Articles | Volume 10, issue 1
https://doi.org/10.5194/cp-10-305-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-10-305-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Qualitative and quantitative reconstructions of surface water characteristics and recent hydrographical changes in the Trondheimsfjord, central Norway
G. Milzer
Environnements et Paléoenvironnements Océaniques et Continentaux, UMR5805, CNRS – Université Bordeaux 1, Avenue des Facultés, 33405 Talence, France
J. Giraudeau
Environnements et Paléoenvironnements Océaniques et Continentaux, UMR5805, CNRS – Université Bordeaux 1, Avenue des Facultés, 33405 Talence, France
S. Schmidt
Environnements et Paléoenvironnements Océaniques et Continentaux, UMR5805, CNRS – Université Bordeaux 1, Avenue des Facultés, 33405 Talence, France
F. Eynaud
Environnements et Paléoenvironnements Océaniques et Continentaux, UMR5805, CNRS – Université Bordeaux 1, Avenue des Facultés, 33405 Talence, France
Geological Survey of Norway (NGU), Trondheim, Norway
Related authors
G. Milzer, J. Giraudeau, J. Faust, J. Knies, F. Eynaud, and C. Rühlemann
Biogeosciences, 10, 4433–4448, https://doi.org/10.5194/bg-10-4433-2013, https://doi.org/10.5194/bg-10-4433-2013, 2013
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Claire Waelbroeck, Jerry Tjiputra, Chuncheng Guo, Kerim H. Nisancioglu, Eystein Jansen, Natalia Vázquez Riveiros, Samuel Toucanne, Frédérique Eynaud, Linda Rossignol, Fabien Dewilde, Elodie Marchès, Susana Lebreiro, and Silvia Nave
Clim. Past, 19, 901–913, https://doi.org/10.5194/cp-19-901-2023, https://doi.org/10.5194/cp-19-901-2023, 2023
Short summary
Short summary
The precise geometry and extent of Atlantic circulation changes that accompanied rapid climate changes of the last glacial period are still unknown. Here, we combine carbon isotopic records from 18 Atlantic sediment cores with numerical simulations and decompose the carbon isotopic change across a cold-to-warm transition into remineralization and circulation components. Our results show that the replacement of southern-sourced by northern-sourced water plays a dominant role below ~ 3000 m depth.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Katixa Lajaunie-Salla, Aldo Sottolichio, Sabine Schmidt, Xavier Litrico, Guillaume Binet, and Gwenaël Abril
Nat. Hazards Earth Syst. Sci., 19, 2551–2564, https://doi.org/10.5194/nhess-19-2551-2019, https://doi.org/10.5194/nhess-19-2551-2019, 2019
Flor Vermassen, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen
Clim. Past, 15, 1171–1186, https://doi.org/10.5194/cp-15-1171-2019, https://doi.org/10.5194/cp-15-1171-2019, 2019
Short summary
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
Eleanor Georgiadis, Jacques Giraudeau, Philippe Martinez, Patrick Lajeunesse, Guillaume St-Onge, Sabine Schmidt, and Guillaume Massé
Clim. Past, 14, 1991–2010, https://doi.org/10.5194/cp-14-1991-2018, https://doi.org/10.5194/cp-14-1991-2018, 2018
Short summary
Short summary
We present our results from a radiocarbon-dated core collected in central Nares Strait, NW Greenland. Sedimentological and geochemical data reveal that marine sedimentation began ca. 9.0 cal ka BP with the complete opening of the strait occurring at 8.3 cal ka BP. The collapse of the glacial buttress in central Nares Strait led to accelerated glacial fluxes of the bordering ice sheets between 8.3 and 7.5 cal ka BP, while the Humboldt Glacier retreated in eastern Kane Basin ca. 8.1 cal ka BP.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Aurélie Penaud, Frédérique Eynaud, Antje Helga Luise Voelker, and Jean-Louis Turon
Biogeosciences, 13, 5357–5377, https://doi.org/10.5194/bg-13-5357-2016, https://doi.org/10.5194/bg-13-5357-2016, 2016
Short summary
Short summary
This paper presents new analyses conducted at high resolution in the Gulf of Cadiz over the last 50 ky. Palaeohydrological changes in these subtropical latitudes are discussed through dinoflagellate cyst assemblages but also dinocyst transfer function results, implying sea surface temperature and salinity as well as annual productivity reconstructions. This study is thus important for our understanding of past and future productivity regimes, also implying consequences on the biological pump.
Majda Nourelbait, Ali Rhoujjati, Abdelfattah Benkaddour, Matthieu Carré, Frederique Eynaud, Philippe Martinez, and Rachid Cheddadi
Clim. Past, 12, 1029–1042, https://doi.org/10.5194/cp-12-1029-2016, https://doi.org/10.5194/cp-12-1029-2016, 2016
Short summary
Short summary
The present study is related the climate changes and their environmental impacts during the last 6 ky from a fossil record collected in the Middle Atlas, Morocco. We used the reconstruction of three climate variables and geo-chemical elements to evaluate the relationships between all the environmental variables. In summary, this present study confirms the overall climate stability over the last 6 ky and highlights the presence of a short and abrupt climate event at about 5.2 ka cal BP.
I. Jalón-Rojas, S. Schmidt, and A. Sottolichio
Hydrol. Earth Syst. Sci., 19, 2805–2819, https://doi.org/10.5194/hess-19-2805-2015, https://doi.org/10.5194/hess-19-2805-2015, 2015
Short summary
Short summary
This study aims to analyse for the first time suspended sediment dynamics in the fluvial Gironde through a unique set of a 10-year continuous turbidity record. We demonstrate the following: the interest of turbidity-discharge hysteresis loops to evaluate the presence of sediment depositions; the relationships between features of the turbidity maximum zone (TMZ) and river flow; and the definition of hydrological indicators of the persistence and concentration of the TMZ.
M. Guillevic, L. Bazin, A. Landais, C. Stowasser, V. Masson-Delmotte, T. Blunier, F. Eynaud, S. Falourd, E. Michel, B. Minster, T. Popp, F. Prié, and B. M. Vinther
Clim. Past, 10, 2115–2133, https://doi.org/10.5194/cp-10-2115-2014, https://doi.org/10.5194/cp-10-2115-2014, 2014
T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann
Biogeosciences, 10, 7347–7359, https://doi.org/10.5194/bg-10-7347-2013, https://doi.org/10.5194/bg-10-7347-2013, 2013
C. V. Dylmer, J. Giraudeau, V. Hanquiez, and K. Husum
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-15077-2013, https://doi.org/10.5194/bgd-10-15077-2013, 2013
Revised manuscript has not been submitted
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
G. Milzer, J. Giraudeau, J. Faust, J. Knies, F. Eynaud, and C. Rühlemann
Biogeosciences, 10, 4433–4448, https://doi.org/10.5194/bg-10-4433-2013, https://doi.org/10.5194/bg-10-4433-2013, 2013
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Decadal-Seasonal
Optimizing sampling strategies in high-resolution paleoclimate records
A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives
Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: implications for interpreting coral stable oxygen isotope records of ENSO
Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations: paleotemperature from mollusk and coral geochemistry
Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years
Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
M. Comboul, J. Emile-Geay, M. N. Evans, N. Mirnateghi, K. M. Cobb, and D. M. Thompson
Clim. Past, 10, 825–841, https://doi.org/10.5194/cp-10-825-2014, https://doi.org/10.5194/cp-10-825-2014, 2014
T. Russon, A. W. Tudhope, G. C. Hegerl, M. Collins, and J. Tindall
Clim. Past, 9, 1543–1557, https://doi.org/10.5194/cp-9-1543-2013, https://doi.org/10.5194/cp-9-1543-2013, 2013
M. Carré, J. P. Sachs, J. M. Wallace, and C. Favier
Clim. Past, 8, 433–450, https://doi.org/10.5194/cp-8-433-2012, https://doi.org/10.5194/cp-8-433-2012, 2012
G. M. Ganssen, F. J. C. Peeters, B. Metcalfe, P. Anand, S. J. A. Jung, D. Kroon, and G.-J. A. Brummer
Clim. Past, 7, 1337–1349, https://doi.org/10.5194/cp-7-1337-2011, https://doi.org/10.5194/cp-7-1337-2011, 2011
J. D. Carriquiry and J. A. Villaescusa
Clim. Past, 6, 401–410, https://doi.org/10.5194/cp-6-401-2010, https://doi.org/10.5194/cp-6-401-2010, 2010
Cited articles
Appleby, P. G.: Chronostratigraphic techniques in recent sediments, in Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques., edited by: Last, W. M. and Smol, J. P., p. 2001, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001.
Aure, J., Strand, Ø., Erga, S., and Strohmeier, T.: Primary production enhancement by artificial upwelling in a western Norwegian fjord, Mar. Ecol. Prog. Ser., 352, 39–52, https://doi.org/10.3354/meps07139, 2007.
Bayon, G., Henderson, G. M., and Bohn, M.: U-Th stratigraphy of a cold seep carbonate crust, Chem. Geol., 2, 47–56, 2009.
Bigler, C. and Wunder, J.: Statistische Datenanalyse mit R?: Eine Einführung für Umweltwissenschaftler, Gebirgswaldökologie (D-FOWI), ETH Zürich, Version 1.0, 1–39, 2003.
Birks, H. J. B.: Quantitative palaeoenvironmental reconstructions, Stat. Model. Quat. Sci. Data. Tech. Guid. 5, edited by: Maddy, D. and Brew, J. S., Quat. Res. Assoc. Cambridge, 5, 161–254, 1995.
Blindheim, J., Borovkov, V., Hansen, B., Malmberg, S.-A., Turrell, W. R., and Østerhus, S.: Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing, Deep Sea Res. Part I, 47, 655–680, https://doi.org/10.1016/S0967-0637(99)00070-9, 2000.
Blume, H. P., Brümmer, G., Horn, R., Kretzschmar, R., Kandeler, E., Kögel-Knabner, I., Stahr, K., and Wilke, B. M.: Scheffer/Schachtschabel: Lehrbuch der Bodenkunde, Springer Spektrum, 2009.
Bøe, R., Rise, L., Blikra, L. H., Longva, O., and Eide, A.: Holocene mass-movement processes in Trondheimsfjorden, Central Norway, Norw. J. Geol., 83, 3–22, 2003.
Dale, B.: Cyst formation, sedimentation and preservation: factors affecting dinoflagellate assemblages in recent sediments from Trondheimsfjord, Norway, Rev. Palaeobot. Palynol., 22, 39–60, 1976.
Dale, B.: Marine dinoflagellate cysts as indicators of eutrophication and industrial pollution: a discussion., Sci. Total Environ., 264, 235–240, 2001.
Dale, B., Thorsen, T. A., and Fjellsa, A.: Dinoflagellate cysts as indicators of cultural eutrophication in the Oslofjord, Norway, Estuar. Coast. Shelf S., 48, 371–382, https://doi.org/10.1006/ecss.1999.0427, 1999a.
Dale, T., Rey, F., and Heimdal, B. R.: Seasonal development of phytoplankton at a high latitude oceanic site, Sarsia, 84, 419–435, 1999b.
Dale, B., Dale, A. L., and Jansen, J. H. F.: Dinoflagellate cysts as environmental indicators in surface sediments from the Congo deep-sea fan and adjacent regions, Palaeogeogr. Palaeocl., 185, 309–338, 2002.
De Vernal, A. and Marret, F.: Organic-Walled Dinoflagellate Cysts: Tracers of Sea-Surface Conditions, Mar. Geol., 1, 371–408, https://doi.org/10.1016/S1572-5480(07)01014-7, 2007.
De Vernal, A., Rochon, A., Hillaire-Marcel, C., Turon, J. L., and Guiot, J.: Quantitative reconstruction of sea-surface conditions, seasonal extent of sea-ice cover and meltwater discharges in high latitude marine environments from dinoflagellate cyst assemblages, Nato. Asi. Ser., I12, 611–621, 1993.
De Vernal, A., Henry, M., and Bilodeau, G.: Techniques de Préparation et d'Analyse en Micropaleontologie, Le Cah. du GEOTOP, 3, Université du Québec à Montréal, Canada, 1996.
De Vernal, A., Hillaire-Marcel, C., Turon, J.-L., and Matthiessen, J.: Reconstruction of sea-surface temperature, salinity, and sea-ice cover in the northern North Atlantic during the last glacial maximum based on dinocyst assemblages, Can. J. Earth Sci., 37, 725–750, https://doi.org/10.1139/e99-091, 2000.
De Vernal, A., Henry, M., Matthiessen, J., Mudie, P. J., Rochon, A., Boessenkool, K. P., Eynaud, F., Grøsfjeld, K., Guiot, J., Hamel, D., Harland, R., Head, M. J., Kunz-Pirrung, M., Levac, E., Loucheur, V., Peyron, O., Pospelova, V., Radi, T., Turon, J.-L., and Voronina, E.: Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the new n = 677 data base and its application for quantitative palaeoceanographic reconstruction, J. Quaternary S., 16, 681–698, https://doi.org/10.1002/jqs.659, 2001.
De Vernal, A., Eynaud, F., Henry, M., Hillaire-Marcel, C., Londeix, L., Mangin, S., Matthiessen, J., Marret, F., Radi, T., Rochon, A., Solignac, S., and Turon, J.-L.: Reconstruction of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages, Quaternary Sci. Rev., 24, 897–924, https://doi.org/10.1016/j.quascirev.2004.06.014, 2005.
Devillers, R. and de Vernal, A.: Distribution of dinoflagellate cysts in surface sediments of the northern North Atlantic in relation to nutrient content and productivity in surface waters, Mar. Geol., 166, 103–124, https://doi.org/10.1016/S0025-3227(00)00007-4, 2000.
Durantou, L., Rochon, A., Ledu, D., Massé, G., Schmidt, S., and Babin, M.: Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns, Biogeosciences, 9, 5391–5406, https://doi.org/10.5194/bg-9-5391-2012, 2012.
Ellingsen, I. H.: Internal tides and the spread of river plumes in the Trondheimfjord, 1–174 pp., Norwegian University of Science and Technology (NTNU), Trondheim, 2004.
Erga, S. R., Aursland, K., Frette, Ø., Hamre, B., Lotsberg, J. K., Stamnes, J. J., Aure, J., Rey, F., and Stamnes, K.: UV transmission in Norwegian marine waters: controlling factors and possible effects on primary production and vertical distribution of phytoplankton, Mar Ecol. Prog. Ser., 305, 79–100, https://doi.org/10.3354/meps305079, 2005.
Grøsfjeld, K. and Harland, R.: Distribution of modern dinoflagellate cysts from inshore areas along the coast of southern Norway, J. Quaternary Sci., 16, 651–659, https://doi.org/10.1002/jqs.653, 2001.
Grøsfjeld, K., Harland, R., and Howe, J.: Dinoflagellate cyst assemblages inshore and offshore Svalbard reflecting their modern hydrography and climate, Norw. J. Geol., 89, 121–134, 2009.
Grundle, D. S., Timothy, D. A., and Varela, D. E.: Variations of phytoplankton productivity and biomass over an annual cycle in Saanich Inlet, a British Columbia fjord, Cont. Shelf Res., 29, 2257–2269, https://doi.org/10.1016/j.csr.2009.08.013, 2009.
Guiot, J. and de Vernal, A.: Transfer Functions?: Methods for Quantitative Paleoceanography Based on Microfossils, Hillaire-Marcel, C., Vernal, A. Proxies Late Cenozoic Paleoceanogr. Elsevier, 1, 523–563, https://doi.org/10.1016/S1572-5480(07)01018-4, 2007.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: Paleontological Statistics Software, Paleontol. Electron., 4, 0–9, available at: http://www.folk.uio.no/ohammer/past/ (last access: April 2012), Version 2.15, 2001.
Harland, R.: Distribution maps of recent dinoflagellate cysts in bottom sediments from the North Atlantic Ocean and adjacent seas, Paleontology, 26, 321–387, 1983.
Harland, R., Nordberg, K. ,and Filipsson, H. L.: A high-resolution dinoflagellate cyst record from latest Holocene sediments in Koljö Fjord, Sweden, Rev. Palaeobot. Palynol., 128, 119–141, https://doi.org/10.1016/S0034-6667(03)00116-7, 2004.
Harland, R., Nordberg, K., and Filipsson, H. L.: Dinoflagellate cysts and hydrographical change in Gullmar Fjord, west coast of Sweden, Sci. Total Environ., 355, 204–231, https://doi.org/10.1016/j.scitotenv.2005.02.030, 2006.
Head, M. J., Harland, R., and Matthiessen, J.: Cold marine indicators of the late Quaternary: The new dinoflagellate cyst genus Islandinium and related morphotypes, J. Quaternary Sci., 16, 621–636, https://doi.org/10.1002/jqs.657, 2001.
Head, M. J., Lewis, J., and de Vernal, A.: The cyst of the calcareous dinoflagellate Scrippsiella trifida; resolving the fossil record of its organic wall with that of Alexandrium tamarense, J. Paleontol., 80, 1–18, 2006.
Howe, J. A., Austin, W. E. N., Forwick, M., Paetzel, M., Harland, R. and Cage, A. G.: Fjord systems and archives: a review, in: Fjord Systems and Archives, edited by: Howe, J. A., Austin, W. E. N., Forwick, M., and Paetzel, M., Geological Society, London, Special Publications, 344, 207–223, 2010.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: Regional Temperatures and precipitation, Science, 269, 676–679, 1995.
Hurrell, J. W. and van Loon, H.: Decadal variations in climate associated with the North Atlantic Oscillation, in: Climatic Change, 36, 301–326, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1997.
Imbrie, J. and Kipp, N. G.: A new micropaleontological method for quantitative paleoclimatology: Application to a late Pleistocene Caribbean core, edited by: Turekian, K. K., Late Cenozoic Glacial Ages 71–181; Yale Univ. Press. New Haven, CT, 1971.
Jacobson, P.: Physical oceanography of the Trondheimsfjord, Geophys. Astro. Fluid, 26, 3–26, 1983.
Kirchner, G.: 210Pb as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models., J. Environ. Radioact., 102, 490–494, https://doi.org/10.1016/j.jenvrad.2010.11.010, 2011.
Kucera, M., Weinelt, M. S., Kiefer, T., Pflaumann, U., Hayes.T., Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998, 2005.
L'Abée-Lund, J. H., Eie, J. A., Faugli, P. E., Haugland, S., Hvidsten, N. A., Jensen, A. J., Melvold, K., Pettersen, V., and Saltveit, S. J.: Rivers in Boreal Uplands, in Rivers of Europe, edited by: Tockner, K., Robinson, C. T., and Uehlinger, U., 0–699, Academic Press Elsevier, 2009.
Marret, F. and Zonneveld, K.: Atlas of modern organic-walled dinoflagellate cyst distribution, Rev. Palaeobot. Palynol., 125, 1–200, https://doi.org/10.1016/S0034-6667(02)00229-4, 2003.
Marret, F., Eir\`iksson, J., Knudsen, K. L., Turon, J.-L., and Scourse, J. D.: Distribution of dinoflagellate cyst assemblages in surface sediments from the northern and western shelf of Iceland, Rev. Palaeobot. Palynol., 128, 35–53, https://doi.org/10.1016/S0034-6667(03)00111-8, 2004.
Matsuoka, K., Kawami, H., Nagai, S., Iwataki, M., and Takayama, H.: Re-examination of cyst-motile relationships of Polykrikos kofoidii Chatton and Polykrikos schwartzii Bütschli (Gymnodiniales, Dinophyceae), Rev. Palaeobot. Palynol., 154, 79–90, 2009.
Matthiessen, J.: Distribution patterns of dinoflagellate cysts and other organic-walled microfossils in recent Norwegian-Greenland Sea sediments, Mar. Micropaleontol., 24, 307–334, https://doi.org/10.1016/0377-8398(94)00016-G, 1995.
Maslin, M. A., Shackleton, N. J., and Pflaumann, U.: Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds, Paleoceanography, 10, 527–544, https://doi.org/10.1029/94PA03040, 1995.
McMinn, A.: Recent dinoflagellate cysts from estuaries on the central coast of New South Wales, Australia, Micropaleontology, 37, 269–287, 1991.
Milzer, G., Giraudeau, J., Faust, J., Knies, J., Eynau, F., and Rühlemann, C.: Spatial distribution of benthic foraminiferal stable isotopes and dinocyst assemblages in surface sediments of the Trondheimsfjord, central Norway, Biogeosciences, 10, 1–16, https://doi.org/10.5194/bg-10-1-2013, 2013.
Nehring, S.: Dinoflagellate resting cysts in recent sediments of tide western Baltic as indicators for the occurrence of "non-indigenous" species in the water column, Institut für Meereskunde, Universität Kiel, in: Proceedings of the 13th Symposium of the Saldo Marine Biologists, Riga 1993: 79–85, 1997 Ed. A AndrugaitaL Institue of Aquatic Ecology, University of Latvia, ISBN 9984-509-90-7, 1997.
Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P., and Stenseth, N.: Ecological effects of the North Atlantic Oscillation, Oecologia, 128, 1–14, https://doi.org/10.1007/s004420100655, 2001.
Parke, M. and Dixon, P. S.: Revised check-list of British marine algae, J. Mar. Biol. Assoc. UK, 44, 499–542, 1964.
Penaud, A., Eynaud, F., Turon, J. L., Zaragosi, S., Marret, F., and Bourillet, J. F.: Interglacial variability (MIS 5 and MIS 7) and dinoflagellate cyst assemblages in the Bay of Biscay (North Atlantic), Mar. Micropal., 68, 136–155, https://doi.org/10.1016/j.marmicro.2008.01.007, 2008.
Pettersson, L.-E.: Totalavløpet fra Norges vassdrag 1900-2010 (Rapport nr 39-2012), Oslo, ISBN: 978-82-410-0827-6, 2012.
Pflaumann, U., Duprat, C., Pujol, C., and Labeyrie, L.: SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments, Paleoceanography, 11, 15–35, 1996.
Pospelova, V., de Vernal, A., and Pedersen, T. F.: Distribution of dinoflagellate cysts in surface sediments from the northeastern Pacific Ocean (43–25° N) in relation to sea-surface temperature, salinity, productivity and coastal upwelling, Mar. Micropaleontol., 68, 21–48, https://doi.org/10.1016/j.marmicro.2008.01.008, 2008.
R Development Core Team: R: A language and environment for statistical computing, R Foundati, Vienna, Austria, available at: http://www.r-project.org, 2008.
Radi, T. and de Vernal, A.: Dinocyst distribution in surface sediments from the northeastern Pacific margin (40–60° N) in relation to hydrographic conditions, productivity and upwelling, Rev. Palaeobot. Palynol., 128, 169–193, https://doi.org/10.1016/S0034-6667(03)00118-0, 2004.
Radi, T. and de Vernal, A.: Dinocysts as proxy of primary productivity in mid–high latitudes of the Northern Hemisphere, Mar. Micropaleontol., 68, 84–114, https://doi.org/10.1016/j.marmicro.2008.01.012, 2008.
Riding, J. B. and Kyffin-Hughes, J. E.: A review of the laboratory preparation of palynomorphs with a description of an effective non-acid technique, Rev. Bras. Paleontol., 7, 13–44, 2004.
Robbins, J. A. and Edgington, D. N.: Determination of recent sedimentation rates in Lake Michigan using Pb-210 ad CS-137, Geochim. Cosmochim. Ac., 39, 285–304, 1975.
Rochon, A., de Vernal, A., Turon, J.-L., Matthiessen, J., and Head, M. J.: Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters, Am. Assoc. Stratigr. Palynol., 35, 1–146, https://doi.org/10.1016/0377-8398(94)00016-G, 1999.
Sætre, M. M. L., Dale, B., Abdullahb, M. I., and Sætre, G. P.: Dinoflagellate cysts as potential indicators of industrial pollution in a Norwegian fjord, Mar. Environ. Res., 44, 167–189, 1997.
Sætre, R.: Features of the central Norwegian shelf circulation, Cont. Shelf Res., 19, 1809–1831, 1999.
Sætre, R.: Norwegian Coastal Current, edited by R. Sætre, Tapir Academic Press, 2007.
Sakshaug, E. and Myklestad, S.: Studies on the phytoplankton ecology of the Trondheimsfjord.III Dynamics of phytoplankton blooms in relation to environmental factors, bioassy experiments and parameters for the physiological state of the populations, J. Exp. Mar. Biol. Ecol., 11, 157–188, 1973.
Schmidt, S., Howa, H., Diallo, A., Cremer, M., Duros, P., Fontanier, C., Deflandre, B., Metzger, E., and Mulder, T.: Recent sediment transport and deposition in the Cap-Ferret Canyon, South-East margin of Bay of Biscay, Deep-Sea Res. Part II, https://doi.org/10.1016/j.dsr2.2013.06.004, 2013.
Sherman, K. and Hempel, G.: The UNEP Large Marine Ecosystem Report: A perspective on changing conditions in LMEs of the world's Regional Seas, UNEP LME Report, No. 182, 0–872, 2008.
Smayda, T. J. and Reynolds, C. S.: Strategies of marine dinoflagellate survival and some rules of assembly, J. Sea Res., 49, 95–106, https://doi.org/10.1016/S1385-1101(02)00219-8, 2003.
Sorrel, P., Popescu, S.-M., Head, M. J., Suc, J. P., Klotz, S., and Oberhänsli, H.: Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts, Palaeogeogr. Palaeocl., 234, 304–327, https://doi.org/10.1016/j.palaeo.2005.10.012, 2006.
Stockmarr, J.: Tablets with spores used in absolute pollen analysis, Pollen et Spores, 8, 615–621, 1971.
Strømgren, T.: Zooplankton and Hydrography in Trondheimsfjorden on the west coast of Norway, R. Nor. Soc. Sci. Lett. Museum, 51-60, 1–38, https://doi.org/10.1016/0024-3841(84)90026-3, 1974.
Tangen, K. and Arff, J.: Høvringen wastewater plant and the environmental quality of the Trondheimfjord (OCN R-23027), Trondheim (Norway), 2003.
Telford, R. J. and Birks, H. J. B.: Effect of uneven sampling along an environmental gradient on transfer-function performance, J. Paleolimnol., 46, 99–106, https://doi.org/10.1007/s10933-011-9523-z, 2011.
Van Nieuwenhove, N., Bauch, H., and Matthiessen, J.: Last interglacial surface water conditions in the eastern Nordic Seas inferred from dinocyst and foraminiferal assemblages, Mar. Micropaleontol., 66, 247–263, https://doi.org/10.1016/j.marmicro.2007.10.004, 2008.
Vellinga, M. and Wood, R.: Global climatic impacts of a collapse of the Atlantic thermohaline circulation, Clim. Change, 54, 251–267, 2002.
Visbeck, M., Chassignet, E., P., Curry, R., Dickson, B., and Krahmann, G.: The Ocean's Response to North Atlantic Oscillation Variability, in: The North Atlantic Oscillation: Climatic Significance and Environmental Impact, edited by: Hurrell, J. W., 113–45, Washington D.C., 2003.
Von Detten, P., Faude, O., and Meyer, T.: Leitfaden zur statistischen Auswertung von empirischen Studien, 1–44, 2008.
Waelbroeck, C., Mulitza, S., Spero, H., Dokken, T., Kiefer, T., and Cortijo, E.: A global compilation of late Holocene planktonic foraminiferal δ18O: relationship between surface water temperature and δ18O, Quaternary Sci. Rev., 24, 853–868, https://doi.org/10.1016/j.quascirev.2003.10.014, 2005.
Wall, D. and Dale, B.: The resting cysts of modern marine dinoflagellates and their paleontological significance, Rev. Palaeobot. Palynol., 2, 349–354, 1967.
Zaragosi, S., Eynaud, F., Pujol, C., Auffret, G. A., Turon, J.-L., and Garlan, T.: Initiation of the European deglaciation as recorded in the northwestern Bay of Biscay slope environments (Meriadzek Terrace and Trevelyan Escarpment): a multi-proxy approach, Earth Planet. Sci. Lett., 188, 493–507, 2001.
Zonneveld, K. A. F., Versteegh, G. J. M., and de Lange, G. J.: Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: a 10,000 year natural experiment, Mar. Micropaleontol., 29, 393–405, 1997.
Zonneveld, K. A. F., Versteegh, G. J. M., and de Lange, G. J.: Palaeoproductivity and post-depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean S1 sapropel ABC26, Mar. Geol., 172, 181–195, 2001.
Zonneveld, K. A. F., Versteegh, G., and Kodrans-Nsiah, M.: Preservation and organic chemistry of Late Cenozoic organic-walled dinoflagellate cysts: A review, Mar. Micropaleontol., 68, 179–197, https://doi.org/10.1016/j.marmicro.2008.01.015, 2008.
Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, S.-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.-L., Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern dinoflagellate cyst distribution based on 2405 data points, Rev. Palaeobot. Palyno., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.