Articles | Volume 10, issue 1
https://doi.org/10.5194/cp-10-123-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-10-123-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Water mass evolution of the Greenland Sea since late glacial times
M. M. Telesiński
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany
R. F. Spielhagen
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany
Academy of Sciences, Humanities, and Literature, 53151 Mainz, Germany
H. A. Bauch
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany
Academy of Sciences, Humanities, and Literature, 53151 Mainz, Germany
Related authors
Dhanushka Devendra, Natalia Szymańska, Magdalena Łącka, Małgorzata Szymczak-Żyła, Magdalena Krajewska, Maciej M. Telesiński, and Marek Zajączkowski
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-52, https://doi.org/10.5194/cp-2024-52, 2024
Manuscript not accepted for further review
Short summary
Short summary
Our findings document four sediment-laden meltwater pulses between 14.7 and 8.2 kyr BP. These pulses, primarily driven by deglacial processes and supplemented by paleo-lake outbursts or paleo-tsunami currents, are marked by drops in sea surface temperatures, increased sea ice content, high terrigenous supply, and a limited influence of AW. One of the key highlights of our study is the evidence of the Storegga tsunami impact around 8.2 kyr BP, likely redistributed sediments in the NW Barents Sea.
Tim Beneke Stobbe, Henning Alexander Bauch, Daniel Alexander Frick, Jimin Yu, and Julia Gottschalk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3163, https://doi.org/10.5194/egusphere-2024-3163, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
New bottom water [CO32-] reconstructions show higher levels in the deep Norwegian Sea during MIS 5 and 4 than during the Holocene. This suggests modern-like/persistent deep-water formation in this region, even when Atlantic overturning weakened and/or shoaled. Our data puts new constraints on the endmember [CO32-] composition of northern component-waters emerging from the Nordic Seas, with implications for the chemical characteristics and carbon storage capacity of the Atlantic Ocean.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-60, https://doi.org/10.5194/cp-2024-60, 2024
Preprint under review for CP
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter re-mobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in wide-spread erosion and transport of permafrost materials to the ocean, but erosion is mitigated by regional dense sea ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Dhanushka Devendra, Natalia Szymańska, Magdalena Łącka, Małgorzata Szymczak-Żyła, Magdalena Krajewska, Maciej M. Telesiński, and Marek Zajączkowski
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-52, https://doi.org/10.5194/cp-2024-52, 2024
Manuscript not accepted for further review
Short summary
Short summary
Our findings document four sediment-laden meltwater pulses between 14.7 and 8.2 kyr BP. These pulses, primarily driven by deglacial processes and supplemented by paleo-lake outbursts or paleo-tsunami currents, are marked by drops in sea surface temperatures, increased sea ice content, high terrigenous supply, and a limited influence of AW. One of the key highlights of our study is the evidence of the Storegga tsunami impact around 8.2 kyr BP, likely redistributed sediments in the NW Barents Sea.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Anastasia Zhuravleva and Henning A. Bauch
Clim. Past, 14, 1361–1375, https://doi.org/10.5194/cp-14-1361-2018, https://doi.org/10.5194/cp-14-1361-2018, 2018
Short summary
Short summary
New foraminiferal data from the Bahama region are used to investigate the mechanisms regulating subtropical climate. Our results suggest that the sensitivity of the low-latitude climate increased at times of enhanced sea-surface freshening in the subpolar North Atlantic. This has further implications for future climate development, given the ongoing melting of the Greenland ice sheet.
T. Pados, R. F. Spielhagen, D. Bauch, H. Meyer, and M. Segl
Biogeosciences, 12, 1733–1752, https://doi.org/10.5194/bg-12-1733-2015, https://doi.org/10.5194/bg-12-1733-2015, 2015
Short summary
Short summary
Fossil planktic foraminifera and their geochemical composition are commonly used proxies in palaeoceanography. Our study with living specimens revealed that in the Fram Strait both Neogloboquadrina pachyderma and Turborotalita quinqueloba from the water column have lower δ18O and δ13C values than inorganically precipitated calcite/fossil tests from the sediment surface. These offsets indicate biological influence during calcification and a change of water column properties in the recent past.
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Millenial/D-O
Leeuwin Current dynamics over the last 60 kyr – relation to Australian ecosystem and Southern Ocean change
Plateaus and jumps in the atmospheric radiocarbon record – potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis
Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate
Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr
Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events
Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka)
Stratification of surface waters during the last glacial millennial climatic events: a key factor in subsurface and deep-water mass dynamics
Parallelisms between sea surface temperature changes in the western tropical Atlantic (Guiana Basin) and high latitude climate signals over the last 140 000 years
Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1
Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg / Ca and stable carbon and oxygen isotopes of benthic foraminifera
Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C)
Millennial meridional dynamics of the Indo-Pacific Warm Pool during the last termination
Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation
Persistent millennial-scale link between Greenland climate and northern Pacific Oxygen Minimum Zone under interglacial conditions
Deglacial intermediate water reorganization: new evidence from the Indian Ocean
Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr
An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway
Timing and magnitude of equatorial Atlantic surface warming during the last glacial bipolar oscillation
Dirk Nürnberg, Akintunde Kayode, Karl J. F. Meier, and Cyrus Karas
Clim. Past, 18, 2483–2507, https://doi.org/10.5194/cp-18-2483-2022, https://doi.org/10.5194/cp-18-2483-2022, 2022
Short summary
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
M. Wary, F. Eynaud, M. Sabine, S. Zaragosi, L. Rossignol, B. Malaizé, E. Palis, J. Zumaque, C. Caulle, A. Penaud, E. Michel, and K. Charlier
Clim. Past, 11, 1507–1525, https://doi.org/10.5194/cp-11-1507-2015, https://doi.org/10.5194/cp-11-1507-2015, 2015
Short summary
Short summary
This study reports the hydrological variations recorded at different depths of the water column SW of the Faeroe Is. during the last glacial abrupt climatic events (Heinrich events and Dansgaard-Oeschger cycles). Our combined multiproxy and high-resolution approach allows us to evidence that 1) Greenland and Heinrich stadials were characterized by strong stratification of surface waters, 2) this surface stratification seems to have played a key role in the dynamics of the underlying water masses
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
Y. Kubota, K. Kimoto, T. Itaki, Y. Yokoyama, Y. Miyairi, and H. Matsuzaki
Clim. Past, 11, 803–824, https://doi.org/10.5194/cp-11-803-2015, https://doi.org/10.5194/cp-11-803-2015, 2015
A. Schmittner and D. C. Lund
Clim. Past, 11, 135–152, https://doi.org/10.5194/cp-11-135-2015, https://doi.org/10.5194/cp-11-135-2015, 2015
Short summary
Short summary
Model simulations of carbon isotope changes as a result of a reduction in the Atlantic Meridional Overturning Circulation (AMOC) agree well with sediment data from the early last deglaciation, supporting the idea that the AMOC was substantially reduced during that time period of global warming. We hypothesize, and present supporting evidence, that changes in the AMOC may have caused the coeval rise in atmospheric CO2, owing to a reduction in the efficiency of the ocean's biological pump.
L. Lo, C.-C. Shen, K.-Y. Wei, G. S. Burr, H.-S. Mii, M.-T. Chen, S.-Y. Lee, and M.-C. Tsai
Clim. Past, 10, 2253–2261, https://doi.org/10.5194/cp-10-2253-2014, https://doi.org/10.5194/cp-10-2253-2014, 2014
Short summary
Short summary
1. We have reconstructed new meridional thermal and precipitation stacked records in the Indo-Pacific Warm Pool (IPWP) during the last termination.
2. Meridional thermal gradient variations in the IPWP show tight links to the Northern Hemisphere millennial timescales event.
3. Anomalous warming in the south IPWP region could induce the southward shifting of the Intertropical Convergence Zone (ITCZ) in the IPWP during the Heinrich 1 and Younger Dryas events.
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
O. Cartapanis, K. Tachikawa, O. E. Romero, and E. Bard
Clim. Past, 10, 405–418, https://doi.org/10.5194/cp-10-405-2014, https://doi.org/10.5194/cp-10-405-2014, 2014
S. Romahn, A. Mackensen, J. Groeneveld, and J. Pätzold
Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, https://doi.org/10.5194/cp-10-293-2014, 2014
J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov
Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, https://doi.org/10.5194/cp-9-1345-2013, 2013
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
S. Weldeab
Clim. Past, 8, 1705–1716, https://doi.org/10.5194/cp-8-1705-2012, https://doi.org/10.5194/cp-8-1705-2012, 2012
Cited articles
Andersen, C., Koç, N., Jennings, A. E., and Andrews, J. T.: Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: Implications for the Holocene climate variability, Paleoceanography, 19, PA2003, https://doi.org/10.1029/2002PA000873, 2004.
Bauch, D. and Bauch, H. A.: Last glacial benthic foraminiferal δ18O anomalies in the polar North Atlantic: A modern analogue evaluation, J. Geophys. Res., 106, 9135–9143, 2001.
Bauch, H. A. and Erlenkeuser, H.: Interpreting Glacial-Interglacial Changes in Ice Volume and Climate From Subarctic Deep Water Foraminiferal δ18O, in: Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Geoph. Monog. Series 137, edited by: Droxler, L. H., Poore, A. W., and Burckle, R. Z., American Geophysical Union, Washington, D.C., 87–102, 2003.
Bauch, H. A. and Weinelt, M. S.: Surface water changes in the Norwegian Sea during last deglacial and Holocene times, Quaternary Sci. Rev., 16, 1115–1124, 1997.
Bauch, H. A., Erlenkeuser, H., Spielhagen, R. F., Struck, U., Matthiessen, J., Thiede, J., and Heinemeier, J.: A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr, Quaternary Sci. Rev., 20, 659–678, 2001.
Blaschek, M. and Renssen, H.: The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere–sea-ice–ocean model, Clim. Past, 9, 1629–1643, https://doi.org/10.5194/cp-9-1629-2013, 2013.
Bond, G. C., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, https://doi.org/10.1126/science.1065680, 2001.
Broecker, W. S., Kennett, J. P., Flower, B. P., Teller, J. T., Trumbore, S., Bonani, G., and Wolfli, W.: Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode, Nature, 341, 318–321, 1989.
Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B., and Putnam, A. E.: Putting the Younger Dryas cold event into context, Quaternary Sci. Rev., 29, 1078–1081, https://doi.org/10.1016/j.quascirev.2010.02.019, 2010.
Carstens, J., Hebbeln, D., and Wefer, G.: Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait), Mar. Micropaleontol., 29, 257–269, 1997.
Clark, D. L. and Hanson, A.: Central Arctic Ocean sediment texture: A key to ice transport mechanism, in: Glacial-marine sedimentation, edited by: Molnia, B. F., Plenum Press, New York, 301–330, 1983.
Clark, P. U. and Mix, A. C.: Ice sheets and sea level of the Last Glacial Maximum, Quaternary Sci. Rev., 21, 1–7, https://doi.org/10.1016/S0277-3791(01)00118-4, 2002.
Condron, A. and Winsor, P.: Meltwater routing and the Younger Dryas, P. Natl. Acad. Sci. USA, 109, 19928–19933, https://doi.org/10.1073/pnas.1207381109, 2012.
Dokken, T. M. and Jansen, E.: Rapid changes in the mechanism of ocean convection during the last glacial period, Nature, 401, 458–461, 1999.
Duplessy, J. C., Labeyrie, L. D., and Blanc, P. L.: Norwegian Sea Deep Water Variations over the Last Climatic Cycle: Paleo-Oceanographical Implications, in: Long and Short Term Variability of Climate, edited by: Wanner, H. and Siegenthaler, U. Springer, New York, 83–116, 1988.
Fahl, K. and Stein, R.: Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: New insights from biomarker proxy records, Earth Planet. Sc. Lett., 351-352, 123–133, https://doi.org/10.1016/j.epsl.2012.07.009, 2012.
Fisher, T. G. and Lowell, T. V.: Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data, Quatern. Int., 260, 106–114, https://doi.org/10.1016/j.quaint.2011.09.018, 2012.
Fronval, T. and Jansen, E.: Eemian and early Weichselian (140–60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions, Paleoceanography, 12, 443–462, 1997.
Giraudeau, J., Grelaud, M., Solignac, S., Andrews, J. T., Moros, M., and Jansen, E.: Millennial-scale variability in Atlantic water advection to the Nordic Seas derived from Holocene coccolith concentration records, Quaternary Sci. Rev., 29, 1276–1287, https://doi.org/10.1016/j.quascirev.2010.02.014, 2010.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D., Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and Telford, R. J.: Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26, 3423–3440, https://doi.org/10.1016/j.quascirev.2007.10.005, 2007.
Hall, I. R., Bianchi, G. G., and Evans, J. R.: Centennial to millennial scale Holocene climate-deep water linkage in the North Atlantic, Quaternary Sci. Rev., 23, 1529–1536, https://doi.org/10.1016/j.quascirev.2004.04.004, 2004.
Hansen, B. and Østerhus, S.: North Atlantic–Nordic Seas exchanges, Prog. Oceanogr., 45, 109–208, https://doi.org/10.1016/S0079-6611(99)00052-X, 2000.
Hanslik, D., Jakobsson, M., Backman, J., Björck, S., Sellén, E., O'Regan, M., Fornaciari, E., and Skog, G.: Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections, Quaternary Sci. Rev., 29, 3430–3441, https://doi.org/10.1016/j.quascirev.2010.06.011, 2010.
Hillaire-Marcel, C. and de Vernal, A.: Stable isotope clue to episodic sea ice formation in the glacial North Atlantic, Earth Planet. Sc. Lett., 268, 143–150, https://doi.org/10.1016/j.epsl.2008.01.012, 2008.
Husum, K. and Hald, M.: Arctic planktic foraminiferal assemblages: Implications for subsurface temperature reconstructions, Mar. Micropaleontol., 96–97, 38–47, https://doi.org/10.1016/j.marmicro.2012.07.001, 2012.
Juggins, S.: C2, Version 1.7.2, Software for Ecological and Palaeoecological Data Analysis and Visualization, http://www.campus.ncl.ac.uk/staff/Stephen.Juggins/index.html, University of Newcastle, Newcastle upon Tyne, UK, 2011.
Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory, and models, Rev. Geophys., 37, 1–64, 1999.
McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D., and Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834–837, https://doi.org/10.1038/nature02494, 2004.
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., and Jansen, E.: Holocene cooling culminates in sea ice oscillations in Fram Strait, Quaternary Sci. Rev., 47, 1–14, https://doi.org/10.1016/j.quascirev.2012.04.024, 2012.
Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T., and Yang, Z.: Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean, Nature, 464, 740–743, https://doi.org/10.1038/nature08954, 2010.
Nørgaard-Pedersen, N., Spielhagen, R. F., Erlenkeuser, H., Grootes, P. M., Heinemeier, J., and Knies, J.: Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover, Paleoceanography, 18, 1–19, https://doi.org/10.1029/2002PA000781, 2003.
Not, C. and Hillaire-Marcel, C.: Enhanced sea-ice export from the Arctic during the Younger Dryas, Nature Comm., 3, 647, https://doi.org/10.1038/ncomms1658, 2012.
Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., Reimnitz, E., and Thiede, J.: Sediments in Arctic sea ice: implications for entrainment, transport and release, Mar. Geol., 104, 185–214, 1994.
Rasmussen, T. L. and Thomsen, E.: Stable isotope signals from brines in the Barents Sea: Implications for brine formation during the last glaciation, Geology, 37, 903–906, https://doi.org/10.1130/G25543A.1, 2009.
Rasmussen, T. L. and Thomsen, E.: Holocene temperature and salinity variability of the Atlantic Water inflow to the Nordic seas, Holocene, 20, 1223–1234, https://doi.org/10.1177/0959683610371996, 2010.
Reimer, P., Baillie, M., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 51, 1111–1150, 2009.
Renssen, H., Goosse, H., and Muscheler, R.: Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing, Clim. Past, 2, 79–90, https://doi.org/10.5194/cp-2-79-2006, 2006.
Risebrobakken, B., Dokken, T., Smedsrud, L. H., Andersson, C., Jansen, E., Moros, M., and Ivanova, E. V.: Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing, Paleoceanography, 26, PA4206, https://doi.org/10.1029/2011PA002117, 2011.
Rudels, B. and Quadfasel, D.: Convection and deep water formation in the Arctic Ocean-Greenland Sea System, J. Mar. Syst., 2, 435–450, https://doi.org/10.1016/0924-7963(91)90045-V, 1991.
Rudels, B., Friedrich, H. J., and Quadfasel, D.: The Arctic Circumpolar Boundary Current, Deep Sea-Res. Pt. II, 46, 1023–1062, https://doi.org/10.1016/S0967-0645(99)00015-6, 1999.
Sarnthein, M., Jansen, E., Weinelt, M., Arnold, M., Duplessy, J. C., Erlenkeuser, H., Flatøy, A., Johannessen, G., Johannessen, T., Jung, S., Koc, N., Labeyrie, L., Maslin, M., Pflaumann, U., and Schulz, H.: Variations in Atlantic surface ocean paleoceanography, 50°–80° N: A time-slice record of the last 30,000 years, Paleoceanography, 10, 1063–1094, 1995.
Sarnthein, M., van Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M., Pflaumann, U., and Schulz, M.: Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75° N, Boreas, 32, 447–461, https://doi.org/10.1080/03009480310003351, 2003.
Spielhagen, R. F. and Erlenkeuser, H.: Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surface water layer, Mar. Geol., 119, 227–250, https://doi.org/10.1016/0025-3227(94)90183-X, 1994.
Spielhagen, R. F., Baumann, K.-H., Erlenkeuser, H., Nowaczyk, N. R., Nørgaard-Pedersen, N., Vogt, C., and Weiel, D.: Arctic Ocean deep-sea record of northern Eurasian ice sheet history, Quaternary Sci. Rev., 23, 1455–1483, https://doi.org/10.1016/j.quascirev.2003.12.015, 2004.
Spielhagen, R. F., Werner, K., Aagaard-Sørensen, S., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T. M., and Hald, M.: Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water, Science, 331, 450–453, https://doi.org/10.1126/science.1197397, 2011.
Stanford, J. D., Rohling, E. J., Bacon, S., Roberts, A. P., Grousset, F. E., and Bolshaw, M.: A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic. Quaternary Sci. Rev., 30, 1047–1066, https://doi.org/10.1016/j.quascirev.2011.02.003, 2011.
Stern, J. V. and Lisiecki, L. E.: North Atlantic circulation and reservoir age changes over the past 41,000 years, Geophys. Res. Lett., 40, 3693–3697, https://doi.org/10.1002/grl.50679, 2013.
Stuiver, M. and Reimer, P. J.: Radiocarbon calibration program, Radiocarbon, 35, 215–230, 1993.
Swift, J.: The Arctic Waters, in: The Nordic Seas, edited by: Hurdle, B., Springer, New York, 129–151, 1986.
Tarasov, L. and Peltier, W. R.: A calibrated deglacial drainage chronology for the North American continent: evidence of an Arctic trigger for the Younger Dryas, Quaternary Sci. Rev., 25, 659–688, https://doi.org/10.1016/j.quascirev.2005.12.006, 2006.
Telesi\'nski, M. M., Spielhagen, R. F., and Lind, E. M.: A high-resolution Late Glacial and Holocene paleoceanographic record from the Greenland Sea, Boreas, https://doi.org/10.1111/bor.12045, in press, 2013.
Teller, J. T., Boyd, M., Yang, Z., Kor, P. S. G., and Mokhtari Fard, A.: Alternative routing of Lake Agassiz overflow during the Younger Dryas: new dates, paleotopography, and a re-evaluation, Quaternary Sci. Rev., 24, 1890–1905, https://doi.org/10.1016/j.quascirev.2005.01.008, 2005.
Thiede, J. and Hempel, G.: The Expedition ARKTIS-VII/1 of RV "POLARSTERN" in 1990, Ber. Polarforsch., 80, 137 pp., 1991.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years, Paleoceanography, 25, 1–17, https://doi.org/10.1029/2009PA001833, 2010.
Vogelsang, E.: Paläo-Ozeanographie des Europäischen Nordmeeres an Hand stabiler Kohlenstoff- und Sauerstoffisotope – Paleoceanography of the Nordic seas on the basis of stable carbon and oxygen isotopes, Berichte aus dem Sonderforschungsbereich 313, Nr. 23, Univ. Kiel, Kiel, 1990.
Waelbroeck, C., Duplessy, J. C., Michel, E., Labeyrie, L., Paillard, D., and Duprat, J.: The timing of the last deglaciation in North Atlantic climate records, Nature, 412, 724–727, https://doi.org/10.1038/35089060, 2001.
Werner, K., Spielhagen, R. F., Bauch, D., Christian Hass, H., and Kandiano, E.: Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene, Paleoceanography, 28, 283–295, https://doi.org/10.1002/palo.20028, 2013.