Articles | Volume 11, issue 2
https://doi.org/10.5194/cp-11-217-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-217-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reconstruction of recent climate change in Alaska from the Aurora Peak ice core, central Alaska
A. Tsushima
CORRESPONDING AUTHOR
Institute of Low Temperature Science, Hokkaido University, N19W8, Sapporo 060-0819, Japan
Graduate School of Environmental Science, Hokkaido University, N10W5, Sapporo 060-0810, Japan
S. Matoba
Institute of Low Temperature Science, Hokkaido University, N19W8, Sapporo 060-0819, Japan
T. Shiraiwa
Institute of Low Temperature Science, Hokkaido University, N19W8, Sapporo 060-0819, Japan
S. Okamoto
Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
H. Sasaki
Institute of Low Temperature Science, Hokkaido University, N19W8, Sapporo 060-0819, Japan
Graduate School of Environmental Science, Hokkaido University, N10W5, Sapporo 060-0810, Japan
D. J. Solie
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7320, USA
K. Yoshikawa
Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-5860, USA
Related authors
No articles found.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1498, https://doi.org/10.5194/egusphere-2024-1498, 2024
Short summary
Short summary
Monthly records spanning 350 years from a Greenland ice core reveal trends in black carbon (BC) concentrations and sizes. BC concentrations have risen since the late 19th century due to the inflow of anthropogenic BC, with these particles being larger than those from biomass burning (BB). High BB BC concentration peaks in summer originating from BB could reduce albedo. However, BB BC showed no upward trend until the early 2000s. Our findings are crucial for validating aerosol and climate models.
Motoshi Nishimura, Teruo Aoki, Masashi Niwano, Sumito Matoba, Tomonori Tanikawa, Tetsuhide Yamasaki, Satoru Yamaguchi, and Koji Fujita
Earth Syst. Sci. Data, 15, 5207–5226, https://doi.org/10.5194/essd-15-5207-2023, https://doi.org/10.5194/essd-15-5207-2023, 2023
Short summary
Short summary
We presented the method of data quality checks and the dataset for two ground weather observations in northwest Greenland. We found that the warm and clear weather conditions in the 2015, 2019, and 2020 summers caused the snowmelt and the decline in surface reflectance of solar radiation at a low-elevated site (SIGMA-B; 944 m), but those were not seen at the high-elevated site (SIGMA-A; 1490 m). We hope that our data management method and findings will help climate scientists.
Naoko Nagatsuka, Kumiko Goto-Azuma, Akane Tsushima, Koji Fujita, Sumito Matoba, Yukihiko Onuma, Remi Dallmayr, Moe Kadota, Motohiro Hirabayashi, Jun Ogata, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Masahiro Minowa, Yuki Komuro, Hideaki Motoyama, and Teruo Aoki
Clim. Past, 17, 1341–1362, https://doi.org/10.5194/cp-17-1341-2021, https://doi.org/10.5194/cp-17-1341-2021, 2021
Short summary
Short summary
Here we present a first high-temporal-resolution record of mineral composition in a Greenland ice core (SIGMA-D) over the past 100 years using SEM–EDS analysis. Our results show that the ice core dust composition varied on multi-decadal scales, which was likely affected by local temperature changes. We suggest that the ice core dust was constantly supplied from distant sources (mainly northern Canada) as well as local ice-free areas in warm periods (1915 to 1949 and 2005 to 2013).
Ambarish Pokhrel, Kimitaka Kawamura, Bhagawati Kunwar, Kaori Ono, Akane Tsushima, Osamu Seki, Sumio Matoba, and Takayuki Shiraiwa
Atmos. Chem. Phys., 20, 597–612, https://doi.org/10.5194/acp-20-597-2020, https://doi.org/10.5194/acp-20-597-2020, 2020
Short summary
Short summary
A 180 m long (ca. 274 year) ice core was drilled in the saddle of the Aurora Peak in Alaska (63.52° N, 146.54° W; elevation: 2,825 m). The ice core samples were derived with O-bis-(trimethylsilyl)trifluoroacetamide with 1 % trimethylsilyl chloride and pyridine followed by gas-chromatography–mass-spectrometry analyses. Levoglucosan, dehydroabietic acid and vanillic acid are reported for the first time from the alpine glacier to better understand historical biomass burning.
Koji Fujita, Sumito Matoba, Yoshinori Iizuka, Nozomu Takeuchi, and Teruo Aoki
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-97, https://doi.org/10.5194/cp-2019-97, 2019
Revised manuscript not accepted
Short summary
Short summary
This study presents a novel method for reconstructing summer temperatures from ice-layer thickness and annual accumulation in an ice core using an energy balance model. The method calculates a lookup table by considering heat conduction and meltwater refreezing in firn. We applied the method to four ice cores in different climates. Sensitivity analyses reveal that the annual temperature range, amount of annual precipitation, and firn albedo significantly affect the estimated summer temperature.
Masashi Niwano, Teruo Aoki, Akihiro Hashimoto, Sumito Matoba, Satoru Yamaguchi, Tomonori Tanikawa, Koji Fujita, Akane Tsushima, Yoshinori Iizuka, Rigen Shimada, and Masahiro Hori
The Cryosphere, 12, 635–655, https://doi.org/10.5194/tc-12-635-2018, https://doi.org/10.5194/tc-12-635-2018, 2018
Short summary
Short summary
We present a high-resolution regional climate model called NHM–SMAP applied to the Greenland Ice Sheet (GrIS). The model forced by JRA-55 reanalysis is evaluated using in situ data from automated weather stations, stake measurements,
and ice core obtained from 2011 to 2014. By utilizing the model, we highlight that the choice of calculation schemes for vertical water movement in snow and firn has an effect of up to 200 Gt/year in the yearly accumulated GrIS-wide surface mass balance estimates.
Keiichiro Hara, Sumito Matoba, Motohiro Hirabayashi, and Tetsuhide Yamasaki
Atmos. Chem. Phys., 17, 8577–8598, https://doi.org/10.5194/acp-17-8577-2017, https://doi.org/10.5194/acp-17-8577-2017, 2017
Short summary
Short summary
To obtain knowledge about sea-salt chemistry in polar regions, we made simultaneous measurements and sampling of aerosols, frost flowers, and brine around northwestern Greenland during winter–spring. Our results show sea-salt enrichment in frost flowers and snow. Also, the fractionated sea-salt particles were suspended in the atmosphere over sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.
M. Niwano, T. Aoki, S. Matoba, S. Yamaguchi, T. Tanikawa, K. Kuchiki, and H. Motoyama
The Cryosphere, 9, 971–988, https://doi.org/10.5194/tc-9-971-2015, https://doi.org/10.5194/tc-9-971-2015, 2015
Short summary
Short summary
A physical snowpack model SMAP and in situ meteorological and snow data obtained at site SIGMA-A on the northwest Greenland ice sheet are used to assess surface energy balance during the extreme near-surface snowmelt event around 12 July 2012. We determined that the main factor for the melt event observed at the SIGMA-A site was low-level clouds accompanied by a significant temperature increase, which induced surface heating via cloud radiative forcing in the polar region.
T. Sato, T. Shiraiwa, R. Greve, H. Seddik, E. Edelmann, and T. Zwinger
Clim. Past, 10, 393–404, https://doi.org/10.5194/cp-10-393-2014, https://doi.org/10.5194/cp-10-393-2014, 2014
K. Osada, S. Ura, M. Kagawa, M. Mikami, T. Y. Tanaka, S. Matoba, K. Aoki, M. Shinoda, Y. Kurosaki, M. Hayashi, A. Shimizu, and M. Uematsu
Atmos. Chem. Phys., 14, 1107–1121, https://doi.org/10.5194/acp-14-1107-2014, https://doi.org/10.5194/acp-14-1107-2014, 2014
K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa
Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013, https://doi.org/10.5194/cp-9-1697-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Ice Cores | Timescale: Centennial-Decadal
Extending and understanding the South West Western Australian rainfall record using a snowfall reconstruction from Law Dome, East Antarctica
Stable isotopes in cave ice suggest summer temperatures in east-central Europe are linked to Atlantic Multidecadal Oscillation variability
Climatic information archived in ice cores: impact of intermittency and diffusion on the recorded isotopic signal in Antarctica
What climate signal is contained in decadal- to centennial-scale isotope variations from Antarctic ice cores?
Burning-derived vanillic acid in an Arctic ice core from Tunu, northeastern Greenland
Aromatic acids in an Arctic ice core from Svalbard: a proxy record of biomass burning
Antarctic climate variability on regional and continental scales over the last 2000 years
Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores
A glaciochemical study of the 120 m ice core from Mill Island, East Antarctica
Aromatic acids in a Eurasian Arctic ice core: a 2600-year proxy record of biomass burning
Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine
Climatic variability in Princess Elizabeth Land (East Antarctica) over the last 350 years
Boreal fire records in Northern Hemisphere ice cores: a review
Significant recent warming over the northern Tibetan Plateau from ice core δ18O records
Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core
Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia
Accumulation reconstruction and water isotope analysis for 1736–1997 of an ice core from the Ushkovsky volcano, Kamchatka, and their relationships to North Pacific climate records
Simulating the temperature and precipitation signal in an Alpine ice core
Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores
Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record
Yaowen Zheng, Lenneke M. Jong, Steven J. Phipps, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, and Tas D. van Ommen
Clim. Past, 17, 1973–1987, https://doi.org/10.5194/cp-17-1973-2021, https://doi.org/10.5194/cp-17-1973-2021, 2021
Short summary
Short summary
South West Western Australia has experienced a prolonged drought in recent decades. The causes of this drought are unclear. We use an ice core from East Antarctica to reconstruct changes in rainfall over the past 2000 years. We find that the current drought is unusual, with only two other droughts of similar severity having occurred during this period. Climate modelling shows that greenhouse gas emissions during the industrial era are likely to have contributed to the recent drying trend.
Carmen-Andreea Bădăluţă, Aurel Perșoiu, Monica Ionita, and Natalia Piotrowska
Clim. Past, 16, 2445–2458, https://doi.org/10.5194/cp-16-2445-2020, https://doi.org/10.5194/cp-16-2445-2020, 2020
Short summary
Short summary
We present a reconstruction of summer temperature for the last millennium in east-central Europe that shows little summer temperature differences between the Medieval Warm Period and the Little Ice Age on centennial scales as well as the fact that well-expressed minima and maxima occurred synchronously with periods of low and high solar activity, respectively. Furthermore, summer temperatures fluctuated with a periodicity similar to that of the Atlantic Multidecadal Oscillation.
Mathieu Casado, Thomas Münch, and Thomas Laepple
Clim. Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020, https://doi.org/10.5194/cp-16-1581-2020, 2020
Short summary
Short summary
The isotopic composition in ice cores from Antarctica is usually interpreted as a temperature proxy. Using a forward model, we show how different the signal in ice cores and the actual climatic signal are. Precipitation intermittency and diffusion do indeed affect the archived signal, leading to the reshuffling of the signal which limits the ability to reconstruct high-resolution climatic variations with ice cores.
Thomas Münch and Thomas Laepple
Clim. Past, 14, 2053–2070, https://doi.org/10.5194/cp-14-2053-2018, https://doi.org/10.5194/cp-14-2053-2018, 2018
Short summary
Short summary
Proxy data on climate variations contain noise from many sources and, for reliable estimates, we need to determine those temporal scales at which the climate signal in the proxy record dominates the noise. We developed a method to derive timescale-dependent estimates of temperature proxy signal-to-noise ratios, which we apply and discuss in the context of Antarctic ice-core records but which in general are applicable to a large set of palaeoclimate records.
Mackenzie M. Grieman, Murat Aydin, Joseph R. McConnell, and Eric S. Saltzman
Clim. Past, 14, 1625–1637, https://doi.org/10.5194/cp-14-1625-2018, https://doi.org/10.5194/cp-14-1625-2018, 2018
Short summary
Short summary
Vanillic acid is reported in the Tunu ice core from northeastern Greenland. It is an aerosol-borne acid produced by biomass burning. North American boreal forests are likely the source regions of the vanillic acid deposited at the ice core site. Vanillic acid levels were elevated during warm climate periods and lower during cooler climate periods. There is a positive correlation between the vanillic acid ice core record and ammonium and black carbon in the NEEM ice core from northern Greenland.
Mackenzie M. Grieman, Murat Aydin, Elisabeth Isaksson, Margit Schwikowski, and Eric S. Saltzman
Clim. Past, 14, 637–651, https://doi.org/10.5194/cp-14-637-2018, https://doi.org/10.5194/cp-14-637-2018, 2018
Short summary
Short summary
This study presents organic acid levels in an ice core from Svalbard over the past 800 years. These acids are produced from wildfire emissions and transported as aerosol. Organic acid levels are high early in the record and decline until the 20th century. Siberia and Europe are likely the primary source regions of the fire emissions. The data are similar to those from a Siberian ice core prior to 1400 CE. The timing of the divergence after 1400 CE is similar to a shift in North Atlantic climate.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Anna Kozachek, Vladimir Mikhalenko, Valérie Masson-Delmotte, Alexey Ekaykin, Patrick Ginot, Stanislav Kutuzov, Michel Legrand, Vladimir Lipenkov, and Susanne Preunkert
Clim. Past, 13, 473–489, https://doi.org/10.5194/cp-13-473-2017, https://doi.org/10.5194/cp-13-473-2017, 2017
Mana Inoue, Mark A. J. Curran, Andrew D. Moy, Tas D. van Ommen, Alexander D. Fraser, Helen E. Phillips, and Ian D. Goodwin
Clim. Past, 13, 437–453, https://doi.org/10.5194/cp-13-437-2017, https://doi.org/10.5194/cp-13-437-2017, 2017
Short summary
Short summary
A 120 m ice core from Mill Island, East Antarctica, was studied its chemical components. The Mill Island ice core contains 97 years of climate record (1913–2009) and has a mean snow accumulation of 1.35 m yr−1 (ice equivalent). Trace ion concentrations were generally higher than other Antarctic ice core sites. Nearby sea ice concentration was found to influence the annual mean sea salt record. The Mill Island ice core records are unexpectedly complex, with strong modulation of the trace chemistry.
Mackenzie M. Grieman, Murat Aydin, Diedrich Fritzsche, Joseph R. McConnell, Thomas Opel, Michael Sigl, and Eric S. Saltzman
Clim. Past, 13, 395–410, https://doi.org/10.5194/cp-13-395-2017, https://doi.org/10.5194/cp-13-395-2017, 2017
Short summary
Short summary
Wildfires impact ecosystems, climate, and atmospheric chemistry. Records that predate instrumental records and industrialization are needed to study the climatic controls on biomass burning. In this study, we analyzed organic chemicals produced from burning of plant matter that were preserved in an ice core from the Eurasian Arctic. These chemicals are elevated during three periods that have similar timing to climate variability. This is the first millennial-scale record of these chemicals.
Olivia J. Maselli, Nathan J. Chellman, Mackenzie Grieman, Lawrence Layman, Joseph R. McConnell, Daniel Pasteris, Rachael H. Rhodes, Eric Saltzman, and Michael Sigl
Clim. Past, 13, 39–59, https://doi.org/10.5194/cp-13-39-2017, https://doi.org/10.5194/cp-13-39-2017, 2017
Short summary
Short summary
We analysed two Greenland ice cores for methanesulfonate (MSA) and bromine (Br) and concluded that both species are suitable proxies for local sea ice conditions. Interpretation of the records reveals that there have been sharp declines in sea ice in these areas in the past 250 years. However, at both sites the Br record deviates from MSA during the industrial period, raising questions about the value of Br as a sea ice proxy during recent periods of high, industrial, atmospheric acid pollution.
Alexey A. Ekaykin, Diana O. Vladimirova, Vladimir Y. Lipenkov, and Valérie Masson-Delmotte
Clim. Past, 13, 61–71, https://doi.org/10.5194/cp-13-61-2017, https://doi.org/10.5194/cp-13-61-2017, 2017
Short summary
Short summary
Understanding the Antarctic climate system is crucial in the context of the present-day global environmental changes, but key gaps arise from limited observations. We present a new reconstructed stacked climate record for Princess Elizabeth Land, East Antarctica. Records show 1 °C warming over the last 350 years, with a particularly cold period from the mid-18th to mid-19th century. Temperature variability with a period > 27 years is mainly related to the anomalies of the Indian Ocean Dipole mode.
Michel Legrand, Joseph McConnell, Hubertus Fischer, Eric W. Wolff, Susanne Preunkert, Monica Arienzo, Nathan Chellman, Daiana Leuenberger, Olivia Maselli, Philip Place, Michael Sigl, Simon Schüpbach, and Mike Flannigan
Clim. Past, 12, 2033–2059, https://doi.org/10.5194/cp-12-2033-2016, https://doi.org/10.5194/cp-12-2033-2016, 2016
Short summary
Short summary
Here, we review previous attempts made to reconstruct past forest fire using chemical signals recorded in Greenland ice. We showed that the Greenland ice records of ammonium, found to be a good fire proxy, consistently indicate changing fire activity in Canada in response to past climatic conditions that occurred since the last 15 000 years, including the Little Ice Age and the last large climatic transition.
W. An, S. Hou, W. Zhang, Y. Wang, Y. Liu, S. Wu, and H. Pang
Clim. Past, 12, 201–211, https://doi.org/10.5194/cp-12-201-2016, https://doi.org/10.5194/cp-12-201-2016, 2016
Short summary
Short summary
This paper presents the δ18O result of an ice core recovered from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). We combined the δ18O series of ZK and three other nearby Tibetan ice cores to reconstruct a regional temperature history of 1951–2008, which captured the continuous rapid warming since 1970, even during the global warming hiatus period. It implied that temperature change could have behaved differently at high elevations.
P. Zennaro, N. Kehrwald, J. R. McConnell, S. Schüpbach, O. J. Maselli, J. Marlon, P. Vallelonga, D. Leuenberger, R. Zangrando, A. Spolaor, M. Borrotti, E. Barbaro, A. Gambaro, and C. Barbante
Clim. Past, 10, 1905–1924, https://doi.org/10.5194/cp-10-1905-2014, https://doi.org/10.5194/cp-10-1905-2014, 2014
B. G. Koffman, K. J. Kreutz, D. J. Breton, E. J. Kane, D. A. Winski, S. D. Birkel, A. V. Kurbatov, and M. J. Handley
Clim. Past, 10, 1125–1144, https://doi.org/10.5194/cp-10-1125-2014, https://doi.org/10.5194/cp-10-1125-2014, 2014
T. Sato, T. Shiraiwa, R. Greve, H. Seddik, E. Edelmann, and T. Zwinger
Clim. Past, 10, 393–404, https://doi.org/10.5194/cp-10-393-2014, https://doi.org/10.5194/cp-10-393-2014, 2014
S. Brönnimann, I. Mariani, M. Schwikowski, R. Auchmann, and A. Eichler
Clim. Past, 9, 2013–2022, https://doi.org/10.5194/cp-9-2013-2013, https://doi.org/10.5194/cp-9-2013-2013, 2013
S. Preunkert and M. Legrand
Clim. Past, 9, 1403–1416, https://doi.org/10.5194/cp-9-1403-2013, https://doi.org/10.5194/cp-9-1403-2013, 2013
R. H. Rhodes, N. A. N. Bertler, J. A. Baker, H. C. Steen-Larsen, S. B. Sneed, U. Morgenstern, and S. J. Johnsen
Clim. Past, 8, 1223–1238, https://doi.org/10.5194/cp-8-1223-2012, https://doi.org/10.5194/cp-8-1223-2012, 2012
Cited articles
Bienek, A. P., Walsh, E. J., Thoman, L. R., and Bhatt, S. U.: Using climate divisions to analyze variations and trends in Alaska temperature and precipitation, J. Climate, 27, 2800–2818, https://doi.org/10.1175/JCLI-D-13-00342.1, 2014.
Clausen, H. B. and Hammer, C. U.: The Laki and Tambora eruptions as revealed in Greenland ice cores from 11 locations, Ann. Glaciol., 10, 16–22, 1988.
Dansgaard, W. and Johnson, S. J.: A flow model and time scale for the ice core from Camp Century, Greenland, J. Glaciol., 8, 215–223, 1969.
Eichler, A., Tinner, W., Brütsch, S., Olivier, S., Papina, T., and Schwikowski, M.: An ice-core based history of Siberian forest fires since AD 1250, Quaternary Sci. Rev., 30, 1027–1034, https://doi.org/10.1016/j.quascirev.2011.02.007, 2011.
EPICA Community Members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Fisher, D. A., Wake, C., Kreutz, K., Yalcin, K., Steig, E., Mayewski, P., Anderson, L., Zheng, J., Rupper, S., Zdanowicz, C., Demuth, M., Waszkiewicz, M., Dahl-Jensen, D., Goto-Azuma, K., Bourgeois, J. B., Koerner, R. M., Sekerka, J., Osterberg, E., Abbott, M. B., Finney, B. P., and Burns, S. J.: Stable isotope records from Mount Logan, Eclipse ice cores and nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometers: sudden shifts and tropical connections, Geogr. Phys. Quatern., 58, 337–352, 2004.
Fukuda, T., Sugiyama, S., Matoba, S., and Shiraiwa, T.: Glacier flow measurement and radio-echo sounding at Aurora Peak, Alaska, in 2008, Ann. Glaciol., 52, 138–142, 2011.
Goto-Azuma, K., Shiraiwa, T., Matoba, S., Segawa, T., Kanamori, S., Fujii, Y., and Yamasaki, T.: An overview of the Japanese glaciological studies on Mt. Logan, Yukon Territory, Canada in 2002, Bulletin of Glaciological Research, 20, 65–72, 2003.
Holdsworth, G., Krouse, H. R., and Nosal, M.: Ice core climate signals from Mount Logan, Yukon, AD 1700–1987, in: Climate since AD 1500, edited by: Bradley, R. S. and Jones, P. D., London, Routledge, 483–504, 1992.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years, Science, 317, 793–797, https://doi.org/10.1126/science.1141038, 2007.
Kanamori, S., Benson, C. S., Truffer, M., Matoba, S., Solie, D. J., and Shiraiwa, T.: Seasonality of snow accumulation at Mount Wrangell, Alaska, USA, J. Glaciol., 54, 273–278, 2008.
Kelsey, E. P., Wake, C. P., Kreutz, K., and Osterberg, E.: Ice layers as an indicator of summer warmth and atmospheric blocking in Alaska, J. Glaciol., 56, 715–722, 2010.
Koerner, C. R. M.: Devon Island ice cap: core stratigraphy and paleoclimate, Science, 196, 15–18, https://doi.org/10.1126/science.196.4285.15, 1977.
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: a review, Rev. Geophys., 35, 219–243, https://doi.org/10.1029/96RG03527, 1997.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific interdecadal climate oscillation with impacts on salmon production, B. Am. Meteorol. Soc., 78, 1069–1079, 1997.
Matoba, S., Ushakov, S. V., Shimbori, K., Sasaki, H., Yamasaki, T., Ovshannikov, A. A., Manevich, A. G., Zhideleeva, T. M., Kutuzov, S., Muravyev, Y. D., and Shiraiwa, T.: The glaciological expedition to Mount Ichinsky, Kamchatka, Russia, Bulletin of Glaciological Research, 24, 79–85, 2007.
Matoba, S., Shiraiwa, T., Tsushima, A., Sasaki, H., and Muravyev, Y. D.: Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka, Ann. Glaciol., 52, 44–50, 2011.
McCabe, G. J. and Fountain, A.: Relations between atmospheric circulation and mass balance of South Cascade Glacier, Arct. Antarct. Alp. Res., 27, 226–233, 1995.
McGimsey, R. G., Neal, C. A., and Riley, C. M.: Areal Distribution, Thickness, Mass, Volume, and Grain Size of Tephra-Fall Deposits from the 1992 Eruptions of Crater Peak Vent, Mt. Spurr Volcano, Alaska, U.S. Geol. Surv. Open File Report, 01-370, 38 pp., available at: http://geopubs.wr.usgs.gov/open-file/of01-370/, last access: April 2014, 2002.
Minobe, S.: A 50-70 year climatic oscillation over the North Pacific and North America, Geophys. Res. Lett., 24, 683–686, 1997.
Minobe, S. and Nakanowatari, T.: Global structure of bidecadal precipitation variability in boreal winter, Geophys. Res. Lett., 29, 35-1–35-4, https://doi.org/10.1029/2001GL014447, 2002.
Moore, G. W. K., Holdsworth, G., and Alverson, K.: Climate change in the North Pacific region over the past three centuries, Nature, 420, 401–-403, https://doi.org/10.1038/nature01229, 2002.
Nakanowatari, T. and Minobe, S.: Moisture balance for bidecadal variability of wintertime precipitation in the North Pacific Using NCEP/NCAR reanalysis, J. Meteorol. Soc. Jpn., 83, 453–469, 2005.
Papineau, J. M.: Wintertime temperature anomalies in Alaska correlated with ENSO and PDO, Int. J. Climatol., 21, 1577–1592, https://doi.org/10.1002/joc.686, 2001.
Rodionov, S. N., Bond, N. A., and Overland, J. E.: The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea, Deep-Sea Res. Pt. II, 54, 2560–2577, https://doi.org/10.1016/j.dsr2. 2007.08.002, 2007.
Shiraiwa, T. and Yamaguchi, S.: Reconstruction of glacier mass balances and climate changes in the Kamchatka Peninsula, Tokyo Geographical Society, Journal of Geography, 111, 476–485, 2002 (in Japanese with English abstract and figure captions).
Shiraiwa, T., Muravyev, Y. D., and Yamaguchi, S.: Stratigraphic features of firn as proxy climate signals at the summit ice cap of Ushkovsky volcano, Kamchatka, Russia, Arct. Antarct. Alp. Res., 29, 414–421, https://doi.org/10.2307/1551989, 1997.
Shiraiwa, T., Nishio, F., Kameda, T., Takahashi, A., Toyama, Y., Muravyev, Y. D., and Obsyannikov, A.: Ice core drilling at Ushkovsky ice cap, Kamchatka, Russia, Japanese Society of Snow and Ice, Seppyo, 61, 25–40, https://doi.org/10.5331/seppyo.61.25, 1999 (in Japanese with English abstract and figure captions).
Shiraiwa, T., Murav'yev, Y. D., Kameda, T., Nishio, F., Toyama, Y., Takahashi, A., Ovsyannikov, A. A., Salamatin, A. N., and Yamagata K.: Characteristics of a crater glacier at Ushkovsky volcano, Kamchatka, Russia, as revealed by the physical properties of ice cores and borehole thermometry, J. Glaciol., 47, 423–432, https://doi.org/10.3189/172756501781832061, 2001.
Shiraiwa, T., Goto-Azuma, K., Matoba, S., Yamasaki, T., Segawa, T., Kanamori, S., Matsuoka, K., and Fujii, Y.: Ice core drilling at King Col, Mount Logan 2002, Bulletin of Glaciological Research, 20, 57–63, 2003.
Shiraiwa, T., Kanamori, S., Benson, C. S., Solie, D., and Muravyev, Y. D.: Shallow ice-core drilling at Mount Wrangell, Alaska, Bulletin of Glaciological Research, 21, 71–77, 2004.
Suzuki, K.: A chemical study of snow in Sapporo, Geographical review of Japan, 56, 171–184, 1983 (In Japanese with English abstract and figure captions).
Suzuki, K. and Endo, Y.: Relation of Na+ concentration and δ18O in winter precipitation with weather conditions, Geophys. Res. Lett., 22, 591–594, https://doi.org/10.1029/95GL00160, 1995.
Walters, R. A. and Meier, M. F.: Variability of glaciers mass balances in western North America, in: Aspects of Climate Variability in the Pacific and Western Americas, edited by: Peterson, D. H., American Geophysical Union, Geoph. Monog. Series, Amer. Geophys. Union, 55, 365–374, 1989.
Wilson, T. R. S.: Salinity and the major elements of sea water, in: Chemical Oceanography, edited by: Riley, J. P. and Skittow, G., Academic Press, London, 1, 365–413, 1975.
Yalcin, K. and Wake, C. P.: Anthropogenic signals recorded in an ice core from Eclipse Icefield, Yukon Territory, Canada, Geophys. Res. Lett., 28, 4487–4490, 2001.
Yalcin, K., Wake, C. P., Kang, S., Kreutz, K. J., and Whitlow, S. I.: Seasonal and spatial variability in snow chemistry at Eclipse Icefield, Yukon Territory, Canada, Ann. Glaciol., 43, 230–238, 2006.
Yasunari, T. J., Shiraiwa, T., Kanamori, S., Fujii, Y., Igarashi, M., Yamazaki, K., Benson, C. S., and Hondoh, T.: Intra-annual variations in atmospheric dust and tritium in the North Pacific region detected from an ice core from Mount Wrangell, Alaska, J. Geophys. Res., 112, https://doi.org/10.1029/2006JD008121, 2007.
Zagorodnov, V., Thompson, L. G., Ginot, P., and Mikhalenko, V.: Intermediate-depth ice coring of high-altitude and polar glaciers with a lightweight drilling system, J. Glaciol., 51, 491–501, 2005.
Zhang, Y., Wallace, J. M., and Battisti, D. S.: ENSO-like interdecadal variability, J. Climate, 10, 1004–1020, 1997.
Short summary
A 180.17-m ice core was drilled at Aurora Peak in the central part of the Alaska Range, Alaska, in 2008. The ice core age was determined by annual counts of δD and seasonal cycles of Na+. Here, we show that the chronology of the Aurora Peak ice core from 95.61 m to the top corresponds to the period from 1900 to the summer season of 2008, with a dating error of ±3 years. Our results suggest that temporal variations in δD and annual accumulation rates are strongly related to shifts in PDO Index.
A 180.17-m ice core was drilled at Aurora Peak in the central part of the Alaska Range, Alaska,...