Articles | Volume 10, issue 5
https://doi.org/10.5194/cp-10-1779-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-1779-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Radiative forcings for 28 potential Archean greenhouse gases
B. Byrne
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
now at: Department of Physics, University of Toronto, Toronto, Ontario, Canada
C. Goldblatt
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
Related authors
B. Byrne and C. Goldblatt
Clim. Past, 11, 559–570, https://doi.org/10.5194/cp-11-559-2015, https://doi.org/10.5194/cp-11-559-2015, 2015
Short summary
Short summary
High methane concentrations are thought to have helped sustain warm surface temperatures on the early Earth (~3 billion years ago) when the sun was only 80% as luminous as today. However, radiative transfer calculations with updated spectral data show that methane is a stronger absorber of solar radiation than previously thought. In this paper we show that the increased solar absorption causes a redcution in the warming ability of methane in the Archaean atmosphere.
Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-163, https://doi.org/10.5194/gmd-2024-163, 2024
Preprint under review for GMD
Short summary
Short summary
Photochemical models describe how the composition of an atmosphere changes due to chemical reactions, transport, and other processes. These models are useful for studying the composition of the Earth and other planet's atmospheres. Understanding the results of these models can be difficult. Here, we build on previous work to develop an open-source code that can identify the reaction chains (pathways) that produce the results of these models, facilitating the understanding of these results.
Russell Deitrick and Colin Goldblatt
Clim. Past, 19, 1201–1218, https://doi.org/10.5194/cp-19-1201-2023, https://doi.org/10.5194/cp-19-1201-2023, 2023
Short summary
Short summary
Prior to 2.5 billion years ago, ozone was present in our atmosphere only in trace amounts. To understand how climate has changed in response to ozone build-up, we have run 3-D climate simulations with different amounts of ozone. We find that Earth's surface is about 3 to 4 °C degrees cooler with low ozone. This is caused by cooling of the upper atmosphere, where ozone is a warming agent. Its removal causes the upper atmosphere to become drier, weakening the greenhouse warming by water vapor.
Colin Goldblatt, Lucas Kavanagh, and Maura Dewey
Geosci. Model Dev., 10, 3931–3940, https://doi.org/10.5194/gmd-10-3931-2017, https://doi.org/10.5194/gmd-10-3931-2017, 2017
Short summary
Short summary
We provide the experimental designs and protocols for a community experiment to compare radiative transfer codes used for past climate on Earth, and for exoplanets.
Benjamin W. Johnson, Natashia Drage, Jody Spence, Nova Hanson, Rana El-Sabaawi, and Colin Goldblatt
Solid Earth, 8, 307–318, https://doi.org/10.5194/se-8-307-2017, https://doi.org/10.5194/se-8-307-2017, 2017
Short summary
Short summary
Contrary to canonical notions, recent research suggests that N can cycle throughout the solid Earth over geologic time. Such cycling may directly affect climate and biologic productivity. Due to low concentrations in rocks and minerals, analysis and interpretation are difficult. Therefore, we adapted a fluorometry technique used in aquatic chemistry for use on geologic samples. We compare fluorometry to mass spectrometry and present discussion of the abundance of N in continental crust.
B. Byrne and C. Goldblatt
Clim. Past, 11, 559–570, https://doi.org/10.5194/cp-11-559-2015, https://doi.org/10.5194/cp-11-559-2015, 2015
Short summary
Short summary
High methane concentrations are thought to have helped sustain warm surface temperatures on the early Earth (~3 billion years ago) when the sun was only 80% as luminous as today. However, radiative transfer calculations with updated spectral data show that methane is a stronger absorber of solar radiation than previously thought. In this paper we show that the increased solar absorption causes a redcution in the warming ability of methane in the Archaean atmosphere.
Related subject area
Subject: Greenhouse Gases | Archive: Modelling only | Timescale: Pre-Cenozoic
Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)
Radiative effects of ozone on the climate of a Snowball Earth
R. V. Kochanov, I. E. Gordon, L. S. Rothman, S. W. Sharpe, T. J. Johnson, and R. L. Sams
Clim. Past, 11, 1097–1105, https://doi.org/10.5194/cp-11-1097-2015, https://doi.org/10.5194/cp-11-1097-2015, 2015
Short summary
Short summary
In the article Clim Past 10, 1779 (2014), the HITRAN2012 database was employed to evaluate the radiative forcing of 28 Archean gases. The authors claimed that for NO2, H2O2, C2H4, CH3OH, and CH3Br there are severe disagreements between cross sections generated from the HITRAN line-by-line data and those of the PNNL experimental database. In this work we show that the differences are not nearly at the scale suggested by the authors, and their conclusions about these gases and HO2 are not correct.
J. Yang, Y. Hu, and W. R. Peltier
Clim. Past, 8, 2019–2029, https://doi.org/10.5194/cp-8-2019-2012, https://doi.org/10.5194/cp-8-2019-2012, 2012
Cited articles
Abad, G. G., Allen, N. D. C., Bernath, P. F., Boone, C. D., McLeod, S. D., Manney, G. L., Toon, G. C., Carouge, C., Wang, Y., Wu, S., Barkley, M. P., Palmer, P. I., Xiao, Y., and Fu, T. M.: Ethane, ethyne and carbon monoxide abundances in the upper troposphere and lower stratosphere from ACE and GEOS-Chem: a comparison study, Atmos. Chem. Phys., 11, 9927–9941, https://doi.org/10.5194/acp-11-9927-2011, 2011.
Allen, N. D. C., Abad, G. G., Bernath, P. F., and Boone, C. D.: Satellite observations of the global distribution of hydrogen peroxide (H2O2) from ACE, J. Quant. Spectrosc. Radiat. Transfer, 115, 66–77, https://doi.org/10.1016/j.jqsrt.2012.09.008, 2013.
Bar-Nun, A. and Chang, S.: Photochemical reactions of water and carbon-monoxide in Earth's primitive atmosphere, J. Geophys. Res.-Oc. Atm., 88, 6662–6672, https://doi.org/10.1029/JC088iC11p06662, 1983.
Buick, R.: Did the Proterozoic "Canfield Ocean" cause a laughing gas greenhouse?, Geobiology, 5, 97–100, https://doi.org/10.1111/j.1472-4669.2007.00110.x, 2007.
Byrne, B. and Goldblatt, C.: Radiative forcing at high concentrations of well-mixed greenhouse gases, Geophys. Res. Lett., 41, 152–160, https://doi.org/10.1002/2013GL058456, 2014.
Charnay, B., Forget, F., Wordsworth, R., Leconte, J., Millour, E., Codron, F., and Spiga, A.: Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM, J. Geophys. Res.-Atmos., 118, 10414, https://doi.org/10.1002/jgrd.50808, 2013.
Chebbi, A. and Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review, Atmos. Environ., 30, 4233–4249, https://doi.org/10.1016/1352-2310(96)00102-1, 1996.
Chin, M. and Davis, D.: A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, J. Geophys. Res.-Atmos., 100, 8993–9005, https://doi.org/10.1029/95JD00275, 1995.
Domagal-Goldman, S. D., Meadows, V. S., Claire, M. W., and Kasting, J. F.: Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets, Astrobiology, 11, 419–441, https://doi.org/10.1089/ast.2010.0509, 2011.
Donn, W. L., Donn, B. D., and Valentine, W. G.: On the early history of the Earth, Geol. Soc. Am. Bull., 76, 287–306, https://doi.org/10.1130/0016-7606(1965)76[287:OTEHOT]2.0.CO;2, 1965.
Driese, S. G., Jirsa, M. A., Ren, M., Brantley, S. L., Sheldon, N. D., Parker, D., and Schmitz, M.: Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Gyr early terrestrial ecosystems and paleoatmospheric chemistry, Precambrian Res., 189, 1–17, https://doi.org/10.1016/j.precamres.2011.04.003, 2011.
Duchatelet, P., Mahieu, E., Ruhnke, R., Feng, W., Chipperfield, M., Demoulin, P., Bernath, P., Boone, C. D., Walker, K. A., Servais, C., and Flock, O.: An approach to retrieve information on the carbonyl fluoride (COF2) vertical distributions above Jungfraujoch by FTIR multi-spectrum multi-window fitting, Atmos. Chem. Phys., 9, 9027–9042, https://doi.org/10.5194/acp-9-9027-2009, 2009.
Feulner, G.: The faint young sun problem, Rev. Geophys., 50, RG2006, https://doi.org/10.1029/2011RG000375, 2012.
Fishman, J. and Crutzen, P.: Origin of ozone in the troposphere, Nature, 274, 855–858, https://doi.org/10.1038/274855a0, 1978.
Freckleton, R., Highwood, E., Shine, K., Wild, O., Law, K., and Sanderson, M.: Greenhouse gas radiative forcing: Effects of averaging and inhomogeneities in trace gas distribution, Q. J. Roy. Meteorol. Soc., 124, 2099–2127, https://doi.org/10.1256/smsqj.55013, 1998.
Gaillard, F., Scaillet, B., and Arndt, N. T.: Atmospheric oxygenation caused by a change in volcanic degassing pressure, Nature, 478, 229–U112, https://doi.org/10.1038/Nature10460, 2011.
Glindemann, D., Edwards, M., and Kuschk, P.: Phosphine gas in the upper troposphere, Atmos. Environ., 37,2429–2433, https://doi.org/10.1016/S1352-2310(03)00202-4, 2003.
Glindemann, D., Edwards, M., and Schrems, O.: Phosphine and methylphosphine production by simulated lightning - a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere, Atmos. Environ., 38,6867–6874, https://doi.org/10.1016/j.atmosenv.2004.09.002, 2004.
Glindemann, D., Edwards, M., and Morgenstern, P.: Phosphine from rocks: Mechanically driven phosphate reduction?, Environ. Sci. Policy, 39, 8295–8299, https://doi.org/10.1021/es050682w, 2005.
Goldblatt, C. and Zahnle, K. J.: Faint young Sun paradox remains, Nature, 474, E3–E4, https://doi.org/10.1038/nature09961, 2011a.
Goldblatt, C. and Zahnle, K. J.: Clouds and the Faint Young Sun Paradox, Clim. Past, 7, 203–220, https://doi.org/10.5194/cp-7-203-2011, 2011b.
Goldblatt, C., Lenton, T. M., and Watson, A. J.: Bistability of atmospheric oxygen and the Great Oxidation, Nature, 443, 683–686, https://doi.org/10.1038/nature05169, 2006.
Goldblatt, C., Claire, M. W., Lenton, T. M., Matthews, A. J., Watson, A. J., and Zahnle, K. J.: Nitrogen-enhanced greenhouse warming on early Earth, Nat. Geosci., 2, 891–896, https://doi.org/10.1038/ngeo692, 2009.
Goody, R. and Yung, Y.: Atmospheric Radiation: Theoretical Basis, Oxford University Press, New York, USA, 1995.
Gough, D.: Solar interior structure and luminoscity variations, Sol. Phys., 74, 21–34, https://doi.org/10.1007/BF00151270, 1981.
Halevy, I., Pierrehumbert, R. T., and Schrag, D. P.: Radiative transfer in CO2-rich paleoatmospheres, J. Geophys. Res.-Atmos., 114, D18112, https://doi.org/10.1029/2009JD011915, 2009.
Halevy, I. and Schrag, D. P.: Sulfur dioxide inhibits calcium carbonate precipitation: Implications for early Mars and Earth, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL040792, 2009.
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.-Atmos., 110, D18104, https://doi.org/10.1029/2005JD005776, 2005.
Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J., and Kasting, J. F.: A revised, hazy methane greenhouse for the archean earth, Astrobiology, 8, 1127–1137, https://doi.org/10.1089/ast.2007.0197, 2008.
Haqq-Misra, J., Kasting, J. F., and Lee, S.: Availability of O2 and H2O2 on Pre-Photosynthetic Earth, Astrobiology, 11, 293–302, https://doi.org/10.1089/ast.2010.0572, 2011.
Harrison, J. J., Chipperfield, M. P., Dudhia, A., Cai, S., Dhomse, S., Boone, C. D., and Bernath, P. F.: Satellite observations of stratospheric carbonyl fluoride, Atmospheric Chemistry and Physics Discussions, 14, 18 127–18 180, https://doi.org/10.5194/acpd-14-18127-2014, 2014.
Hattori, S., Danielache, S. O., Johnson, M. S., Schmidt, J. A., Kjaergaard, H. G., Toyoda, S., Ueno, Y., and Yoshida, N.: Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC32S, OC33S, OC34S and O13CS: isotopic fractionation in photolysis and atmospheric implications, Atmos. Chem. Phys., 11, 10293–10303, https://doi.org/10.5194/acp-11-10293-2011, 2011.
Hua, W., Chen, Z. M., Jie, C. Y., Kondo, Y., Hofzumahaus, A., Takegawa, N., Chang, C. C., Lu, K. D., Miyazaki, Y., Kita, K., Wang, H. L., Zhang, Y. H., and Hu, M.: Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their abundance, formation mechanism and contribution to secondary aerosols, Atmos. Chem. Phys., 8, 6755–6773, 2008.
IPCC: Climate Change 2013: The Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Jacob, D., Field, B., Li, Q., Blake, D., de Gouw, J., Warneke, C., Hansel, A., Wisthaler, A., Singh, H., and Guenther, A.: Global budget of methanol: Constraints from atmospheric observations, J. Geophys. Res.-Atmos., 110, https://doi.org/10.1029/2004JD005172, 2005.
Johnson, B. and Goldblatt, C.: The Nitrogen Budget of Earth, Earth-Sci. Rev., in review, 2014.
Johnston, H.: Global ozone balance in natural stratosphere, Rev. Geophys., 13, 637–649, https://doi.org/10.1029/RG013i005p00637, 1975.
Kasting, J. and Donahue, T.: The evolution of atmospheric ozone, J. Geophys. Res-Oc., 85, 3255–3263, https://doi.org/10.1029/JC085iC06p03255, 1980.
Kasting, J. F.: Stability of ammonia in the primitive terrestrial atmosphere, J. Geophys. Res-Oc. Atm., 87, 3091–3098, https://doi.org/10.1029/JC087iC04p03091, 1982.
Kasting, J. F., Zahnle, K. J., and Walker, J. C. G.: (1983) Photochemistry of methane in Earth's early atmosphere, Precambrian Res., 20, 121–148, https://doi.org/10.1016/0301-9268(83)90069-4, 1983.
Kasting, J. F.: Methane and climate during the Precambrian era, Precambrian Res., 137, 119–129, https://doi.org/10.1016/j.precamres.2005.03.002, 2005.
Kasting, J. F.: How was early earth kept warm?, Science, 339, 44–45, https://doi.org/10.1126/science.1232662, 2013.
Kasting, J. F., Pollack, J., and Crisp, D.: Effects of high CO2 levels on surface-temperature and atmospheric oxidation-state of the early Earth, J. Atmos. Chem., 1, 403–428, https://doi.org/10.1007/BF00053803, 1984.
Kavanagh, L. and Goldblatt, C.: The Som Palaeobarometry Method: a critical analysis, presented at: 2012 Fall Meeting, 3–7 December, AGU, San Francisco, California, abstract P21B-1719, 2013.
Kettle, A. J. and Kuhn, U. and von Hobe, M. and Kesselmeier, J. and Andreae, M. O.: Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks, J. Geophys. Res.-Atmos., 107, 1–16, https://doi.org/10.1029/2002JD002187, 2002.
Kiehl, J. and Dickinson, R.: A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early Earth surface temperatures, J. Geophys. Res.-Atmos., 92, 2991–2998, https://doi.org/10.1029/JD092iD03p02991, 1987.
Kienert, H., Feulner, G., and Petoukhov, V.: Faint young Sun problem more severe due to ice-albedo feedback and higher rotation rate of the early Earth, Geophys. Res. Lett., 39, L23710, https://doi.org/10.1029/2012GL054381, 2012.
Kuhn, W. and Atreya, S.: Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth, Icarus, 37, 207–213, https://doi.org/10.1016/0019-1035(79)90126-X, 1979.
Lawler, M. J., Sander, R., Carpenter, L. J., Lee, J. D., von Glasow, R., Sommariva, R., and Saltzman, E. S.: HOCl and $Cl_2$ observations in marine air, Atmos. Chem. Phys., 11, 7617–7628, https://doi.org/10.5194/acp-11-7617-2011, 2011.
Lee, D., Kohler, I., Grobler, E., Rohrer, F., Sausen, R., GallardoKlenner, L., Olivier, J., Dentener, F., and Bouwman, A.: Estimations of global NOx emissions and their uncertainties, Atmos. Environ., 31, 1735–1749, https://doi.org/10.1016/S1352-2310(96)00327-5, 1997.
Lee, C., Martin, R. V., van Donkelaar, A., Lee, H., Dickerson, R. R., Hains, J. C., Krotkov, N., Richter, A., Vinnikov, K., and Schwab, J. J.: SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD014758, 2011.
Leue, C., Wenig, M., Wagner, T., Klimm, O., Platt, U., and Jahne, B.: Quantitative analysis of NOx emissions from Global Ozone Monitoring Experiment satellite image sequences, J. Geophys. Res.-Atmos., 106, 5493–5505, https://doi.org/10.1029/2000JD900572, 2nd AGU Chapman Conference on Water Vapor in the Climate System, POTOMAC, MD, OCT 12-15, 1999, 2001.
Li, Q., Jacob, D., Yantosca, R., Heald, C., Singh, H., Koike, M., Zhao, Y., Sachse, G., and Streets, D.: A global three-dimensional model analysis of the atmospheric budgets of HCN and CH3CN: Constraints from aircraft and ground measurements, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002JD003075, 2003.
Liang, M.-C., Hartman, H., Kopp, R. E., Kirschvink, J. L., and Yung, Y. L.: Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis, P. Natl. Acad. Sci. USA, 103, 18 896–18 899, https://doi.org/10.1073/pnas.0608839103, 2006.
Martin, R. S., Mather, T. A., and Pyle, D. M.: Volcanic emissions and the early Earth atmosphere, Geochim. Cosmochim. Ac., 71, 3673–3685, https://doi.org/10.1016/j.gca.2007.04.035, 2007.
Mather, T., Pyle, D., and Allen, A.: Volcanic source for fixed nitrogen in the early Earth's atmosphere, Geology, 32, 905–908, https://doi.org/10.1130/G20679.1, 2004.
Marty, B., Zimmermann, L., Pujol, M., Burgess, R., and Philippot, P.: Nitrogen isotopic composition and density of the archean atmosphere, Science, 342, 101–104, https://doi.org/10.1126/Science.1240971, 2013.
Meadows, V. and Crisp, D.: Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface, J. Geophys. Res.-Planet, 101, 4595–4622, https://doi.org/10.1029/95JE03567, 1996.
Millet, D. B., Jacob, D. J., Custer, T. G., de Gouw, J. A., Goldstein, A. H., Karl, T., Singh, H. B., Sive, B. C., Talbot, R. W., Warneke, C., and Williams, J.: New constraints on terrestrial and oceanic sources of atmospheric methanol, Atmos. Chem. Phys., 8, 6887–6905, https://doi.org/10.5194/acp-8-6887-2008, 2008.
Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J., Tans, P. P., and Sweeney, C.: On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006JD007665, 2007.
Morton, S. and Edwards, M.: Reduced phosphorus compounds in the environment, Crit. Rev. Env. Sci. Tec., 35, 333–364, https://doi.org/10.1080/10643380590944978, 2005.
Moore, R. M.: A photochemical source of methyl chloride in saline waters, Environ. Sci. Technol., 42, 1933–1937, https://doi.org/10.1021/es071920I, 2008.
Myhre, G. and Stordal, F.: Role of spatial and temporal variations in the computation of radiative forcing and GWP, J. Geophys. Res., 102, 11181–11200, https://doi.org/10.1029/97JD00148, 1997.
Navarro-Gonzalez, R., Molina, M., and Molina, L.: Nitrogen fixation by volcanic lightning in the early Earth, Geophys. Res. Lett., 25, 3123–3126, https://doi.org/10.1029/98GL02423, 1998.
Navarro-Gonzalez, R., McKay, C., and Mvondo, D.: A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning, Nature, 412, 61–64, https://doi.org/10.1038/35083537, 2001.
Pavlov, A., Kasting, J., Brown, L., Rages, K., and Freedman, R.: Greenhouse warming by CH4 in the atmosphere of early Earth, J. Geophys. Res.-Planet, 105, 11981–11990, https://doi.org/10.1029/1999JE001134, 2000.
Pavlov, A., Brown, L., and Kasting, J.: UV shielding of NH3 and O-2 by organic hazes in the Archean atmosphere, J. Geophys. Red.-Planet, 106, 23267–23287, https://doi.org/10.1029/2000JE001448, 2001.
Pierrehumbert, R.: Principles of Planetary Climate, Cambridge Univ. Press, New York, 2010.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., Da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Roberson, A. L., Roadt, J., Halevy, I., and Kasting, J. F.: Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon, Geobiology, 9, 313–320, https://doi.org/10.1111/j.1472-4669.2011.00286.x, 2011.
Rondanelli, R. and Lindzen, R. S.: Can thin cirrus clouds in the tropics provide a solution to the faint young Sun paradox?, J. Geophys. Res., 115, D02108, https://doi.org/10.1029/2009JD012050, 2010.
Rosing, M. T., Bird, D. K., Sleep, N. H., and Bjerrum, C. J.: No climate paradox under the faint early Sun, Nature, 464, 744–747, https://doi.org/10.1038/nature08955, 2010.
Rossow, W., Zhang, Y., and Wang, J.: A statistical model of cloud vertical structure based on reconciling cloud layer amounts inferred from satellites and radiosonde humidity profiles, J. Climate, 18, 3587–3605, https://doi.org/10.1175/JCLI3479.1, 2005.
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. E., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J. P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J. M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Simeckova, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J. M., Gamache, R. R., Harrison, J. J., Hartmann, J. M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Mueller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V. G., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013.
Sagan, C. and Chyba, C.: The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases, Science, 276, 1217–1221, https://doi.org/10.1126/Science.276.5316.1217, 1997.
Sagan, C. and Mullen, G.: Earth and Mars – evolution of atmospheres and surface temperatures, Science, 177, 52–56, https://doi.org/10.1126/Science.177.4043.52, 1972.
Saikawa, E., Schlosser, C. A., and Prinn, R. G.: Global modeling of soil nitrous oxide emissions from natural processes, Global Biogeochem. Cy., 27, 972–989, https://doi.org/10.1002/gbc.20087, 2013.
Saltzman, E. S., Aydin, M., Tatum, C., and Williams, M. B.: 2,000-year record of atmospheric methyl bromide from a South Pole ice core, J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD008919, 2008.
Sawada, S. and Totsuka, T.: Natural and anthropogenic sources and fate of atmospheric ethylene, Atmos. Environ., 20, 821–832, https://doi.org/10.1016/0004-6981(86)90266-0, 1986.
Schlesinger, W. H. and Hartley, A. E.: A global budget for atmospheric ammonia, Biogeochemistry, 15, 191-211, https://doi.org/10.1007/BF00002936, 1992.
Sharpe, S., Johnson, T., Sams, R., Chu, P., Rhoderick, G., and Johnson, P.: Gas-phase databases for quantitative infrared spectroscopy, Appl. Spectrosc., 58, 1452–1461, https://doi.org/10.1366/0003702042641281, 2004.
Shaviv, N.: Toward a solution to the early faint Sun paradox: a lower cosmic ray flux from a stronger solar wind, J. Geophys. Res.-Space, 108, 1437, https://doi.org/10.1029/2003JA009997, 2003.
Sheldon, N.: Precambrian paleosols and atmospheric CO2 levels, Precambrian Res., 147, 148–155, https://doi.org/10.1016/j.precamres.2006.02.004, 2006.
Smith, S., Pitcher, H., and Wigley, T.: Global and regional anthropogenic sulfur dioxide emissions, Global Planet. Change, 29, 99–119, https://doi.org/10.1016/S0921-8181(00)00057-6, 2001.
Som, S. M., Catling, D. C., Harnmeijer, J. P., Polivka, P. M., and Buick, R.: Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints, Nature, 484, 359–362, https://doi.org/10.1038/nature10890, 2012.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the end-Permian environmental crisis, Earth Planet Sc. Lett., 277, 490–500, https://doi.org/10.1016/j.epsl.2008.11.015, 2009.
Tian, F., Kasting, J. F., and Zahnle, K.: Revisiting HCN formation in Earth's early atmosphere, Earth Planet Sc. Lett., 308, 417–423, https://doi.org/10.1016/j.epsl.2011.06.011, 2011.
Trainer, M. G., Pavlov, A. A., Curtis, D. B., McKay, C. P., Worsnop, D. R., Delia, A. E., Toohey, D. W., Toon, O. B., and Tolbert, M. A.: Haze aerosols in the atmosphere of early Earth: Manna from Heaven, Astrobiology, 4, 409–419, https://doi.org/10.1089/ast.2004.4.409, 2004.
Trainer, M. G., Pavlov, A. A., DeWitt, H. L., Jimenez, J. L., McKay, C. P., Toon, O. B., and Tolbert, M. A.: Organic haze on Titan and the early Earth, P. Natl. Acad. Sci. USA, 103, 18 035–18 042, https://doi.org/10.1073/pnas.0608561103, 2006.
Ueno, Y., Johnson, M. S., Danielache, S. O., Eskebjerg, C., Pandey, A., and Yoshida, N.: Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox, P. Natl. Acad. Sci. USA, 106, 14784–14789, https://doi.org/10.1073/pnas.0903518106, 2009.
United States Environmental Protection Agency (USEPA): Methane and Nitrous Oxide Emissions From Natural Sources (EPA 430-R-10-001), Retrieved from http://www.epa.gov/outreach/pdfs/Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources.pdf, 2010.
Ussiri, D. and Lal, R.: Soil emission of nitrous oxide and its mitigation, Springer, 2012.
Verhulst, K. R., Aydin, M., and Saltzman, E. S.: Methyl chloride variability in the Taylor Dome ice core during the Holocene, J. Geophys. Res.-Atmos., 118, 12 218–12 228, https://doi.org/10.1002/2013JD020197, 2013.
von Paris, P., Rauer, H., Grenfell, J. L., Patzer, B., Hedelt, P., Stracke, B., Trautmann, T., and Schreier, F.: Warming the early earth – CO2 reconsidered, Planet Space Sci., 56, 1244–1259, https://doi.org/10.1016/j.pss.2008.04.008, 2008.
Walker, J., Hays, P., and Kasting, J.: A negative feedback mechanism for the longterm stabilization of Earth's surface temperature, J. Geophys. Res.-Oceans, 86, 9776–9782, https://doi.org/10.1029/JC086iC10p09776, 1981.
Warneck, P.: Chemistry of the Natural Atmosphere, pp. 426–441, Academic, San Diego, Calif., 1988..
Wen, J., Pinto, J., and Yung, Y.: Photochemistry of CO and H2O - Analysis of laboratory experiments and application to the prebiotic Earth's atmosphere, J. Geophys. Res.-Atmos., 94, 14 957–14 970, https://doi.org/10.1029/JD094iD12p14957, 1989.
Williams, M. B., Aydin, M., Tatum, C., and Saltzman, E. S.: A 2000 year atmospheric history of methyl chloride from a South Pole ice core: Evidence for climate-controlled variability, Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL029142, 2007.
WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52, WMO, Geneva, Switzerland, 2011.
Wolf, E. T. and Toon, O. B.: Hospitable archean climates simulated by a general circulation model, Astrobiology, 13, 656–673, https://doi.org/10.1089/ast.2012.0936, 2013.
Wordsworth, R., Forget, F., and Eymet, V.: Infrared collision-induced and far-line absorption in dense CO2 atmospheres, Icarus, 210, 992–997, https://doi.org/10.1016/j.Icarus.2010.06.010, 2010.
Wordsworth, R., and Pierrehumbert, R.: Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere , Science, 339, 64–67, https://doi.org/10.1126/science.1225759, 2013.
Xiao, Y., Jacob, D. J., and Turquety, S.: Atmospheric acetylene and its relationship with CO as an indicator of air mass age, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006JD008268, 2007.
Xiao, Y., Logan, J. A., Jacob, D. J., Hudman, R. C., Yantosca, R., and Blake, D. R.: Global budget of ethane and regional constraints on US sources, J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD009415, 2008.
Xin, J., Cui, J., Niu, J., Hua, S., Xia, C., Li, S., and Zhu, L.: Production of methanol from methane by methanotrophic bacteria, Biocatal. Biotransfor., 22, 225–229, https://doi.org/10.1080/10242420412331283305, 2004.
Young, G.: The geologic record of glaciation – relevance to the climatic history of Earth, Geosci. Can., 18, 100–108, 1991.
Zahnle, K.: Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the earth's early atmosphere, J. Geophys. Res., 91, 2819–2834, https://doi.org/10.1029/JD091iD02p02819, 1986.
Zahnle, K., Claire, M., and Catling, D.: The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane, Geobiology, 4, 271–283, https://doi.org/10.1111/j.1472-4669.2006.00085.x, 2006.
Zeng, G., Wood, S. W., Morgenstern, O., Jones, N. B., Robinson, J., and Smale, D.: Trends and variations in CO, \chemC_2H_6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and \chemC_2H_6, Atmos. Chem. Phys., 12, 7543–7555, https://doi.org/10.5194/acp-12-7543-2012, 2012.
Zerkle, A. L., Claire, M., Domagal-Goldman, S. D., Farquhar, J., and Poulton, S. W.: A bistable organic-rich atmosphere on the Neoarchaean Earth, Nat. Geosci., 5, 359–363, https://doi.org/10.1038/NGEO1425, 2012.