cycles). Our combined multiproxy and high-resolution approach allows us to evidence that 1) Greenland and Heinrich stadials were characterized by strong stratification of surface waters, 2) this surface stratification seems to have played a key role in the dynamics of the underlying water masses
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
A. Schmittner and D. C. Lund
Clim. Past, 11, 135–152, https://doi.org/10.5194/cp-11-135-2015, https://doi.org/10.5194/cp-11-135-2015, 2015
Short summary
Short summary
Model simulations of carbon isotope changes as a result of a reduction in the Atlantic Meridional Overturning Circulation (AMOC) agree well with sediment data from the early last deglaciation, supporting the idea that the AMOC was substantially reduced during that time period of global warming. We hypothesize, and present supporting evidence, that changes in the AMOC may have caused the coeval rise in atmospheric CO2, owing to a reduction in the efficiency of the ocean's biological pump.
L. Lo, C.-C. Shen, K.-Y. Wei, G. S. Burr, H.-S. Mii, M.-T. Chen, S.-Y. Lee, and M.-C. Tsai
Clim. Past, 10, 2253–2261, https://doi.org/10.5194/cp-10-2253-2014, https://doi.org/10.5194/cp-10-2253-2014, 2014
Short summary
Short summary
1. We have reconstructed new meridional thermal and precipitation stacked records in the Indo-Pacific Warm Pool (IPWP) during the last termination.
2. Meridional thermal gradient variations in the IPWP show tight links to the Northern Hemisphere millennial timescales event.
3. Anomalous warming in the south IPWP region could induce the southward shifting of the Intertropical Convergence Zone (ITCZ) in the IPWP during the Heinrich 1 and Younger Dryas events.
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
O. Cartapanis, K. Tachikawa, O. E. Romero, and E. Bard
Clim. Past, 10, 405–418, https://doi.org/10.5194/cp-10-405-2014, https://doi.org/10.5194/cp-10-405-2014, 2014
S. Romahn, A. Mackensen, J. Groeneveld, and J. Pätzold
Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, https://doi.org/10.5194/cp-10-293-2014, 2014
M. M. Telesiński, R. F. Spielhagen, and H. A. Bauch
Clim. Past, 10, 123–136, https://doi.org/10.5194/cp-10-123-2014, https://doi.org/10.5194/cp-10-123-2014, 2014
J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov
Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, https://doi.org/10.5194/cp-9-1345-2013, 2013
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
S. Weldeab
Clim. Past, 8, 1705–1716, https://doi.org/10.5194/cp-8-1705-2012, https://doi.org/10.5194/cp-8-1705-2012, 2012
Cited articles
Adkins, J. F., McIntyre, K., and Schrag, D. P.: The salinity, temperature, and δ18O of the glacial deep ocean, Science, 298, 1769–1773, 2002.
Ahagon, N., Ohkushi, K., Uchida, M., and Mishima, T.: Mid-depth circulation in the northwest Pacific during the last deglaciation: Evidence from foraminiferal radiocarbon ages, Geophys. Res. Lett., 30, 2097, https://doi.org/10.1029/2003GL018287, 2003.
Altenbach, A. V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S., and Trauth, M.: Scaling percentages and distributional patterns of benthic Foraminifera with flux rates of organic carbon, J. Foraminiferal Res., 29, 173–185, 1999.
Amano, A. and Itaki, T.: Spatial and temporal variation of sedimentation rate and its controlling factors in the Okinawa trough and around the Nansei Islands, Chikyu Monthly, 34, 355–362, 2012.
Amano, A. and Itaki, T.: Variations in sedimentary environments in the forearc and backarc regions of the Ryukyu Arc since 25 kyr based on CNS analysis of sediment cores, submitted, 2015.
Barker, S., Greaves, M., and Elderfield, H.:A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry, Geochem. Geophys. Geosyst., 4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Behl, R. J. and Kennett, J. P.: Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr, Nature, 379, 243–246, https://doi.org/10.1038/379243a0, 1996.
Bertram, C. J., Elderfield, H., Shackleton, N. J., and Macdonald, J. A.: Cadmium/calcium and carbon isotope reconstructions of the glacial Northeast Atlantic Ocean, Paleoceanogr., 10, 563–578, 1995.
Billups, K. and Schrag, D. P.: Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera, Paleoceanogr., 17, PA1003, https://doi.org/10.1029/2000PA000567, 2002.
Bingham, F. M. and Lukas, R.: The distribution of intermediate water in the western equatorial Pacific during January–February 1986, Deep-Sea Res., 42, 1545–1573, 1995.
Bostock, H. C., Opdyke, B. N., and Williams, M. J. M.: Characterizing the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers, Deep-Sea Res. Pt. I, 57, 847–859, 2010.
Boyle, E. A.: Manganese carbonate overgrowths on foraminiferal tests, Geochim. Cosmochim. Acta, 47, 1815–1819, 1983.
Boyle, E. A.: Acomparison of carbon isotopes and cadmium in the modern and glacial maximum ocean: Can we account for the discrepancies? in Carbon Cycling in the Global Ocean: Constrains on the Ocean's role in Global Change, edited by: Zahn, R., Pedersen, T. F., Kaminski, M. A, and Labeyrie, L., Springer-Verlag, New York, 167–194, 1994.
Boyle, E. A. and Keigwin, L. D.: Comparison of Atlantic and Pacific paleochemical records for the last 215 000 years: changes in deep ocean circulation and chemical inventories, Earth Planet. Sci. Lett., 76, 135–150, 1985.
Broecker, W. and Peng, T. H.: Tracers in the Sea, Eldigio Press, New York, 1982.
Broecker, W., Barker, S., Clark, E., Hajdas, I., Bonani, G., and Stott, L.: Ventilation of the glacial deep Pacific Ocean, Science, 306, 1169–1172, 2004.
Broecker, W., Clark, E., and Barker, S.: Near constancy of the Pacific Ocean surface to mid-depth radiocarbon-age difference over the last 20 kyr, Earth Planet. Sci. Lett., 274, 322–326, 2008.
Chikamoto, M., Menviel, L., Abe-Ouchi, A., Ohgaito, R., Timmermann, A., Okazaki, Y., Harada, N., Oka, A., and Mouchet, A.: Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models, Deep-Sea Res. Pt. II, 61–64, 114–126, 2012.
Dickson, A. G.: Thermodynamics of the dissociation of boric-acid in synthetic seawater from 273.15 K to 318.15 K, Deep-Sea Res., 37, 755–766, 1990.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.: Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation, Paleoceanogr., 3, 343–360, 1988.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.: Calibration for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis, Earth Planet. Sci. Lett., 250, 633–649, 2006.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst,S., McCave, I. N., Hodell, D., and Piotrowski, A. M.: Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition, Science, 337, 704–709, https://doi.org/10.1126/science.1221294, 2012.
Fukasawa, M., Kawano, T., Murata, A., Shibata, F., Kitada, M., Ohama, T., and Ishikawa, Y.: Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Mirai Repeat Hydrography Cruise in the Pacific Ocean: CLIVAR CO2 Section P10_2005 (25 May–2 July, 2005), http://cdiac.ornl.gov/ftp/oceans/CLIVAR/P10_2005.data/, last access: 7 May 2015, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/CDIAC/otg.CLIVAR_P10_2005, 2005.
Graham, D. W., Corliss, B. H., Bender, M. L., and Keigwin, L. D.: Carbon and oxygen isotopic disequilibria of recent deep-sea benthic foraminifera, Mar. Micropaleontol., 6, 483–497, 1981.
Hanawa, K. and Talley, L.D.: Mode waters. In: Siedler, G., Church, J., Gould, J. (Eds.): Ocean Circulation and Climate: Observing and Modelling the Global Ocean, Academic Press, New York, USA, 373–386 pp., 2001.
Harada, N., Ahagon, N., Sakamoto, T., Uchida, M., Ikehara, M., and Shibata, Y.: Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky, Global Planet. Change, 53, 29–46, 2006.
Hayward, B. W., Grenfell, H. R., Sabaa, A. T., Neil, H. N., Buzas M. A.: Recent New Zealand deep-water benthic foraminifera, taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment, Science Monographs, N. Z. Geol. Surv. Paleontol. Bull., 77, 1–363, 2010.
Healey, S. L., Thunell, R. C., and Corliss, B. H.: The Mg/Ca-temperature relationship of benthic foraminiferal calcite: New core-top calibrations in the b4 °C temperature range, Earth Planet. Sci. Lett., 272, 523–530, 2008.
Hendy, I. L. and Pedersen, T. F.: Is pore water oxygen content decoupled from productivity on the California Margin? Trace element results from Ocean Drilling Program Hole 1017E, San Lucia slope, California, Paleoceanogr., 20, PA4026, https://doi.org/10.1029/2004PA001123, 2005.
Holbourn, A., Henderson, A. S., Macleod, N.: Atlas of Benthic Foraminifera, 1–642, 2013.
Horikawa, K., Asahara, Y., Yamamoto, K., and Okazaki, Y.: Intermediate water formation in the Bering Sea during glacial periods: Evidence from neodymium isotope ratios, Geol., 38, 435–438, 2010.
Hut, G.: Consultants group meeting on stable isotope reference samples for geochemical and hydrological investigations Rep. to Dir. Gen., Int. At. Energy Agency, Vienna, 42 pp., 1987.
Itaki, T.: Preliminary report on radiocarbon ages and radiolarian fossils in core GH08-2004 obtained from east off the Okinawa Island, the western Philippine Sea, GSJ Interim report, 51, 171–175, 2010 (in Japanese).
Itaki, T., Katayama, H., Ikehara, K., Suzuki, A., Kaneko, N., Kawamura, N., and Geshi, N.: Bottomo Sediments in east off the Okinawa main island, GSJ Interim report, 46, 47–65, 2009a (in Japanese).
Itaki, T., Katayama, H., Ikehara, K., Suzuki, A., Kawamura, and N., Sato, K.: Oceanographic conditions in east off the Okinawa main island, GSJ Interim report, 46, 66–77, 2009b (in Japanese).
Itaki, T., Katayama, H., Ikehara, K., Suzuki, A., Kaneko, N., Oda, K., and Arai, K.: Bottom sediments in west off the Okinawa main island, GSJ Interim report, 51, 54–68, 2010 (in Japanese).
Itaki, T., Amano, A., Katayama, H., Suzuki, A., Kaneko, Nishida, N., Shimamura, M., Lee, S., and K., and Arai, K.: Bottom sediments in west off the Okinawa main island (around Kume-Zima and Kerama islands), GSJ Interim report, 55, 57–67, 2011a (in Japanese).
Itaki, T., Amano, A., Katayama, H., and Ikehara, K.: Sediemnt cores in west off the Okinawa main island and their radiocarbon ages, GSJ Interim report, 55, 76–84, 2011b (in Japanese).
Jaccard, S. L. and Galbraith, E. D.: Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation, Geophys. Res. Lett., 40, 199–203, https://doi.org/10.1029/2012GL054118, 2013.
Kaneko, I., Takatsuki, Y., and Kamiya, H.: Circulation of Intermediate and Deep Waters in the Philippine Sea, J. Oceanogr., 57, 397–420, 2001.
Keigwin, L. D.: Glacial-age hydrography of the far northwest Pacific, Paleoceanogr., 13, 323–339, 1998.
Keigwin, L. D. and Jones, G. A.: Deglacial climate oscillations in the Gulf of California, Paleoceanogr., 5, 1009–1023, https://doi.org/10.1029/PA005i006p01009, 1990.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004.
Kitagawa, H., Fukusawa, H., Nakamura, T., Okamura, M., Takemura, K., Hayashida, A. and Yasuda, Y.: AMS 14C dating of varved sediments from Lake Suigetsu, central Japan and atmospheric 14C change during the late Pleistocene, edited by: Cook, G. T., Harkness, D. D., Miller, B. F., and Scott, E. M., Proceedings of the 15th International 14C Conference, Radiocarbon, 37, 371–378, 1995.
Kitani, K.: An oceanographic study of the Okhotsk Sea-particularly in regard to cold waters, Bull. Far Sea Fish. Res. Lab., 9, 45–77, 1973.
Komatsu, K., Hiroe, Y., Yasuda, I., Kawasaki, K., Joyce, T. M. and Bahr, F.: Hydrographic structure and transport of intermediate water in the Kuroshio region off the Boso Peninsula, Japan, J. Oceanogr., 60, 487–503, 2004.
Kroopnick, P.: The distribution of carbon-13 in the world oceans, Deep-Sea Res., 32, 57–84, 1985.
Ku, T.-L. and Oba, T.: A method of quantitative evaluation of calcite dissolution in deep sea sediments and its application to paleoceanographic reconstruction, Quat. Res., 10, 112–129, 1978.
Kubota, Y., Kimoto, K., Tada, R., Oda, H., Yokoyama, Y., and Matsuzaki, H.: Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea, Paleoceanography, 25, PA4205, https://doi.org/10.1029/2009PA001891, 2010.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal Mg/Ca paleothermometry: a revised core-top calibration, Geochim. Cosmochim. Acta, 66, 3375–3387, 2002.
Lee, K. E., Lee, H. J., Park, J.-H., Chang, Y.-P., Ikehara, K., Itaki, T., and Kwon, H. K.: Stability of the Kuroshio path with respect to glacial sea level lowering, Geophys. Res. Lett., 40, 1–5, https://doi.org/10.1012/grl.50102, 2013.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I. , Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 73, 40 pp., 2013.
Lutze, G. F. and Thiel, H.: Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis, J. Foraminiferal Res., 19, 153–158, 1989.
Martin, P. A., Lea, D. W., Rosenthal, Y., Shackleton, N. J., Sarnthein, M., and Papenfuss, T.: Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca, Earth Planet. Sci. Lett., 222, 275–283, 2002.
Marchitto, T. M., Bryan, S. P., Curry, W. B., and McCorkle, D. C.: Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma, Paleoceanogr., 22, PA1203, https://doi.org/10.1029/2006PA001287, 2007.
Matsumoto, K., Oba, T., Lynch-Stieglitz, J., and Yamamoto, H.: Interior hydrography and circulation of the glacial Pacific Ocean, Quat. Sci. Rev., 21, 1693–1704, 2002.
Max, L., Riethdorf, J.-R., Tiedemann, R., Smirnova, M., Lembke-Jene, L., Fahl, K., Nürnberg, D., Matul, A., and Mollenhauer, G.: Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15 000 years, Paleoceanography, 27, PA3213, https://doi.org/10.1029/2012PA002292, 2012.
McCorkle, D. C., Keigwin, L. D., Corliss, B. H., and Emerson, S. R.: The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera, Paleoceanogr., 5, 161–185, 1990.
McCorkle, D. C., Corliss, B. H., and Farnham, C. A.: Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins, Deep-Sea Res., 44, 983–1024, 1997.
Mekik, F. A., Loubere, P. W., and Archer, D. E.: Organic carbon flux and organic carbon to calcite flux ratio recorded in deep-sea carbonates: Demonstration and a new proxy, Global Biogeochem. Cy., 16, 1052, https://doi.org/10.1029/2001GB001634, 2002.
Ogi, M. and Tachibana, Y.: Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge, Geophys. Res. Lett., 33, L08709, https://doi.org/10.1029/2006GL025838, 2006.
Ohkushi, K., Itaki, T., and Nemoto, N.: Last Glacial–Holocene change in intermediate-water ventilation in the Northwestern Pacific, Quat. Sci. Rev., 22, 1477–1484, 2003.
Okazaki, Y., Timmermann, A., Menviel, L., Harada, N., Abe-Ouchi, A., Chikamoto, M. O., Mouchet, A., and Asahi, H.: Deepwater formation in the North Pacific during the last glacial termination, Science, 329, 200–204, 2010.
Okazaki, Y., Sagawa, T., Asahi, H., Horikawa, K., and Onodera, J.: Ventilation changes in the western North Pacific since the last glacial period, Clim. Past, 8, 17–24, https://doi.org/10.5194/cp-8-17-2012, 2012.
O'Neil, J. R.: Hydrogen and oxygen isotope fractionation between ice and water, J. Phys. Chemist., 72, 3683–3684, 1968.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K.: Oxygen isotope fractionation in divalent metal carbonates, J. Chem. Phys., 51, 5547–5558, 1969.
Pelletier, G., Lewis, E., and Wallace, D.: A calculator for the CO2 system in seawater for Microsoft Excel/VBA, Washington State Department of Ecology, Olympia, WA, Brookhaven National Laboratory, Upton, NY, USA, 2005.
Qu, T. and Lindstrom, E. J.: Northward Intrusion of Antarctic Intermediate Water in the Western Pacific, J. Phys. Oceanogr., 34, 2104–2118, 2004.
Rae, J. W. B., Sarnthein, M., Foster, G. L., Ridgwell, A., Grootes, P. M., and Elliott, T.: Deep water formation in the North Pacific and deglacial CO2 rise, Paleoceanography, 29, 2013PA002570, 2014.
Raitzsch, M., Kuhnert, H., Groeneveld, J., and Bickert, T.: Benthic foraminifer Mg/Ca anomalies in South Atlantic core top sediments and their implications for Paleothermometry, Geochem. Geophys. Geosyst., 9, Q05010, https://doi.org/10.1029/2007GC001788, 2008.
Rathburn, A. E. and Corliss, B. H.: The ecology of living (stained) deep-sea benthic foraminifera from the Sulu Sea, Paleoceanogr., 9, 87–150, https://doi.org/10.1029/93PA02327, 1994.
Rathburn, A. E. and De Decker, P.: Magnesium and strontium compositions of recent benthic foraminifera from the Coral Sea, Australia and Prydz Bay, Antarctica, Mar. Micropaleontol., 32, 231–248, 1997.
Regenberg, M., Regenberg, A., Garbe-Schönberg, D., and Lea, D. W.: Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcite-saturation state of bottom waters, Paleoceanography, 29, 127–142, https://doi.org/10.1002/2013PA002492, 2014.
Reid, J. L.: Intermediate waters of the Pacific Ocean, Johns Hopkins Oceanographic Studies, No. 2, 85 pp., 1965.
Reid, J. L.: On the total geostrophic circulation of the Pacific ocean: Flow patters, tracers, and transports, Prog. Oceanogr., 39, 263–352, 1997.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S.,Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50 000 years cal BP, Radiocarbon, 51, 1111–1150, 2009.
Rella, S. F. and Uchida, M.: A Southern Ocean trigger for Northwest Pacific ventilation during the Holocene?, Scientific Reports, 4, 4046, https://doi.org/10.1038/srep04046, 2014.
Rella, S. F., Tada, R., Nagashima, K., Ikehara, M., Itaki, T., Ohkushi, K., Sakamoto, T., Harada, N., and Uchida, M.: Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period, Paleoceanogr., 27, PA3203, https://doi.org/10.1029/2011PA002205, 2012.
Roche, D., Paillard, D., Ganopolski, A., and Hofmann G.: Oceanic oxygen-18 at the present day and LGM: equilibrium simulations with a coupled climate model of intermediate complexity, Earth Planet. Sci. Lett., 218, 317–330, 2004.
Rosenthal, Y., Boyle, E. A., and Slowey, N.: Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahamas Bank: Prospects for thermocline paleoceanography, Geochim. Cosmochim. Acta, 61, 3633–3643, 1997.
Russell, A. D., Emerson, S., Mix, A. C., and Peterson, L. C.: The use of foraminiferal uranium/calcium ratios as an indicator of changes in seawater uranium content, Paleoceanogr., 11, 649–663, 1994.
Sagawa, T. and Ikehara, K.: Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation, Geophys. Res. Lett., 35, L24702, https://doi.org/10.1029/2008GL035133, 2008.
Sarnthein, M., Schneider, B., and Grootes, P. M.: Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean, Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, 2013.
Schmidt, G. A., Bigg, G. R., and Rohling, E. J.: Global Seawater Oxygen-18 Database – v1.21, available at: http://data.giss.nasa.gov/o18data/ (last access: 7 May 2015), 1999.
Schmittner, A.: Marine nutrient cycling – How will the ocean's capacity of biological carbon pumping change?, PAGES news, 20, p. 17, 2012.
Schmitz, W. J.: On the world ocean circulation: Volume II, The Pacific and Indian Ocean/A Global Update, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 237 pp., 1996.
Schlitzer, R.: OceanDataViewSoftware, available at: http://odv.awi.de/ (last access: 7 May 2015), 2009.
Schrag, D. P., Adkins, J. F., McIntyre, K., Alexander, J. L., Hodell, D. A., Charles, C. D., and McManus, J. F.: The oxygen isotopic composition of seawater during the Last Glacial Maximum, Quat. Sci. Rev., 21, 331–342, 2002.
Seki, O., Kawamura, K., Ikehara, M., Nakatsuka, T., and Oba, T.: Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs, Org. Geochem., 35, 347–354, 2004.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial, Centre National de la Recherche Scientifique, Coll. Inter, 219, 203–209, 1974.
Shackleton, N. J., Hall, M. A., and Boersma, A.: Oxygen and carbon isotope data from Leg 74 foraminifers, DSDP Init. Repts., 74, 599–612, 1984.
Sharp, Z.: Principles of Stable Isotope Geochemistry, Pearson Education Inc., Upper Saddle River, NJ, USA, 344 pp., 2007.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859–869, 2000.
Stommel, H.: Thermohaline convection with two stable regimes of flow, Tellus, 13, 224–230, 1961.
Stuiver, M. and Reimer, P. J.: Extended 14C database and revised CALIB radiocarbon calibration program, Radiocarbon, 35, 215–230, 1993.
Suzuki, A., Kawamura, N., Itaki, T., Katayama, H., Murayama, S., Usami, T., and Kuroyanagi, A.: Geochemical analyses on sweater samples collected during the GH08 cruise in the eastern offshore of Okinawa Island, GSJ Interim Report, 46, 78–83, 2009. (in Japanese)
Suzuki, A., Ushie, H., Shinmen, K., Amano, A., Kaneko, N., Itaki, T., Katayama, H., Inamura, A., Yasuda, M., Yoshinaga, Y., Murayama, S., and Udami, T.: Geochemical analyses on seawater samples collected during the GH09 cruise in the western off shore of Okinawa Island, GSJ Interim Report, 51, 76–85, 2010. (in Japanese)
Sverdrup, H., Johnson, M. W., and Fleming, R. H.: The Oceans, Their Physics, Chemistry, and General Biology, Prentice-Hall, New York, 1087 pp., 1942.
Tada, R., Sato, S., Irino, T., Matsui, H., and Kennett, J. P.: Millennialscale compositional variations in late Quaternary sediments at Site 1017, Southern California, Proc. Ocean Drill. Program, Sci. Results, 167, 277–296, 2000.
Talley, L. D.: An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific, Deep-Sea Res., 38, S171–S190, 1991.
Talley, L. D.: Distribution and Formation of North Pacific Intermediate Water, J. Phys. Oceanogr., 23, 517–537, 1993.
Talley, L.D.: Antarctic Intermediate Water in the South Atlantic, The South Atlantic: Present and Past Circulation, 219–238, 1996.
Tisserand, A. A., Dokken, T. M., Waelbroeck, C., Gherardi J.-M., Scao, V., Fontanier, C., and Jorissen, F.: Refining benthic foraminiferal Mg/Ca-temperature calibrations using core-tops from the western tropical Atlantic: Implication for paleotemperature estimation, Geochem. Geophys. Geosyst., 14, 929–946, https://doi.org/10.1002/ggge.20043, 2013.
Toyofuku, T., Kitazato, H., Kawahata, H., Tsuchiya, M., and Nohara, M.: Evaluation of Mg/Ca thermometry in foraminifera: Comparison of experimental results and measurements in nature, Paleoceanogr., 15, 456–464, 2000.
Tsuchiya, M. and Talley, L.D.:A Pacific hydrographic section at 881W: water property distribution, J. Geophys. Res., 103, 12899–12918, 1998.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea level and deep water temperature changes derived from benthic foraminifera isotopic records, Quat. Sci. Rev., 21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
Wan, S. and Jian, Z.: Deep water exchanges between the South China Sea and the Pacific since the last glacial period, Paleoceanography, 29, 1162–1178, 2014.
Warren, B. A.: Why is no deep water formed in the North Pacific, J. Mar. Res., 41, 327–347, https://doi.org/10.1357/002224083788520207, 1983.
Yasuda, I.: The origin of the North Pacific Intermediate Water, J. Geophys. Res., 102, 893–909, 1997.
Yasuda, I.: North Pacific Intermediate Water: progress in SAGE (Subarctic Gyre Experiment) and related projects, J. Oceanogr., 60, 385–395, 2004.
Yoneda, M., Uno, H., Shibata, Y., Suzuki, R., Kumamoto, Y., Yoshida, K., Sasaki, T., Suzuki, A., and Kawahata, H.: Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells, Nucl. Instr. Meth. B, 259, 432–437, 2007.
Yu, J. and Elderfield, H.: Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature vs. carbonate ion saturation, Earth Planet Sci. Lett., 276, 129–139, 2008.
Yu, J., Anderson, R. F., and Rohling, E. J.: Deep Ocean Carbonate Chemistry and Glacial-Interglacial Atmospheric CO2 Changes, Oceanogr., 27, 16–25, https://doi.org/10.5670/oceanog.2014.04, 2014.
Zweng, M. M, Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 74, 39 pp., 2013.
Special issue