Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.536
IF3.536
IF 5-year value: 3.967
IF 5-year
3.967
CiteScore value: 6.6
CiteScore
6.6
SNIP value: 1.262
SNIP1.262
IPP value: 3.90
IPP3.90
SJR value: 2.185
SJR2.185
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 40
h5-index40
Preprints
https://doi.org/10.5194/cpd-10-1101-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cpd-10-1101-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

  13 Mar 2014

13 Mar 2014

Review status
This preprint was under review for the journal CP but the revision was not accepted.

Changing climatic response: a conceptual model for glacial cycles and the Mid-Pleistocene Transition

I. Daruka1 and P. D. Ditlevsen2 I. Daruka and P. D. Ditlevsen
  • 1Johannes Kepler University, Institute of Semiconductor and Solid State Physics, Altenbergerstrasse 69, 4040 Linz, Austria
  • 2Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark

Abstract. Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the Mid-Pleistocene Transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and an ice volume analogous, climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2–3 frequency locking to the same obliquity cycle. The change in dynamics has been suggested to be a result of a slow gradual decrease in atmospheric greenhouse gas concentration. The presence of chaos in the (non-autonomous) glacial dynamics and a critical dependence on initial conditions raises fundamental questions about climate predictability.

I. Daruka and P. D. Ditlevsen

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

I. Daruka and P. D. Ditlevsen

I. Daruka and P. D. Ditlevsen

Viewed

Total article views: 1,540 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
953 484 103 1,540 62 97
  • HTML: 953
  • PDF: 484
  • XML: 103
  • Total: 1,540
  • BibTeX: 62
  • EndNote: 97
Views and downloads (calculated since 13 Mar 2014)
Cumulative views and downloads (calculated since 13 Mar 2014)

Cited

Saved

Discussed

No discussed metrics found.
Latest update: 29 Nov 2020
Publications Copernicus
Download
Citation