Preprints
https://doi.org/10.5194/cp-2020-129
https://doi.org/10.5194/cp-2020-129
15 Oct 2020
 | 15 Oct 2020
Status: this discussion paper is a preprint. It has been under review for the journal Climate of the Past (CP). The manuscript was not accepted for further review after discussion.

Dust record in an ice core from tropical Andes (Nevado Illimani – Bolivia), potential for climate variability analyses in the Amazon basin

Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez

Abstract. Understanding the mechanisms controlling glacial retreat in the tropical Andes can strengthen future predictions of ice cover in the region. As glaciers are a dominant freshwater source in these regions, accurate ice cover predictions are necessary for developing effective strategies to protect future water resources. In this study, we investigated a 97-year dust record from two Nevado Illimani ice cores to determine the dominant factors controlling particle concentration and size distribution. In addition, we measured the area of a Nevado Illimani glacier (glacier n°8) using aerial photographs from 1956 and 2009. We identified two dustier periods during the 20th century (1930s–1940s and 1980s–2016), which were linked to reduced moisture transport from the Amazon basin. This promoted an unprecedented increase in the percentage of coarse dust particles (CPPn, ∅ > 10 μm) during the 1990s, as drier local conditions favored the emission and deposition of coarse particles on the glacier. Moisture advection from the Amazon basin to Nevado Illimani was influenced by tropical North Atlantic sea surface temperatures (TNA), which was supported by the correlation between TNA and CPPn (r = 0.52). Furthermore, glacial retreat has been accelerating since the 1980s, and a notable relationship between CPPn and the freezing level height (FLH, r = 0.41) was observed. This suggests that higher FLHs promote glacial retreat, which exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Therefore, both the area of glacier n°8 and the ice core record of coarse dust particles were found to respond to climate variability—particularly to the warmer conditions across the southern tropical Andes and drier conditions over the Amazon basin.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez

Viewed

Total article views: 1,062 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
765 240 57 1,062 143 54 53
  • HTML: 765
  • PDF: 240
  • XML: 57
  • Total: 1,062
  • Supplement: 143
  • BibTeX: 54
  • EndNote: 53
Views and downloads (calculated since 15 Oct 2020)
Cumulative views and downloads (calculated since 15 Oct 2020)

Viewed (geographical distribution)

Total article views: 922 (including HTML, PDF, and XML) Thereof 919 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.