Articles | Volume 11, issue 2
https://doi.org/10.5194/cp-11-283-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-283-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Two distinct decadal and centennial cyclicities forced marine upwelling intensity and precipitation during the late Early Miocene in central Europe
Institute for Earth Sciences, University of Graz, NAWI Graz, Heinrichstrasse 26, 8010 Graz, Austria
W. E. Piller
Institute for Earth Sciences, University of Graz, NAWI Graz, Heinrichstrasse 26, 8010 Graz, Austria
M. Harzhauser
Natural History Museum Vienna, Geological-Paleontological Department, Burgring 7, 1010 Vienna, Austria
Related authors
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
Benjamin Fredericks Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-28, https://doi.org/10.5194/cp-2024-28, 2024
Revised manuscript accepted for CP
Short summary
Short summary
It is known that there was a lack of coral reefs in the Central Indo-Pacific during the Pliocene. The cause of this is unknown. This study uses a new SST record biased on biomarkers from the Coral Sea between 11–2 Ma to demonstrate a 2-degree cooling in the Central Indo-Pacific as part of the Late Miocene Cooling. When combined with other impacts associated with this event, this might explain the collapse of coral reefs. The new data shows the importance of SST changes in Coral Reef loss.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
David De Vleeschouwer, Theresa Nohl, Christian Schulbert, Or M. Bialik, and Gerald Auer
Sci. Dril., 32, 43–54, https://doi.org/10.5194/sd-32-43-2023, https://doi.org/10.5194/sd-32-43-2023, 2023
Short summary
Short summary
Differences exist in International Ocean Discovery Program (IODP) sediment lithification depending on the coring tool used. Advanced piston corers (APCs) display less pronounced lithification compared to extended core barrels (XCBs) of the same formation. The difference stems from the destruction of early cements between sediment grains and an
acoustic compactioncaused by the piston-core pressure wave. XCB cores provide a more accurate picture of the lithification of the original formation.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
Benjamin Fredericks Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-28, https://doi.org/10.5194/cp-2024-28, 2024
Revised manuscript accepted for CP
Short summary
Short summary
It is known that there was a lack of coral reefs in the Central Indo-Pacific during the Pliocene. The cause of this is unknown. This study uses a new SST record biased on biomarkers from the Coral Sea between 11–2 Ma to demonstrate a 2-degree cooling in the Central Indo-Pacific as part of the Late Miocene Cooling. When combined with other impacts associated with this event, this might explain the collapse of coral reefs. The new data shows the importance of SST changes in Coral Reef loss.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
David De Vleeschouwer, Theresa Nohl, Christian Schulbert, Or M. Bialik, and Gerald Auer
Sci. Dril., 32, 43–54, https://doi.org/10.5194/sd-32-43-2023, https://doi.org/10.5194/sd-32-43-2023, 2023
Short summary
Short summary
Differences exist in International Ocean Discovery Program (IODP) sediment lithification depending on the coring tool used. Advanced piston corers (APCs) display less pronounced lithification compared to extended core barrels (XCBs) of the same formation. The difference stems from the destruction of early cements between sediment grains and an
acoustic compactioncaused by the piston-core pressure wave. XCB cores provide a more accurate picture of the lithification of the original formation.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Ángela García-Gallardo, Patrick Grunert, and Werner E. Piller
Clim. Past, 14, 339–350, https://doi.org/10.5194/cp-14-339-2018, https://doi.org/10.5194/cp-14-339-2018, 2018
Short summary
Short summary
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic inflow across the mid-Pliocene warm period and the onset of the Northern Hemisphere glaciation, still unresolved by previous works. Oxygen isotope gradients between both sides of the Strait of Gibraltar reveal weak inflow during warm periods that turns stronger during severe glacials and the start of a negative feedback between exchange at the Strait and the Atlantic Meridional Overturning Circulation.
Juliane Meyer, Claudia Wrozyna, Albrecht Leis, and Werner E. Piller
Biogeosciences, 14, 4927–4947, https://doi.org/10.5194/bg-14-4927-2017, https://doi.org/10.5194/bg-14-4927-2017, 2017
Short summary
Short summary
Isotopic signatures of ostracods from Florida correlate with their host water, implying a regional influence of temperature and precipitation. Calculated monthly configurations of a theoretical calcite formed in rivers were compared to ostracod isotope compositions. The data suggest a seasonal shell formation during early spring that is coupled to the hydrological cycle of the region. The surprising seasonality of the investigated ostracods is of importance for paleontological interpretation.
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
M. Reuter, W. E. Piller, M. Harzhauser, and A. Kroh
Clim. Past, 9, 2101–2115, https://doi.org/10.5194/cp-9-2101-2013, https://doi.org/10.5194/cp-9-2101-2013, 2013
Cited articles
Adamek, J., Brzobohaty, R., Palensky, P., and Sikula, J.: The Karpatian in the Carpathian Foredeep (Moravia), in The Karpatian - A Lower Miocene Stage of the Central Paratethys, edited by R. Brzobohaty, I. Cicha, M. Kovác, and F. Rögl, Masaryk University, Brno, 75–89, 2003.
Amore, F. O., Flores, J. A., Voelker, A. H. L., Lebreiro, S. M., Palumbo, E., and Sierro, F. J.: A Middle Pleistocene Northeast Atlantic coccolithophore record: Paleoclimatology and paleoproductivity aspects, Mar. Micropaleontol., 90–91, 44–59, 2012.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton: Book 1. Ortholithae (Discoasters), Micropaleontology Press, New York, 1984.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton: Book 2. Ortholithae (Holococcoliths, Ceratoliths, Ortholiths and Others), Micropaleontology Press, New York, 1988.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton: Book 3. Ortholithae (Pentaliths, and Others), Heliolithae (Fasciculiths, Sphenoliths and Others), Micropaleontology Press, New York, 1989.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton: Book 4. Heliolithae (Helicoliths, Cribriliths, Lopadoliths and Others), Micropaleontology Press, New York, 1990.
Aubry, M.-P.: Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration, in: Eocene-Oligocene Climatic and Biotic Evolution, edited by: Prothero, D. R. and Berggren, W. A., Princeton University Press, New Jersey, 272–208, 1992.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton: Book 5: Heliolithae (Zygoliths and Rhabdoliths), Micropaleontology Press, New York, 1999.
Auer, G. and Piller W.E., Harzhauser M.: High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene, Mar. Micropaleontol., 111, 53–65, 2014.
Álvarez, M. C., Flores, J. A., Sierro, F. J., Diz, P., Francés, G., Pelejero, C., and Grimalt, J. O.: Millennial surface water dynamics in the Ría de Vigo during the last 3000 years as revealed by coccoliths and molecular biomarkers, Palaeogeogr, Palaeoclimatol. Palaeoecol., 218, 1–13, 2005.
Backman, J., Raffi, I., Rio, D., Fornaciari, E., and Pälike, H.: Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 45, 221–244, 2012.
Behl, R. J.: Sedimentary facies and sedimentology of the late quaternary Santa Barbara Basin, Site 893, edited by: Kennett, J. P., Baldauf, J. G., and Lyle, M., Proc. ODP, Sci. Results, 146, 295–308, 1995.
Berner, R. A.: A new geochemical classification of sedimentary environments, J. Sediment. Petrol., 51, 359–365, 1981.
Berner, R. A. and Raiswell, R.: C/S method for distinguishing freshwater from marine sedimentary rocks, Geology, 12, 365–368, 1984.
Böhme, M.: The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe, Palaeogeogr. Palaeoclimatol. Palaeoecol., 195, 389–401, 2003.
Bown, P. R. and Young, J. R.: Techniques, in Calcareous Nannofossil Biostratigraphy, edited by: Bown, P. R., Chapman & Hall, Cambridge, 16–28, 1998.
Burnett, J. A.: Upper Cretaceous, in: Calcareous Nannofossil Biostratigraphy, edited by: Bown, P. R., Chapman & Hall, Cambridge, 132–199, 1998.
Cachão, M. and Moita, M. T.: Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia, Mar. Micropaleontol., 39, 131–155, 2000.
Chapman, M. R., Shackleton, N. J., and Chapman, M. R.: Evidence of 550-year and 1000-year cyclicities in North Atlantic circulation patterns during the Holocene, The Holocene, 10, 287–291, 2000.
Couapel, M. J. J., Beaufort, L., Jones, B. G., and Chivas, A. R.: Late Quaternary marginal marine palaeoenvironments of northern Australia as inferred from cluster analysis of coccolith assemblages, Mar. Micropaleontol., 65, 213–231, 2007.
Damon, P. E. and Sonett, C. P.: Solar and terrestrial components of the atmospheric C-14 variation spectrum, in: The Sun in Time, vol. 1, edited by: Sonett, C. P., Giampapa, M. S., and Matthews, M. S., Tuscon, AZ, University of Arizona Press, 360–388 1991.
Dean, W., Anderson, R., Platt Bradbury, J., and Anderson, D.: A 1500-year record of climatic and environmental change in Elk Lake, Minnesota I: Varve thickness and gray-scale density, J. Paleolimnol., 27, 287–299–299, 2002.
Dean, W. E. and Schwalb, A.: Holocene environmental and climatic change in the Northern Great Plains as recorded in the geochemistry of sediments in Pickerel Lake, South Dakota, Quatern. Int., 67, 5–20, 2000.
Dellmour, R. and Harzhauser, M.: The Iváň Canyon, a large Miocene canyon in the Alpine-Carpathian Foredeep, Mar. Petrol. Geol., 38, 83–94, 2012.
Di Rita, F.: A possible solar pacemaker for Holocene fluctuations of a salt-marsh in southern Italy, Quatern. Int., 288, 239–248, 2013.
Domack, E., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., and Sjunneskog, C.: ODP Leg 178 Scientific Party: Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic, The Holocene, 11, 1–9, 2001.
Erlykin, A. D., Sloan, T., and Wolfendale, A. W.: Correlations of clouds, cosmic rays and solar irradiation over the Earth, J. Atmos. Sol.-Terr. Phy., 72, 151–156, 2010.
Flores, J. A., Sierro, F. J., and Raffi, I.: Evolution of the calcareous nannofossil assemblage as a response to the paleoceanographic changes in the eastern equatorial Pacific Ocean from 4 to 2 Ma (Leg 138, Sites 849 and 852), edited by: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A. A., and van Andel, T. H., Proc. ODP, Sci. Results, College Sation, TX, 138, 163–176, 1995.
Fornaciari, E. and Rio, D.: Latest Oligocene to early middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region, Micropaleontology, 42, 1–36, 1996.
Fornaciari, E., Stefano, A. D., Rio, D., and Negri, A.: Middle Miocene Quantitative Calcareous Nannofossil Biostratigraphy in the Mediterranean Region, Micropaleontology, 42, 37–63, 1996.
Frignani, M., Langone, L., Ravaioli, M., Sorgente, D., Alvisi, F., and Albertazzi, S.: Fine-sediment mass balance in the western Adriatic continental shelf over a century time scale, Mar. Geol., 222–223, 113–133, 2005.
Galloway, J. M., Wigston, A., Patterson, R. T., Swindles, G. T., Reinhardt, E., and Roe, H. M.: Climate change and decadal to centennial-scale periodicities recorded in a late Holocene NE Pacific marine record: Examining the role of solar forcing, Palaeogeogr. Palaeoclimatol. Palaeoecol., 386, 669–689, 2013.
Galović, I. and Young, J. R.: Revised taxonomy and stratigraphy of Middle Miocene calcareous nannofossils of the Paratethys, Micropaleontology, 58, 305–334, 2012.
Girone, A., Maiorano, P., Marino, M., and Kucera, M.: Calcareous plankton response to orbital and millennial-scale climate changes across the Middle Pleistocene in the western Mediterranean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 392, 105–116, 2013.
Gleissberg, W.: A long-periodic fluctuation of the sun-spot numbers, The Observatory, 62, 158–159, 1939.
Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G., Eds.: The Geologic Time Scale 2012, Elsevier, Boston, 2012.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., and White, W.: Solar Influences on Climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Gross, M., Piller, W. E., Scholger, R., and Gitter, F.: Biotic and abiotic response to palaeoenvironmental changes at Lake Pannons' western margin (Central Europe, Late Miocene), Palaeogeogr. Palaeoclimatol. Palaeoecol., 312, 181–193, 2011.
Grunert, P., Harzhauser, M., Rögl, F., Sachsenhofer, R. F., Gratzer, R., Soliman, A., and Piller, W. E.: Oceanographic conditions as a trigger for the formation of an Early Miocene (Aquitanian) Konservat-Lagerstätte in the Central Paratethys Sea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 292, 425–442, 2010a.
Grunert, P., Soliman, A., \'Corić, S., Scholger, R., Harzhauser, M., and Piller, W. E.: Stratigraphic re-evaluation of the stratotype for the regional Ottnangian stage (Central Paratethys, middle Burdigalian), Newsl. Stratigr., 44, 1–16, 2010b.
Grunert, P., Soliman, A., Harzhauser, M., Müllegger, S., Piller, W. E., Roetzel, R., and Rögl, F.: Upwelling conditions in the Early Miocene Central Paratethys Sea, Geologica Carpathica, 61, 129–145, 2010c.
Grunert, P., Soliman, A., \'Corić, S., Roetzel, R., Harzhauser, M., and Piller, W. E.: Facies development along the tide-influenced shelf of the Burdigalian Seaway: An example from the Ottnangian stratotype (Early Miocene, middle Burdigalian), Mar. Micropaleontol., 84/85, 14–36, 2012.
Hammer, Ø.: Time series analysis with Past, Website of the Natural History Museum, University Oslo, 1–18, available at: http://nhm2.uio.no/norlex/past/TimeseriesPast.pdf (last access: 12 August 2012), 2010.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron., 4, 1–9, 2001.
Haq, B. U.: Biogeographic history of Miocene calcareous nannoplankton and paleoceanography of the Atlantic Ocean, Micropaleontology, 26, 414–443, 1980.
Harzhauser, M. and Piller, W. E.: Benchmark data of a changing sea – Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 253, 8–31, 2007.
Harzhauser, M., Mandic, O., Kern, A. K., Piller, W. E., Neubauer, T. A., Albrecht, C., and Wilke, T.: Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing, Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, 2013.
Hohenegger, J. and Wagreich, M.: Time calibration of sedimentary sections based on insolation cycles using combined cross-correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin, Austria) as an example, Int. J. Earth. Sci. (Geol. Rundsch.), 101, 339–349, 2011.
Hohenegger, J., \'Corić, S., Khatun, M., Pervesler, P., Rögl, F., Rupp, C., Selge, A., Uchman, A., and Wagreich, M.: Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core, Int. J. Earth. Sci. (Geol. Rundsch.), 98, 915–930, 2009.
Incarbona, A., Ziveri, P., Di Stefano, E., Lirer, F., Mortyn, G., Patti, B., Pelosi, N., Sprovieri, M., Tranchida, G., Vallefuoco, M., Albertazzi, S., Bellucci, L. G., Bonanno, A., Bonomo, S., Censi, P., Ferraro, L., Giuliani, S., Mazzola, S., and Sprovieri, R.: The impact of the Little Ice Age on coccolithophores in the Central Mediterranean Sea, Clim. Past, 6, 795–805, https://doi.org/10.5194/cp-6-795-2010, 2010.
Kern, A. K., Harzhauser, M., Mandic, O., Roetzel, R., \'Corić, S., Bruch, A. A., and Zuschin, M.: Millennial-scale vegetation dynamics in an estuary at the onset of the Miocene Climate Optimum, Palaeogeogr. Palaeoclimatol. Palaeoecol., 304, 247–261, 2011.
Kern, A. K., Harzhauser, M., Piller, W. E., Mandic, O., and Soliman, A.: Strong evidence for the influence of solar cycles on a Late Miocene lake system revealed by biotic and abiotic proxies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 329/330, 124–136, 2012.
Kern, A. K., Harzhauser, M., Soliman, A., Piller, W. E., and Mandic, O.: High-resolution analysis of upper Miocene lake deposits: Evidence for the influence of Gleissberg-band solar forcing, Palaeogeogr. Palaeoclimatol. Palaeoecol., 370, 167–183, 2013.
Kerr, R. A.: Link Between Sunspots, Stratosphere Buoyed, Science, 284, 234–235, 1999.
Kristjánsson, J. E., Kristiansen, J., and Kaas, E.: Solar activity, cosmic rays, clouds and climate – an update, Adv. Space Res., 34, 407–415, 2004.
Kuypers, M. M. M., Lourens, L. J., Rijpstra, W. I. C., Pancost, R. D., Nijenhuis, I. A., and Sinninghe Damsté, J. S.: Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2, Earth Planet. Sci. Lett., 228, 465–482, 2004.
Lenz, O. K., Wilde, V., Riegel, W., and Harms, F.-J.: A 600 ky record of El Niño–Southern Oscillation (ENSO): Evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe, Geology, 38, 627–630, 2010.
Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., and Prather, M.: Historical Overview of Climate Change Science, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 1, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. M. B., and Miller, H. L., Cambridge University Press, United Kingdom and New York, NY, USA, 94–127, 2007.
Lindqvist, J. K. and Lee, D. E.: High-frequency paleoclimate signals from Foulden Maar, Waipiata Volcanic Field, southern New Zealand: An Early Miocene varved lacustrine diatomite deposit, Sediment. Geol., 222, 98–110, 2009.
Martinez-Ruiz, F., Kastner, M., Gallego-Torres, D., Rodrigo-Gámiz, M., Nieto-Moreno, V., and Ortega-Huertas, M.: Paleoclimate and paleoceanography over the past 20 000 years in the Mediterranean Sea Basins as indicated by sediment elemental proxies, Quat. Sci. Rev., 107, 25–46, 2015.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in Proceedings of the Second Planktonic Conference Roma 1970, vol. 2, edited by: Farinacci, A., Edizioni Tecnoscienza, Rome, 739–785, 1971.
Maynard, J. B.: Extension of Berner's "New geochemical classification of sedimentary environments" to ancient sediments, J. Sediment. Petrol., 52, 1325–1331, 1982.
Mertens, K. N. J. M., Lynn, M., Aycard, M., Lin, H.-L., and Louwye, S.: Coccolithophores as palaeoecological indicators for shifts of the ITCZ in the Cariaco Basin during the late Quaternary, J. Quaternary Sci., 24, 159–174, 2009.
Meyers, P. A. and Arnaboldi, M.: Trans-Mediterranean comparison of geochemical paleoproductivity proxies in a mid-Pleistocene interrupted sapropel, Palaeogeogr. Palaeoclimatol. Palaeoecol., 222, 313–328, 2005.
Negri, A. and Giunta, S.: Calcareous nannofossil paleoecology in the sapropel S1 of the eastern Ionian sea: paleoceanographic implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 169, 101–112, 2001.
Nehyba, S. and Petrová, P.: Karpatian sandy deposits in the southern part of the Carpathian Foredeep in Moravia, Bull. Czech Geol. Surv., 75, 53–66, 2000.
Ogurtsov, M. G., Nagovitsyn, Y. A., Kocharov, G. E., and Jungner, H.: Long-Period Cycles of the Sun's Activity Recorded in Direct Solar Data and Proxies, Sol. Phys., 211, 371–394, 2002.
Okada, H. and Honjo, S.: The distribution of oceanic coccolithophorids in the Pacific, Deep-Sea Res., 20, 355–374, 1973.
Okada, H. and Wells, P.: Late Quaternary nannofossil indicators of climate change in two deep-sea cores associated with the Leeuwin Current off Western Australia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 131, 413–432, 1997.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs time-series analysis, Eos Trans. AGU, 77, 379–379, 1996.
Patterson, R. T., Prokoph, A., and Chang, A.: Late Holocene sedimentary response to solar and cosmic ray activity influenced climate variability in the NE Pacific, Sediment. Geol., 172, 67–84, 2004.
Patterson, R. T., Chang, A. S., Prokoph, A., Roe, H. M., and Swindles, G. T.: Influence of the Pacific Decadal Oscillation, El Niño-Southern Oscillation and solar forcing on climate and primary productivity changes in the northeast Pacific, Quatern. Int., 310, 1–16, 2013.
Perch-Nielsen, K.: Cenozoic Calcareous Nanofossils, in Plankton Stratigraphy Volume 1, vol. 1, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., Cambridge University Press, Cambridge, 427–554, 1985a.
Perch-Nielsen, K.: Mesozoic Calcareous Nannofossils, in Plankton Stratigraphy Volume 1, vol. 1. Planktic foraminifera, calcareous nannofossils and calpionellids, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., Cambridge University Press, Cambridge., 329–426, 1985b.
Piller, W. E., Harzhauser, M., and Mandic, O.: Miocene Central Paratethys stratigraphy–current status and future directions, Stratigraphy, 4, 71–88, 2007.
Raspopov, O. M., Dergachev, V. A., Esper, J., Kozyreva, O. V., Frank, D., Ogurtsov, M. G., Kolström, T., and Shao, X.: The influence of the de Vries ( 200-year) solar cycle on climate variations: Results from the Central Asian Mountains and their global link, Palaeogeogr. Palaeoclimatol. Palaeoecol., 259, 6–16, 2008.
Roetzel, R. and Schnabel, W.: Molasse, Waschbergzone, Paläogen und Neogen auf der Böhmischen Masse, in: Legende und Kurzerläuterung der Geologischen Karte von Niederösterreich, 1:200.000, edited by: W. Schnabel, Geologische Bundesanstalt, Vienna, 23–30, 2002.
Roetzel, R., \'Corić, S., Galović, I., and Rögl, F.: Early Miocene (Ottnangian) coastal upwelling conditions along the southeastern scarp of the Bohemian Massif (Parisdorf, Lower Austria, Central Paratethys), Beitr. Paläont., 30, 387–413, 2007.
Rohling, E. J.: Review and new aspects concerning the formation of eastern Mediterranean sapropels, Mar. Geol., 122, 1–28, 1994.
Sanchez-Cabeza, J. A., Masqué, P., Ani-Ragolta, I., Merino, J., Frignani, M., Alvisi, F., Palanques, A., and Puig, P.: Sediment accumulation rates in the southern Barcelona continental margin (NW Mediterranean Sea) derived from 210 Pb and 137 Cs chronology, Prog. Oceanogr., 44, 313–332, 1999.
Santos, F., Gómez-Gesteira, M., deCastro, M., and Álvarez, I.: Upwelling along the western coast of the Iberian Peninsula: dependence of trends on fitting strategy, Clim. Res., 48, 213–218, 2011.
Schimmelmann, A., Lange, C. B., and Meggers, B. J.: Palaeoclimatic and archaeological evidence for a 200-yr recurrence of floods and droughts linking California, Mesoamerica and South America over the past 2000 years, The Holocene, 13, 763–778, 2003.
Schulz, H. M., Bechtel, A., and Sachsenhofer, R. F.: The birth of the Paratethys during the Early Oligocene: From Tethys to an ancient Black Sea analogue?, Global Planet. Change, 49, 163–176, 2005.
Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci., 28, 421–426, 2002.
Schwabe, H.: Sonnen – Beobachtungen im Jahre 1843, Astronomische Nachrichten, 21, 234–235, 1844.
Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P.: Solar Cycle Variability, Ozone, and Climate, Science, 284, 305–308, 1999.
Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., and Waple, A.: Solar Forcing of Regional Climate Change During the Maunder Minimum, Science, 294, 2149–2152, 2001.
Silva, A., Palma, S., and Moita, M. T.: Coccolithophores in the upwelling waters of Portugal: Four years of weekly distribution in Lisbon bay, Cont. Shelf Res., 28, 2601–2613, 2008.
Sokal, R. R. and Rohlf, F. J.: Biometry, 3rd ed., W. H. Freeman and Company, New York, 1995.
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., and Beer, J.: Unusual activity of the Sun during recent decades compared to the previous 11 000 years, Nature, 431, 1084–1087, 2004.
Spezzaferri, S. and \'Corić, S.: Ecology of Karpatian (Early Miocene) foraminifers and calcareous nannoplankton from Laa an der Thaya, Lower Austria: A statistical approach, Geol. Carpathica, 52, 361–374, 2001.
Spezzaferri, S., \'Corić, S., Hohenegger, J., and Rögl, F.: Basin-scale paleobiogeography and paleoecology: an example from Karpatian (Latest Burdigalian) benthic and planktonic foraminifera and calcareous nannofossils from the Central Paratethys, Geobios, 35, 241–256, 2002.
Stanley, S. M., Ries, J. B., and Hardie, L. A.: Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk, Geology, 33, 593–596, 2005.
Stax, R. and Stein, R.: Data Report: Organic Carbon and Carbonate Records from Detroit Seamount and Patton-Murray Seamount: Results from Sites 882 and 887 (North Pacific Transect), edited by: Rea, D. K., Basov, L. A., Scholl, D. W., and Allan, J. F., Proc. ODP, Sci. Results, College Station, TX, 145, 645–655, 1995.
Stein, R. and Rack, F. R.: A 160 000-year high-resolution record of quantity and composition of organic carbon in the Santa Barbara Basin (Site 893), edited by: Kennett, J. P., Baldauf, J. G., and Lyle, M., Proc. ODP, Sci. Results, College Station, TX, 146, 125–138, 1992.
Stuiver, M. and Braziunas, T. F.: Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships, The Holocene, 3, 289–305, 1993.
Stuiver, M., Grootes, P. M., and Braziunas, T. F.: The GISP2 δ18O climate record of the past 16 500 years and the role of the sun, ocean, and volcanoes, Quaternary Res., 44, 341–354, 1995.
Svabenicka, L., \'Corić, S., Andreyeva-Grigorovich, A. S., Halasova, E., Marunteanu, M., Nagymarosy, A., and Oszczypko-Clowes, M.: Central Paratethys Karpatian Calcareous Nannofossils, in: The Karpatian – A Lower Miocene Stage of the Central Paratethys, edited by: Brzobohaty, R., Cicha, I., Kovác, M., and Rögl, F., Masaryk University, Brno, 151–167, 2003.
Svensmark, H. and Friis-Christensen, E.: Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phy., 59, 1225–1232, 1997.
Taricco, C., Ghil, M., Alessio, S., and Vivaldo, G.: Two millennia of climate variability in the Central Mediterranean, Clim. Past, 5, 171–181, https://doi.org/10.5194/cp-5-171-2009, 2009.
Thunell, R. C., Tappa, E., and Anderson, D. M.: Sediment fluxes and varve formation in Santa Barbara Basin, offshore California, Geology, 23, 1083–1086, 1995.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, Bull. Amer. Meteor. Soc., 79, 61–78, 1998.
Varol, O.: Palaeogene, in: Calcareous Nannofossil Biostratigraphy, edited by: Bown, P. R., Chapman & Hall, Cambridge, 200–224, 1998.
Villinski, J. C. and Domack, E.: Temporal changes in sedimentary organic carbon δ13C from the Ross Sea, Antarctica: Inferred changes in ecosystems and climate, American Geophysical Union, Abstracts of Ocean Science Meeting, 1998.
Vos, H., Sanchez, A., Zolitschka, B., Brauer, A., and Negendank, J. F. W.: Solar Activity Variations Recorded in Varved Sediments From the Crater Lake, of Holzmaar – a Maar Lake in the Westeifel Volcanic Field, Germany, Surv. Geophys., 18, 163–182, 1997.
Wade, B. S. and Bown, P. R.: Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus, Palaeogeogr. Palaeoclimatol. Palaeoecol., 233, 271–286, 2006.
Wagner, G., Beer, J., Masarik, J., Muscheler, R., Kubik, P. W., Mende, W., Laj, C., Raisbeck, G. M., and Yiou, F.: Presence of the Solar de Vries Cycle ( 205 years) during the Last Ice Age, Geophys. Res. Lett., 28, 303–306, 2001.
Weedon, G. P.: Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles, Cambridge University Press, 2003.
Wolf, R.: Astronomische Mittheilungen LXXIX, Astronomische Mitteilungen der Eidgenössischen Sternwarte Zurich, 8, 317–364, 1892.
Yin, Z. Q., Ma, L. H., Han, Y. B., and Han, Y. G.: Long-term variations of solar activity, Chinese Sci. Bull., 52, 2737–2741, 2007.
Young, J. R.: Neogene, in: Calcareous Nannofossil Biostratigraphy, edited by: Bown, P. R., Chapman & Hall, Cambridge, 225–265, 1998.
Young, J. R., Bown, P. R., and Lees, J. A. (Eds.): Nannotax website, International Nannoplankton Association, available at: http://nannotax.org, last access: 14 March 2013.
Ziveri, P., Baumann, K.-H., Böckel, B., Bollmann, J., and Young, J. R.: Biogeography of selected Holocene coccoliths in the Atlantic Ocean, in: Coccolithophores: From Molecular Processes to Global Impact, edited by: Thierstein, H. R. and Young, J. R., Springer, Berlin, Heidelberg, 403–428, 2004.
Short summary
High-resolution analyses of paleoecological and geochemical proxies give insight into environmental processes and climate variations in the past on a timescale that is relevant for humans. This study, as the first of its kind, aims to resolve cyclic variations of nannofossil assemblages on a decadal to centennial scale in a highly sensitive Early Miocene (~17Ma) shallow marine setting. Our results indicate that solar variation played a major role in shaping short-term climate variability.
High-resolution analyses of paleoecological and geochemical proxies give insight into...