Articles | Volume 10, issue 6
https://doi.org/10.5194/cp-10-1957-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-1957-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Links between CO2, glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current
J.-B. Ladant
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, CEA Saclay, Gif-sur-Yvette, France
Y. Donnadieu
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, CEA Saclay, Gif-sur-Yvette, France
C. Dumas
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, CEA Saclay, Gif-sur-Yvette, France
Viewed
Total article views: 3,744 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 May 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,065 | 1,472 | 207 | 3,744 | 187 | 181 |
- HTML: 2,065
- PDF: 1,472
- XML: 207
- Total: 3,744
- BibTeX: 187
- EndNote: 181
Total article views: 2,880 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Nov 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,607 | 1,093 | 180 | 2,880 | 174 | 172 |
- HTML: 1,607
- PDF: 1,093
- XML: 180
- Total: 2,880
- BibTeX: 174
- EndNote: 172
Total article views: 864 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 May 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
458 | 379 | 27 | 864 | 13 | 9 |
- HTML: 458
- PDF: 379
- XML: 27
- Total: 864
- BibTeX: 13
- EndNote: 9
Cited
20 citations as recorded by crossref.
- Orbital Forcing, Ice Volume, and CO2 Across the Oligocene‐Miocene Transition R. Greenop et al. 10.1029/2018PA003420
- Deep Convection as the Key to the Transition From Eocene to Modern Antarctic Circumpolar Current Q. Xing et al. 10.1029/2023GL104847
- Eccentricity‐Paced Southern Hemisphere Glacial‐Interglacial Cyclicity Preceding the Middle Miocene Climatic Transition C. Ohneiser & G. Wilson 10.1029/2017PA003278
- Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison A. Toumoulin et al. 10.5194/cp-18-341-2022
- Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic M. Tremblin et al. 10.1073/pnas.1608100113
- Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge) M. Bordiga et al. 10.5194/cp-11-1249-2015
- Probing the Ecology and Climate of the Eocene Southern Ocean With Sand Tiger Sharks Striatolamia macrota S. Kim et al. 10.1029/2020PA003997
- High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels A. Pohl et al. 10.1016/j.palaeo.2015.09.036
- Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and <i>p</i>CO<sub>2</sub> M. Amoo et al. 10.5194/cp-18-525-2022
- The Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges M. Vernet et al. 10.1029/2018RG000604
- The Antarctic Circumpolar Current isolates and connects: Structured circumpolarity in the sea star Glabraster antarctica J. Moore et al. 10.1002/ece3.4551
- Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma F. Poblete et al. 10.1016/j.earscirev.2021.103508
- Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change G. Rodrigues de Faria et al. 10.5194/cp-20-1327-2024
- Proxy‐Model Comparison for the Eocene‐Oligocene Transition in Southern High Latitudes E. Tibbett et al. 10.1029/2022PA004496
- The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons D. Hutchinson et al. 10.5194/cp-17-269-2021
- The MMCO‐EOT conundrum: Same benthic δ18O, different CO2 L. Stap et al. 10.1002/2016PA002958
- How Antarctica got its ice C. Lear & D. Lunt 10.1126/science.aad6284
- Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic M. Baatsen et al. 10.5194/cp-12-1635-2016
- Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean A. Toumoulin et al. 10.1029/2020PA003889
- Quasi-static Eocene–Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling M. Kohn et al. 10.1016/j.palaeo.2015.05.028
19 citations as recorded by crossref.
- Orbital Forcing, Ice Volume, and CO2 Across the Oligocene‐Miocene Transition R. Greenop et al. 10.1029/2018PA003420
- Deep Convection as the Key to the Transition From Eocene to Modern Antarctic Circumpolar Current Q. Xing et al. 10.1029/2023GL104847
- Eccentricity‐Paced Southern Hemisphere Glacial‐Interglacial Cyclicity Preceding the Middle Miocene Climatic Transition C. Ohneiser & G. Wilson 10.1029/2017PA003278
- Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison A. Toumoulin et al. 10.5194/cp-18-341-2022
- Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic M. Tremblin et al. 10.1073/pnas.1608100113
- Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge) M. Bordiga et al. 10.5194/cp-11-1249-2015
- Probing the Ecology and Climate of the Eocene Southern Ocean With Sand Tiger Sharks Striatolamia macrota S. Kim et al. 10.1029/2020PA003997
- High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels A. Pohl et al. 10.1016/j.palaeo.2015.09.036
- Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and <i>p</i>CO<sub>2</sub> M. Amoo et al. 10.5194/cp-18-525-2022
- The Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges M. Vernet et al. 10.1029/2018RG000604
- The Antarctic Circumpolar Current isolates and connects: Structured circumpolarity in the sea star Glabraster antarctica J. Moore et al. 10.1002/ece3.4551
- Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma F. Poblete et al. 10.1016/j.earscirev.2021.103508
- Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change G. Rodrigues de Faria et al. 10.5194/cp-20-1327-2024
- Proxy‐Model Comparison for the Eocene‐Oligocene Transition in Southern High Latitudes E. Tibbett et al. 10.1029/2022PA004496
- The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons D. Hutchinson et al. 10.5194/cp-17-269-2021
- The MMCO‐EOT conundrum: Same benthic δ18O, different CO2 L. Stap et al. 10.1002/2016PA002958
- How Antarctica got its ice C. Lear & D. Lunt 10.1126/science.aad6284
- Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic M. Baatsen et al. 10.5194/cp-12-1635-2016
- Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean A. Toumoulin et al. 10.1029/2020PA003889
Saved (final revised paper)
Saved (preprint)
Latest update: 04 Oct 2024