Preprints
https://doi.org/10.5194/cp-2022-17
https://doi.org/10.5194/cp-2022-17
11 Mar 2022
 | 11 Mar 2022
Status: this discussion paper is a preprint. It has been under review for the journal Climate of the Past (CP). The manuscript was not accepted for further review after discussion.

An Early-Mid Holocene process of regional desertification recorded in aeolian sediments from the northern slope of the middle Himalayan Mountains

Yang Gao, Keqi Zhang, Zhonghai Wu, Tingting Tian, Hailong Gai, Jiameng Zuo, and Bin Li

Abstract. Aeolian sediments, a sensitive paleoclimatic and paleoenvironmental archive, are widely distributed over the Tibetan Plateau. In the northern slope of the Himalayan Mountains, however, the potential linkages between the aeolian processes, climatic changes, and the processes of desertification during the Holocene are not well understood. Here, we use an aeolian record from the northern slope of the middle Himalayan Mountains to investigate the influences of paleoclimate and paleoenvironment during the Early-Mid Holocene through the optically stimulated luminescence (OSL) dating, magnetic parameters, color variations, scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), and grain size parameters. Glacial sediments, weathering products, the surface of lack of vegetation cover, and alluvium and ancient lacustrine sediments had provided the sources for the aeolian sediments. The strengthened Indian monsoon intensity, dry and warm climate, and sparse vegetation cover accelerated the rapid expansion of desertification between ~11 and 9.6 ka B.P.. The Indian monsoon intensity weakened between 9.6 and 6.3 ka B.P., the warm and humid climate and increased vegetation cover decelerated the rapid expansion of desertification. Influenced by the weakened Indian monsoon intensity, warm and humid climate, increased vegetation cover, and limited sources, the desertification decelerated further between 6.3 and ~4.5 ka B.P.. Further, the linkage and interplay between changes in the Indian monsoon, vegetation cover, sources, and landforms play a key role in aeolian processes and regional processes of desertification in the northern slope Himalayan Mountains during the Early-Mid Holocene.

Yang Gao, Keqi Zhang, Zhonghai Wu, Tingting Tian, Hailong Gai, Jiameng Zuo, and Bin Li

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on cp-2022-17', Anonymous Referee #1, 12 Mar 2022
  • RC2: 'Comment on cp-2022-17', Anonymous Referee #2, 14 Apr 2022

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on cp-2022-17', Anonymous Referee #1, 12 Mar 2022
  • RC2: 'Comment on cp-2022-17', Anonymous Referee #2, 14 Apr 2022
Yang Gao, Keqi Zhang, Zhonghai Wu, Tingting Tian, Hailong Gai, Jiameng Zuo, and Bin Li
Yang Gao, Keqi Zhang, Zhonghai Wu, Tingting Tian, Hailong Gai, Jiameng Zuo, and Bin Li

Viewed

Total article views: 784 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
543 217 24 784 22 24
  • HTML: 543
  • PDF: 217
  • XML: 24
  • Total: 784
  • BibTeX: 22
  • EndNote: 24
Views and downloads (calculated since 11 Mar 2022)
Cumulative views and downloads (calculated since 11 Mar 2022)

Viewed (geographical distribution)

Total article views: 730 (including HTML, PDF, and XML) Thereof 730 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 24 Apr 2024
Download
Short summary
As a sensitive paleoclimatic and paleoenvironmental archive, aeolian sediments are widely distributed over the Tibetan Plateau. We discuss the Holocene aeolian processes, climatic changes, and processes of desertification in the northern slope of the middle Himalayan Mountains. Results suggest that the linkage and interplay between changes in the Indian monsoon, vegetation cover, sources, and landforms play a key role in aeolian processes and regional processes of desertification.