Articles | Volume 11, issue 8
https://doi.org/10.5194/cp-11-1097-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-1097-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)
R. V. Kochanov
Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge MA, USA
Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University, Tomsk, Russia
Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge MA, USA
L. S. Rothman
Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge MA, USA
S. W. Sharpe
Pacific Northwest National Laboratory, Richland WA, USA
T. J. Johnson
Pacific Northwest National Laboratory, Richland WA, USA
R. L. Sams
Pacific Northwest National Laboratory, Richland WA, USA
Related authors
No articles found.
Eamon K. Conway, Amir H. Souri, Joshua Benmergui, Kang Sun, Xiong Liu, Carly Staebell, Christopher Chan Miller, Jonathan Franklin, Jenna Samra, Jonas Wilzewski, Sebastien Roche, Bingkun Luo, Apisada Chulakadabba, Maryann Sargent, Jacob Hohl, Bruce Daube, Iouli Gordon, Kelly Chance, and Steven Wofsy
Atmos. Meas. Tech., 17, 1347–1362, https://doi.org/10.5194/amt-17-1347-2024, https://doi.org/10.5194/amt-17-1347-2024, 2024
Short summary
Short summary
The work presented here describes the processes required to convert raw sensor data for the MethaneAIR instrument to geometrically calibrated data. Each algorithm is described in detail. MethaneAIR is the airborne simulator for MethaneSAT, a new satellite under development by MethaneSAT LLC, a subsidiary of the EDF. MethaneSAT's goals are to precisely map over 80 % of the production sources of methane emissions from oil and gas fields across the globe to a high degree of accuracy.
Qing-Ying Yang, Eamon K. Conway, Hui Liang, Iouli E. Gordon, Yan Tan, and Shui-Ming Hu
Atmos. Meas. Tech., 15, 4463–4472, https://doi.org/10.5194/amt-15-4463-2022, https://doi.org/10.5194/amt-15-4463-2022, 2022
Short summary
Short summary
Water vapor absorption in the near-UV region is essential to describe the energy budget of Earth; however, there is little spectroscopic information available. And accurate near-UV water absorption is also required in both ground-based observations and satellite missions for trace gas species. Here, we provide the high-resolution spectra of water vapor around 415 nm measured with cavity ring-down spectroscopy. These absorption lines have never been experimentally verified before.
Kang Sun, Mahdi Yousefi, Christopher Chan Miller, Kelly Chance, Gonzalo González Abad, Iouli E. Gordon, Xiong Liu, Ewan O'Sullivan, Christopher E. Sioris, and Steven C. Wofsy
Atmos. Meas. Tech., 15, 3721–3745, https://doi.org/10.5194/amt-15-3721-2022, https://doi.org/10.5194/amt-15-3721-2022, 2022
Short summary
Short summary
This study of upper atmospheric airglow from oxygen is motivated by the need to measure oxygen simultaneously with methane and CO2 in satellite remote sensing. We provide an accurate understanding of the spatial, temporal, and spectral distribution of airglow emissions, which will help in the satellite remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.
Catherine A. Banach, Ashley M. Bradley, Russell G. Tonkyn, Olivia N. Williams, Joey Chong, David R. Weise, Tanya L. Myers, and Timothy J. Johnson
Atmos. Meas. Tech., 14, 2359–2376, https://doi.org/10.5194/amt-14-2359-2021, https://doi.org/10.5194/amt-14-2359-2021, 2021
Short summary
Short summary
We have developed a novel method to identify and characterize the gases emitted in biomass burning fires in a time-resolved fashion. Using time-resolved infrared spectroscopy combined with time-resolved thermal imaging in a wind tunnel, we were able to capture the gas-phase dynamics of the burning of plants native to the southeastern United States.
Juseon Bak, Xiong Liu, Manfred Birk, Georg Wagner, Iouli E. Gordon, and Kelly Chance
Atmos. Meas. Tech., 13, 5845–5854, https://doi.org/10.5194/amt-13-5845-2020, https://doi.org/10.5194/amt-13-5845-2020, 2020
Short summary
Short summary
This paper evaluates different sets of high-resolution ozone absorption cross-section data for use in atmospheric ozone profile measurements in the Hartley and Huggins bands with a particular focus on BDM 1995 (Daumont et al. 1992; Brion et al., 1993; Malicet et al., 1995) currently used in our retrievals and a new laboratory dataset by Birk and Wagner (BW) (2018).
Eamon K. Conway, Iouli E. Gordon, Jonathan Tennyson, Oleg L. Polyansky, Sergei N. Yurchenko, and Kelly Chance
Atmos. Chem. Phys., 20, 10015–10027, https://doi.org/10.5194/acp-20-10015-2020, https://doi.org/10.5194/acp-20-10015-2020, 2020
Short summary
Short summary
Water vapour has a complex spectrum and absorbs from the microwave to the near-UV where it dissociates. There is limited knowledge of the absorption features in the near-UV, and there is a large disagreement for the available models and experiments. We created a new ab initio model that is in good agreement with observation at 363 nm. At lower wavelengths, our calculations suggest that the latest experiments overestimate absorption. This has implications for trace gas retrievals in the near-UV.
Nicole K. Scharko, Ashley M. Oeck, Tanya L. Myers, Russell G. Tonkyn, Catherine A. Banach, Stephen P. Baker, Emily N. Lincoln, Joey Chong, Bonni M. Corcoran, Gloria M. Burke, Roger D. Ottmar, Joseph C. Restaino, David R. Weise, and Timothy J. Johnson
Atmos. Chem. Phys., 19, 9681–9698, https://doi.org/10.5194/acp-19-9681-2019, https://doi.org/10.5194/acp-19-9681-2019, 2019
Short summary
Short summary
In this study we identify pyrolysis gases from prescribed burns conducted in pine forests using a manual extraction device. Captured gases were analyzed in the laboratory using infrared absorption spectroscopy. Results show that emission ratios relative to CO for ethene and acetylene were significantly greater than in previous fire studies, suggesting the sampling device was able to collect gases generated prior to ignition; this is corroborated by novel detections of five compounds via FTIR.
Nicole K. Scharko, Ashley M. Oeck, Russell G. Tonkyn, Stephen P. Baker, Emily N. Lincoln, Joey Chong, Bonni M. Corcoran, Gloria M. Burke, David R. Weise, Tanya L. Myers, Catherine A. Banach, David W. T. Griffith, and Timothy J. Johnson
Atmos. Meas. Tech., 12, 763–776, https://doi.org/10.5194/amt-12-763-2019, https://doi.org/10.5194/amt-12-763-2019, 2019
Short summary
Short summary
We report five species (naphthalene, methyl nitrite, allene, acrolein and acetaldehyde) that were detected in biomass burning fires that had been seen before in burn studies, but are reported for the first time when using infrared spectroscopy for detection.
C. S. Brauer, T. A. Blake, A. B. Guenther, S. W. Sharpe, R. L. Sams, and T. J. Johnson
Atmos. Meas. Tech., 7, 3839–3847, https://doi.org/10.5194/amt-7-3839-2014, https://doi.org/10.5194/amt-7-3839-2014, 2014
C. E. Sioris, C. D. Boone, R. Nassar, K. J. Sutton, I. E. Gordon, K. A. Walker, and P. F. Bernath
Atmos. Meas. Tech., 7, 2243–2262, https://doi.org/10.5194/amt-7-2243-2014, https://doi.org/10.5194/amt-7-2243-2014, 2014
S. K. Akagi, I. R. Burling, A. Mendoza, T. J. Johnson, M. Cameron, D. W. T. Griffith, C. Paton-Walsh, D. R. Weise, J. Reardon, and R. J. Yokelson
Atmos. Chem. Phys., 14, 199–215, https://doi.org/10.5194/acp-14-199-2014, https://doi.org/10.5194/acp-14-199-2014, 2014
S. K. Akagi, R. J. Yokelson, I. R. Burling, S. Meinardi, I. Simpson, D. R. Blake, G. R. McMeeking, A. Sullivan, T. Lee, S. Kreidenweis, S. Urbanski, J. Reardon, D. W. T. Griffith, T. J. Johnson, and D. R. Weise
Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, https://doi.org/10.5194/acp-13-1141-2013, 2013
R. J. Yokelson, I. R. Burling, J. B. Gilman, C. Warneke, C. E. Stockwell, J. de Gouw, S. K. Akagi, S. P. Urbanski, P. Veres, J. M. Roberts, W. C. Kuster, J. Reardon, D. W. T. Griffith, T. J. Johnson, S. Hosseini, J. W. Miller, D. R. Cocker III, H. Jung, and D. R. Weise
Atmos. Chem. Phys., 13, 89–116, https://doi.org/10.5194/acp-13-89-2013, https://doi.org/10.5194/acp-13-89-2013, 2013
Related subject area
Subject: Greenhouse Gases | Archive: Modelling only | Timescale: Pre-Cenozoic
Radiative forcings for 28 potential Archean greenhouse gases
Radiative effects of ozone on the climate of a Snowball Earth
B. Byrne and C. Goldblatt
Clim. Past, 10, 1779–1801, https://doi.org/10.5194/cp-10-1779-2014, https://doi.org/10.5194/cp-10-1779-2014, 2014
J. Yang, Y. Hu, and W. R. Peltier
Clim. Past, 8, 2019–2029, https://doi.org/10.5194/cp-8-2019-2012, https://doi.org/10.5194/cp-8-2019-2012, 2012
Cited articles
Baskakov, O. I., Markov, I. A., Alekseev, E. A., Motiyenko, R. A., Lohilahti, J., Horneman, V. M., Winnewisser, B. P., Medvedev, I. R., and De Lucia, F. C.: Simultaneous analysis of rovibrational and rotational data for the 41, 51, 61, 72, 81, 7191 and 92 states of HCOOH, J. Mol. Struct., 795, 54–77, 2006.
Blass, W. E., Jennings, L., Ewing, A. C., Daunt, S. J., Weber, M. C., Senesac, L., Hager, S., Hillman, J. J., Reuter, D. C., and Sirota, J. M.: Absolute intensities in the \nu7 band of ethylene: tunable laser measurements used to calibrate FTS broadband spectra, J. Quant. Spectrosc. Radiat. Trans., 68, 467–472, 2001.
Brannon, J. F. and Varanasi, P.: Tunable diode laser measurements on the 951.7393 cm^-1} line of \chem12C_2H_{4 at planetary atmospheric temperatures, J. Quant. Spectrosc. Radiat. Trans., 47, 237–242, 1992.
Brizzi, G., Arnone, E., Carlotti, M., Dinelli, B. M., Flaud, J. M., Papandrea, E., Perrin, A., and Ridolfi, M.: Retrieval of atmospheric H15NO3/H14NO3 isotope ratio profile from MIPAS/ENVISAT limb-scanning measurements, J. Geophys. Res. Atmos., 114, 1–12, 2009.
Byrne, B. and Goldblatt, C.: Radiative forcings for 28 potential Archean greenhouse gases, Clim. Past, 10, 1779–1801, https://doi.org/10.5194/cp-10-1779-2014, 2014a.
Byrne, B. and Goldblatt, C.: Radiative forcing at high concentrations of well-mixed greenhouse gases, Geophys. Res. Lett., 41, 152–160, 2014b.
Cauuet, I., Walrand, J., Blanquet, G., Valentin, A., Henry, L., Lambeau, C., de Vleeschouwer, M., and Fayt, A.: Extension to third-order Coriolis terms of the analysis of \nu10, \nu 7, and \nu4 levels of ethylene on the basis of Fourier transform and diode laser spectra, J. Mol. Spectrosc., 139, 191–214, 1990.
Devi, V. M., Rinsland, C. P., Smith, M. A, Benner, D. C., and Fridovich, B.: Tunable diode laser measurements of air-broadened linewidths in the \nu 6 band of H2O2, Appl. Opt., 25, 1844–1847, 1986.
Jacquemart, D., Kwabia Tchana, F., Lacome, N., and Kleiner, I.: A complete set of line parameters for CH3Br in the 10 \mum spectral region, J. Quant. Spectrosc. Radiat. Trans., 105, 264–302, 2007.
Johnson, T. J., Sams, R. L., Burton, S. D., and Blake, T. A.: Absolute integrated intensities of vapor-phase hydrogen peroxide (H2O2) in the mid-infrared at atmospheric pressure, Anal. Bioanal. Chem., 395, 377–386, 2009.
Johnson, T. J., Profeta, L. T. M., Sams, R. L., Griffith, D. W. T., and Yokelson, R. L.: An infrared spectral database for detection of gases emitted by biomass burning, Vib. Spectrosc., 53, 97–102, 2010.
Klee, S., Winnewisser, M., Perrin, A., and Flaud, J.: Absolute line intensities for the \nu6 band of H2O2, J. Mol. Spectrosc., 195, 154–161, 1999.
Kochanov, R., Hill, C., Gordon, I., Wcisło, P., Rothman, L., and Wilzewski, J.: HITRAN Application Programming Interface (HAPI) – Beta version, Zenodo, available at: http://dx.doi.org/10.5281/zenodo.17719, 2015.
Kwabia Tchana, F., Kleiner, I., Orphal, J., Lacome, N., and Bouba, O.: New analysis of the Coriolis-interacting ν2 and ν5 bands of CH379Br and CH381Br, J. Mol. Spectrosc., 228, 441–452, 2004.
Laraia, A. L., Gamache, R. R., Lamouroux, J., Gordon, I. E., and Rothman, L. S.: Total internal partition sums to support planetary remote sensing, Icarus, 215, 391–400, 2011.
Legrand, J., Azizi, M., Herlemont, F., and Fayt, A.: Saturation spectroscopy of C2H4 using a CO2 laser sideband spectrometer, J. Mol. Spectrosc., 171, 13–21, 1995.
Li, G., Gordon, I. E., Hajigeorgiou, P. G., Coxon, J. A., and Rothman, L. S.: Reference spectroscopic data for hydrogen halides, Part II: The line lists, J. Quant. Spectrosc. Radiat. Trans., 130, 284–295, 2013.
Meadows, V. S. and Crisp, D.: Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface, J. Geophys. Res., 101, 4595, https://doi.org/10.1029/95JE03567, 1996.
Ngo, N. H., Lisak, D., Tran, H., and Hartmann, J. M.: An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes, J. Quant. Spectrosc. Radiat. Trans., 129, 89–100, 2013.
Perrin, A. and Mbiaké, R.: The \nu5 and 2\nu9 bands of the 15N isotopic species of nitric acid (\chemH^{15NO_3}): line positions and intensities, J. Mol. Spectrosc., 237, 27–35, 2006.
Perrin, A., Valentin, A., Flaud, J. M., Camy-Peyret, C., Schriver, L., Schriver, A., and Arcas, P.: The 7.9 \mum band of hydrogen peroxide: line positions and intensities, J. Mol. Spectrosc., 171, 358–373, 1995.
Perrin, A., Flaud, J.-M., Camy-Peyret, C., Schermaul, R., Winnewisser, M., Mandin, J.-Y., Dana, V., Badaoui, M., and Koput, J.: Line intensities in the far-infrared spectrum of H2O2, J. Mol. Spectrosc., 176, 287–296, 1996.
Perrin, A., Flaud, J.-M., Bakri, B., Demaison, J., Baskakov, O., Sirota, S.., Herman, M., and Auwera, J. V.: New high-resolution analysis of the \nu7 and \nu9 fundamental bands of trans-formic acid by Fourier transform infrared and millimeter-wave spectroscopy, J. Mol. Spectrosc., 216, 203–213, 2002.
Perrin, A., Keller, F., and Flaud, J.-M.: New analysis of the ν2, ν3, ν4, and ν6 bands of formaldehyde H212C16O line positions and intensities in the 5–10 μm spectral region, J. Mol. Spectrosc., 221, 192–198, 2003.
Rotger, M., Boudon, V., and Vander Auwera, J.: Line positions and intensities in the \nu12 band of ethylene near 1450 cm^-1: an experimental and theoretical study, J. Quant. Spectrosc. Radiat. Trans., 109, 952–962, 2008.
Rothman, L. S., Rinsland C. P., Goldman A., Massie S. T., Edwards, D. P., Perrin, A., Dana, V., Gamache, R. R., and Jucks, K. W.: The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 Edn., J. Quant. Spectrosc. Radiat. Trans., 60, 665–710, 1998.
Rothman, L. S., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L. R., Carleer, M. R., Chackerian, C., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Flaud, J.-M., Gamache, R. R., Goldman, A., Hartmann, J.-M., Jucks, K. W., Maki, A. G., Mandin, J.-Y., Massie, S. T., Orphal, J., Perrin, A., Rinsland, C. P., Smith, M. A. H., Tennyson, J., Tolchenov, R. N., Toth, R. A., Vander Auwera, J., Varanasi, P., and Wagner, G.: The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Trans., 96, 139–204, 2005.
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J.-Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Trans., 110, 533–572, 2009.
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V. G., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Trans., 130, 4–50, 2013.
Rusinek, E., Fichoux, H., Khelkhal, M., Herlemont, F., Legrand, J., and Fayt, A.: Subdoppler study of the ν7 band of C2H4 with a CO2 laser sideband spectrometer, J. Mol. Spectrosc., 189, 64–73, 1998.
Sharpe, S. W., Johnson, T. J., Sams, R. L., Chu, P. M., Rhoderick, G. C., and Johnson, P. A.: Gas-phase databases for quantitative infrared spectroscopy, Appl. Spectrosc., 58, 1452–1461, 2004.
Tennyson, J., Bernath, P. F., Campargue, A., Csaszar, A. G., Daumont, L., Gamache, R. R., Hodges, J. T., Lisak, D., Naumenko, O. V., Rothman, L. S., Tran, H., Zobov, N. F., Buldyreva, J., Boone, C. D., De Vizia, M., Gianfrani, L., Hartmann, J.-M., McPheat, R., Weidmann, D., Murray J., Ngo, N. H., and Polyansky, O. L.: Recommended isolated-line profile for representing high-resolution spectroscopic transitions, Pure Appl. Chem., 86, 1931–1943, 2014.
Xu, L. H., Lees, R. M., Wang, P., Brown, L. R., Kleiner, I., and Johns, J. W. C.: New assignments, line intensities, and HITRAN database for CH3OH at 10 \mum, J. Mol. Spectrosc., 228, 453–470, 2004.
Short summary
In the article Clim Past 10, 1779 (2014), the HITRAN2012 database was employed to evaluate the radiative forcing of 28 Archean gases. The authors claimed that for NO2, H2O2, C2H4, CH3OH, and CH3Br there are severe disagreements between cross sections generated from the HITRAN line-by-line data and those of the PNNL experimental database. In this work we show that the differences are not nearly at the scale suggested by the authors, and their conclusions about these gases and HO2 are not correct.
In the article Clim Past 10, 1779 (2014), the HITRAN2012 database was employed to evaluate the...