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Abstract 15 

Quantification of proxy records obtained from geological archives is key for extending the 16 

observational record to estimate the rate, strength, and impact of past climate changes, but also 17 

to validate climate model simulations, improving future climate predictions. SCUBIDO 18 

(Simulating Climate Using Bayesian Inference with proxy Data Observations), is a new 19 

statistical model for reconstructing palaeoclimate variability and its uncertainty using Bayesian 20 

inference on multivariate non-biological proxy data. We have developed the model for 21 

annually laminated (varved) lake sediments as they provide a high-temporal resolution to 22 

reconstructions with precise chronologies. This model uses non-destructive X-Ray 23 

Fluorescence core scanning (XRF-CS) data (chemical elemental composition of the sediments) 24 

because it can provide multivariate proxy information at a near continuous, sub-mm resolution, 25 

and when applied to annually laminated (varved) lake sediments or sediments with high 26 

accumulation rates, the reconstructions can be of an annual resolution.  27 

 SCUBIDO uses a calibration period of instrumental climate data and overlapping XRF-28 

CS data to learn about the direct relationship between each geochemical element (reflecting 29 

different depositional processes) and climate, but also the covariant response between the 30 

elements and climate. The understanding of these relationships is then applied down core to 31 

transform the qualitative proxy data into a posterior distribution of palaeoclimate with 32 
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quantified uncertainties. In this paper, we describe the mathematical details of this Bayesian 33 

approach and show detailed walk-through examples that reconstruct Holocene annual mean 34 

temperature in central England and southern Finland. The mathematical details and code have 35 

been synthesised into the R package SCUBIDO to encourage others to use this modelling 36 

approach. Whilst the model has been designed and tested on varved sediments, XRF-CS data 37 

from other types of sediment records which record a climate signal could also benefit from this 38 

approach. 39 

1.0 Introduction  40 

Anthropogenic climate change over the most recent decades have enhanced the need to look 41 

beyond the instrumental period to find common patterns to both today’s climate and future 42 

climate projections (IPCC, 2023; Kaufman and McKay, 2022). This calls for chronologically 43 

constrained, climate-sensitive proxy records to extend the understanding of climate variability 44 

beyond the instrumental period. These reconstructions can be used to contextualise present 45 

changes observed in the climate system, identify recurrent trends which are unable to be 46 

observed in the short instrumental record (e.g. decadal-centennial variability), and be used as 47 

potential analogues for future climate scenarios (Bova et al., 2021; Liu et al., 2020; Snyder, 48 

2010). In addition, quantitative reconstructions provide the opportunity to perform climate 49 

sensitivity experiments between proxy reconstructions and climate model simulations, 50 

strengthening climate projections for the future (Kageyama et al., 2018; Burls and Sagoo, 2022; 51 

Zhu et al., 2022).  52 

 The Holocene Epoch (11,700 years to present) has been the focus of many proxy and 53 

modelling investigations (e.g. Liu et al., 2014; Bader et al., 2020; Kaufman et al., 2020a; Bova 54 

et al., 2021; Erb et al., 2022). This time period experienced temperatures which were similar 55 

to today, and the availability of proxy records makes the Holocene a favourable interglacial to 56 

investigate climate variability across multi-millennial timescales. Recently, there have been a 57 

number of new reconstructions of global temperature which are based on large proxy dataset 58 

compilations (Kaufman et al., 2020a; Kaufman et al., 2020b; Osman et al., 2021; Erb et al., 59 

2022). These synthesise different marine (Osman et al., 2021), or a combination of terrestrial 60 

and marine (Kaufman et al., 2020b) proxy records and either use statistical approaches 61 

(Kaufman et al., 2020a) or combine these with data assimilation (Osman et al., 2021; Erb et 62 

al., 2022) to reconstruct climate both spatially and temporally. These have provided great 63 

insight into climate variability across large spatial scales, of which are not possible when 64 

looking at individual site records. However, they all have a common limitation which is the 65 
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temporal resolution of their reconstructions. Due to the nature of the proxies included in the 66 

large datasets (e.g. pollen, isotopes, foraminiera), the proxy signal is often non-continuous 67 

creating a median reconstuction resolution of ca. 100-200 years (Kaufman et al., 2020b). Whilst 68 

this temporal resolution is acceptable to look at spatially extensive and long-term climate 69 

variability across centennial to millennial timescales (Cartapanis et al., 2022), higher frequency 70 

variability such as the multi-decadal climate system is unable to be investigated, which is key 71 

to improve climate predictions in this century (Cassou et al., 2018). Erb et al. (2023) used a 72 

data assimilation approach which allowed them to upscale their temporal resolution to decadal. 73 

However, this was only possible by including transient climate simulations, meaning that much 74 

of the decadal climate variability observed in this reconstruction would be forced by the model, 75 

rather than the proxy data itself given that only 11 out of the 1276 records have a decadal, or 76 

higher temporal resolution.  77 

Reconstructions of climate from a proxy record, whether this be a single-site, or a 78 

compilation of multiple sites, require a transformation from the qualitative proxy value to a 79 

quantified climate parameter with physical units of measurements (i.e. C, mm of precipitation) 80 

(Chevalier et al., 2020). A number of statistical or mechanistic methods can be used, each with 81 

varying levels of complexity, uncertainties, and functionality (Tingley et al., 2012). Each 82 

method requires a calibration stage or training set relying on modern observations of the 83 

relationship between the proxy and climate which is then projected onto the proxy data (Juggins 84 

and Birks, 2012). Quantitative approaches have matured from rather simplistic methods e.g. 85 

linear regression (e.g. Imbrie and Kipp, 1971), to methods of increased complexity such as 86 

weighted averaging regression (e.g. ter Braak and Juggins, 1993; Liu et al., 2020), composite 87 

plus scaling (e.g. Jones et al., 2009; Kaufman et al., 2020a), modern analogue techniques (e.g. 88 

Jiang et al., 2010), and artificial neural networks (e.g. Wegmann and Juame-Santero, 2023) 89 

which are summarised well in Chevalier et al. (2020). Uncertain chronologies, assumptions in 90 

proxy formation and preservation, and non-stationary relationships between the climate system 91 

and proxy response through time are typical for many proxy records, which means that 92 

interpreting the palaeo record has several complexities (Sweeney et al., 2018; Cahill et al., 93 

2023). Because of this, there has been a call for a greater reliance on hierarchical statistical 94 

approaches, such as Bayesian statistics to reconstruct climate through time (Tingley et al., 95 

2012).  96 

Bayesian statistics is an approach based on Bayes’ Theorem and can be summarised as 97 

applying prior knowledge to update the probability of a hypothesis when new data becomes 98 
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available (van de Schoot et al., 2021). It has been used to answer many statistical problems 99 

which has included reconstructing palaeoclimate (e.g. Haslett et al., 2006; Parnell et al., 2015; 100 

Tierney et al., 2019; Cahill et al., 2023). Many frequentist (non-Bayesian) approaches to 101 

reconstructing climate mentioned previously often struggle to capture the complex 102 

relationships inherent between climate and proxy data. This commonly occurs when the learnt 103 

relationship in the calibration interval or training data is fixed, and then applied directly onto 104 

the palaeo data which results in the assumption of a stationary relationship through time, and 105 

fixed uncertainty estimates (Birks et al., 2012; Sweeney et al., 2018; Zander et al., 2024). 106 

However, we argue that climate often exhibits non-stationary behaviour and this needs to be 107 

captured in the chosen model. By contrast, a Bayesian approach allows a continued update 108 

about the belief of the relationship between the proxy, the climate, and associated parameters 109 

(Chu and Zhao, 2011). In addition, Bayesian analysis can holistically account for different 110 

sources of uncertainty influencing a reconstruction (Birks et al., 2012; Sweeney et al., 2017). 111 

Bayesian methods can consider the uncertainties at all stages of the modelling process and 112 

model these as joint probability distributions producing properly quantified uncertainties with 113 

credible intervals (Tingley and Huybers, 2010; Sweeney et al., 2018; Cahill et al., 2023). 114 

A rising number of studies have used a Bayesian framework in their climate 115 

reconstructions (e.g. Haslett et al., 2006; Holmström et al., 2015; Parnell et al., 2015; Tierney 116 

et al., 2019; Hernández et al., 2020; Cahill et al., 2023). However, they provide low temporal 117 

resolutions as they are based on non-continuously sampled proxies, resulting in reconstructions 118 

of climate across multi-decadal to centennial timescales. This calls for a greater number of 119 

quantified climate reconstructions using hierarchical modelling from records with refined 120 

chronologies and proxies sampled at a high resolution.  121 

Micro X-ray Fluorescence core scanning (XRF-CS hereafter) is a non-destructive 122 

approach which provides qualitative multivariate information about the geochemical 123 

composition of marine and lacustrine sediment cores (Davies et al., 2015). Sediment sequences 124 

are continuously scanned enabling the proxy data to be produced at very high sampling 125 

resolutions (0.2 mm). When this approach is applied on sediment sequences with either 126 

sufficient sedimentation rates (>0.5 mm per year) or annual laminations (varves) (Zolitschka 127 

et al., 2015), it can provide proxy information at a seasonal to decadal timescale. XRF-CS has 128 

mostly been used to qualitatively reconstruct palaeoenvironments, as the relative changes in 129 

geochemical composition of sediments are a direct response to the changing climatic and 130 

environmental conditions in the lake-catchment system (Peti and Augustinus, 2022).  131 
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Our main goal here is to combine the advantages of using Bayesian inference in climate 132 

reconstructions with the palaeoclimate value of varved records. In this methods-based paper 133 

we aim to i) present a Bayesian approach to transform multivariate XRF-CS data into a 134 

quantitative palaeoclimate dataset, ii) demonstrate the applicability of this approach on 135 

different varved lake records from Europe, iii) compare the output of the Bayesian model to 136 

previously published reconstructions to test the climatic reliability, and iv) promote its use 137 

through the user-friendly R package, SCUBIDO.  138 

 139 

2.0 Methods 140 

2.1 Proxy data 141 

The modelling approach has been built for the use of XRF-CS data as the chosen proxy. Raw 142 

XRF-CS data originates in the form of element intensities which is often non-linear to the 143 

concentration of elements in the sediment and can also be affected by the sediment physical 144 

properties, measurement time and sample geometry, therefore we use centred-log ratios (clr 145 

hereafter) to mitigate against these problems (Aitchison, 1986; Tjallingii et al., 2007; Weltje 146 

and Tjallingii, 2008; Weltje et al., 2015; Dunlea et al., 2020). In this approach we do not assume 147 

that any element has a stronger relationship with climate thus we include all clr-transformed 148 

elements. 149 

 150 

2.3 Bayesian framework 151 

For our quantitative reconstruction of climate given the XRF-CS proxy data, we use Bayesian 152 

inference and base our framework on the modelling approach described in Parnell et al. (2015) 153 

and Hernández et al. (2020). Below we outline the notation used throughout:  154 

▪ 𝐶 is used to represent the value of the climate variable at each time point. 155 

▪ We use 𝑋𝑅𝐹𝑖𝑗 to indicate the central logged transformed XRF-CS data at each depth of 156 

the sediment core (𝑖) where 𝑖 = 1, … , 𝑛 depths. As the XRF-CS data is multivariate, 𝑗 157 

reflects the number of different central log ratio transformed elements (𝑗 =158 

 1, … , n elements).  159 

▪ 𝑡𝑖 denotes the calibrated age (𝑡) of each depth (𝑖) in cal years BP (before present where 160 

present refers to 1950). It is important to note that age uncertainty is not considered in 161 

this modelling approach.   162 
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▪ 𝜃 is used to represent the parameters (𝜇, 𝛽0, 𝛽1, 𝛽2) which govern the relationship 163 

between each of the XRF-CS elements at each time point and the climate variable. 164 

These are subscripted with 𝑗 to denote the element to which they refer. 165 

▪ 𝑐 is the standard deviation of climate per unit of time for our random walk model 166 

detailed in this paper.  167 

▪ A superscripted 𝑚 and 𝑓 are applied to each of the variables when referring to the 168 

modern and fossil data sets respectively. For example, 𝐶𝑚  equates to the modern 169 

climate, and 𝑋𝑅𝐹𝑓 refers to the fossil XRF-CS data.  170 

 171 

The Bayesian posterior distribution we aim to calculate is outlined below:  172 

(1) 173 

𝑝(𝐶𝑓 , ,𝑐|𝑋𝑅𝐹𝑓 , 𝐶𝑚 , 𝑋𝑅𝐹𝑚)  ∝ 𝑝(𝑋𝑅𝐹𝑚|𝐶𝑚 ,) ∙ 𝑝(𝑋𝑅𝐹𝑓|𝐶𝑓 , ) ∙ 𝑝(𝐶𝑓 , 𝐶𝑚|𝑐) 𝑝(𝑐) 𝑝() 174 

 175 

The posterior distribution on the left side of the equation 𝑝(𝐶𝑓 , ,𝑐|𝑋𝑅𝐹𝑓 , 𝐶𝑚 , 𝑋𝑅𝐹𝑚) 176 

represents the probability distribution of the fossil climate given fossil and modern XRF, and 177 

modern climate. We use the likelihood expression 𝑝(𝑋𝑅𝐹𝑚|𝐶𝑚,) to represent the calibration 178 

period where we learn about the relationship between the XRF-CS data and climate variable, 179 

discussed in more detail in Sect. 2.3.2.  𝑝(𝑋𝑅𝐹𝑓|𝐶𝑓, ) then represents the likelihood of the 180 

fossil data given the climate, and finally (𝐶𝑓 , 𝐶𝑚|𝑐) represents the prior distribution associated 181 

with the fossil climate and its dynamics over time.  182 

 183 

2.3.1 Model fitting 184 

In order to fit the above model, we follow the computational shortcut of Parnell et al (2015) 185 

which assumes that all the information about the calibration parameters (), comes from the 186 

modern data. This means that the model is fit in two parts, with the first being the estimation 187 

of  within a calibration period, and then the second part which estimates the fossil climate 188 

(𝐶𝑓) and 𝑐. Thus, the resulting model becomes: 189 

(2) 190 

𝑝(𝐶𝑓 , ,𝑐|𝑋𝑅𝐹𝑓 , 𝐶𝑚 , 𝑋𝑅𝐹𝑚)  ∝ 𝑝( ,𝑐|𝑋𝑅𝐹𝑚 , 𝑐𝑚) ∙ 𝑝(𝑋𝑅𝐹𝑓 | 𝐶𝑓 ,  ,𝑐) ∙ 𝑝(𝐶𝑓 , 𝐶𝑚|𝑐) 𝑝(𝑐) 191 

 192 

Where the first term on the right-hand side (in blue) is estimated separately and 193 

represents the posterior distribution of the modern calibration relationship parameters which is 194 

then not further learnt from the fossil data in the second part of the model fit. Given the different 195 
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parts of the modelling approach, we split the following section into two, firstly fitting the 196 

modern calibration period (Section 2.3.2), and then secondly using what is learnt from this 197 

stage to reconstruct fossil climate (Section 2.3.3). 198 

 199 

2.3.2 Calibration model fitting 200 

Like all quantitative transformations of palaeoclimate, the first step is to understand the 201 

relationship between the proxy and the climate variable. In our modelling approach this 202 

relationship is learnt from the first term on the right-hand of equation 2 (𝑝( ,𝑐|𝑋𝑅𝐹𝑚 , 𝑐𝑚)) 203 

and includes not only the casual relationship between the individual XRF-CS elements and 204 

climate, but also the covariance between the elements. The data used for this section of the 205 

model is the most recent period and must be aligned with an overlapping period of instrumental 206 

climate (𝐶𝑚) and we call this our calibration dataset.  207 

This step assumes that some of the variability observed in the proxy data is controlled 208 

by the climate variable, this is sometimes referred to a ‘forward’ model. Here we want to 209 

estimate the posterior distribution of the 𝜃 parameters (𝛽0, 𝛽1, 𝛽2, 𝜇0) and the climate variability 210 

parameter 𝑐, from a joint probability distribution using the following: 211 

(3) 212 

𝑝(𝜃,𝑐| 𝑋𝑅𝐹𝑚 , 𝐶𝑚)  ∝ 𝑝(𝑋𝑅𝐹𝑚|𝐶𝑚, 𝜃) ∙ 𝑝(𝐶𝑚|𝑐) ∙ 𝑝(𝜃) 𝑝(𝑐) 213 

 214 

With 𝑝(𝜃) representing the prior distribution of the parameters 𝛽0, 𝛽1, 𝛽2, 𝜇0, with 𝑐 215 

and 𝑝(𝐶𝑚|𝑐) as the prior distribution on modern climate (we use a random walk with standard 216 

deviation 𝑐 at each time point). 𝑝(𝑋𝑅𝐹𝑚|𝐶𝑚 , 𝜃) is our likelihood distribution, and finally the 217 

parameter’s posterior distribution is represented by 𝑝(𝜃,𝑐 | 𝑋𝑅𝐹𝑚 , 𝐶𝑚).  218 

To approximate the relationship between the clr-transformed XRF-CS data and the 219 

climate, we use a multivariate normal polynomial regression model for each of the XRF 220 

elements:  221 

(4) 222 

𝑋𝑅𝐹𝑖
𝑚  ~ 𝑀𝑉𝑁(𝑀𝑖 , Σ) 223 

𝑀𝑖 = [𝜇𝑖,1,…,𝜇𝑖,11] 224 

𝜇𝑖𝑗 = 𝛽0𝑗  +  𝛽1𝑗 ∙ 𝐶(𝑡𝑖) + 𝛽2𝑗 𝐶(𝑡𝑖)
2 225 

 226 
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The mean term 𝜇𝑖𝑗 captures the relationship between climate and assumes a quadratic 227 

relationship with a single mode when 𝛽2𝑗 < 0. We use   to represent the covariance matrix of 228 

the relationship between each of the different elements which are not explained by 𝜇𝑖𝑗.  229 

Vague normal distributions are used for the priors on 𝛽0, 𝛽1, and  𝛽2, an inverse Wishart 230 

prior on Σ, and finally a vague uniform prior distribution for 𝑐:  231 

(5) 232 

𝐵𝑜𝑗 ~ 𝑁(0,100), 𝐵1𝑗 ~ 𝑁(0,100), 𝐵2𝑗 ~ 𝑁(0,100) 233 

Σ−1 ~ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑅, 𝑘 + 1) 234 

 235 

For the prior distribution on climate, we use a continuous time random walk:  236 

(6) 237 

 238 

𝑃(𝐶𝑖
𝑚) ~ 𝑁(𝐶𝑖−1

𝑚  , 𝜔𝑖) 239 

𝜔𝑖 =  (𝑡𝑖
𝑚 − 𝑡𝑖−1

𝑚 ) ∙  𝜎𝑐
2 240 

 241 

Where 𝜎𝑐 is also given a vague uniform distribution: 𝜎𝑐 ~ 𝑈(0,100). 242 

 243 

2.3.3 Fossil model fitting 244 

Once the model has learnt about the relationship between the XRF-CS data and climate, the 245 

second part of the computational shortcut can commence (Parnell et al., 2015).  This first 246 

involves using the learnt relationship to create marginal data posteriors (MDPs) which 247 

represent all the information about fossil climate contained in one layer of XRF data. Thus, we 248 

initially estimate the 𝐶𝑓 using only the information within a particular time slice (𝑋𝑅𝐹𝑓). Using 249 

only the information from one time slice at a time allows the model to marginalise over the 250 

parameters (𝜃) and reduce the dimensionality of the data. This step decreases the computational 251 

burden of estimating both the climate - proxy relationship and the fossil climate values in the 252 

same step. Information on the MDP fitting can be found in Supplementary Information 1 and 253 

in more detail in Parnell et al. (2015; 2016). 254 

To accurately capture the climate dynamics of the fossil period, we re-use the 255 

continuous time random walk from the modern calibration module and combine each of the 256 

individual MDP layers once they are corrected. This allows us to create a complete joint 257 

posterior distribution of the combined 𝐶𝑓 and 𝐶𝑚 and fit the model detailed in equation 2. As 258 

above, the varying time steps are captured via a dynamic precision term: 259 
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(7) 260 

 261 

𝑃(𝐶𝑖
𝑓

) ~ 𝑁(𝐶𝑖−1
𝑓

 , 𝜔𝑖) 262 

𝜔𝑖 = (𝑡𝑖
𝑓

− 𝑡𝑖−1
𝑓

) ∙  𝜎𝑐
2 263 

 264 

To fully learn the climate dynamics standard deviation parameter from both the fossil and the 265 

modern data we set a log-normal prior distribution for 𝜎𝑐: 266 

(8) 267 

𝜎𝑐 ~ LN(𝑎, 𝑏)  268 

 269 

Where the values 𝑎 and 𝑏 are chosen to match the posterior distribution from the modern 270 

calibration model fit.  271 

The model produces an ensemble of posterior climate paths covering the fossil and 272 

modern period. This takes into account the uncertainties in the XRF proxy climate relationship 273 

with a mild smoothing constraint arising from the random walk prior. The ensemble can then 274 

be summarised by taking the median value of the posterior distribution 𝐶𝑓 and calculating the 275 

50% and 95% credible interval of the reconstruction using the 2.5%, 25%, 75%, and 97.5% 276 

percentiles for plotting. 277 

 278 

Section 3.0 Walk through example  279 

This next section of the paper provides a walk-through example of each stage of the Bayesian 280 

model fitting on real life XRF-CS data. In an attempt to make this modelling approach as user-281 

friendly as possible, we have produced the R package SCUBIDO (Simulating Climate Using 282 

Bayesian Inference with proxy Data Observations) which synthesise the modelling process into 283 

several distinct steps and can be downloaded from the GitHub repository: 284 

https://github.com/LauraBoyall/SCUBIDO.  285 

We demonstrate this example on the lake sediments of Diss Mere, a small lake in the 286 

UK containing Holocene varved sediments. This site has been chosen due to the sediments 287 

being annually laminated for much of the Holocene (from 2 to 10 thousand years before 1950 288 

CE, cal. BP hereafter), and thus has a refined chronology based on annual layer counts with 289 

age uncertainties of less than a few decades (Martin-Puertas et al., 2021). The averaged 290 

sedimentation rate for the varved sequence is 0.4 mm/year with variability between 0.1 and 1.8 291 

mm/year (Martin-Puertas et al., 2021). The most recent two millennia are recorded in the top 292 
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9 m of the sediment sequence, where the annual laminations are poorly preserved, and counting 293 

was not possible. However, the chronology has been constrained through a series of radiometric 294 

dating techniques (14C, 137Cs) and tephrochronology, providing a high average sedimentation 295 

rate of ca. 0.5 cm/year (Boyall et al., 2024). Both the modern sediment depositional processes, 296 

and palaeo sediments have been studied in detail through modern lake monitoring, microfacies 297 

analysis and analysis of the XRF-CS record, which all highlighted that the environmental 298 

processes explaining the sediment deposition in the lake has not changed through time and 299 

respond to climate variations on seasonal to multi-centennial timescales (Boyall et al., 2023; 300 

Martin-Puertas et al., 2023; Boyall et al., 2024). Whilst human activity has had an impact on 301 

the lake sedimentation in the last 2,000 years, i.e. increase the amount detrital input into the 302 

lake (Boyall et al., 2024), the lake sedimentation and sediment composition keep responding 303 

to the annual lake cycle (monomictic), which is driven by climate parameters such as 304 

temperature and wind speed (Boyall et al., 2023). The sensitivity of these sediments to weather 305 

and climate variability thus provides scope for testing this modelling approach.  306 

The Diss Mere sediments were scanned using an ITRAX XRF-Core scanner (Cox 307 

Analytical Systems) at the GFZ-Potsdam and geochemical elements include Si, S, K, Ca, Ti, 308 

V, Mn, Fe, Rb, Sr and Zr at 200 m resolution (Boyall et al., 2024). Boyall et al. (2024) found 309 

a qualitative link between the XRF-CS data, specifically the element calcium (Ca) (linked to 310 

temperature-induced authigenic calcite precipitation deposited during spring to early Autumn), 311 

and annual mean temperature evolution through the Holocene (Davis et al., 2003; Kaufman et 312 

al., 2020a; Rasmussen et al., 2007). Whilst this study found the strongest relationship to climate 313 

with Ca, all the elements are used in this modelling approach given that SCUBIDO models the 314 

covariance between the elements as well and learns from these relationships.  For the first two 315 

thousand years of the geochemical record between 10,300 cal a BP and 8,100 cal a BP, the 316 

environmental interpretation of the element data reflected a non-climate, local signal associated 317 

with the stabilisation of the lake depositional environment during the early Holocene (Boyall 318 

et al., 2024). As a result of these findings, we attempt this modelling approach on only the 319 

geochemical data from 8,100 cal a BP to present and emphasise to future users of SCUBIDO 320 

that they must also conduct a qualitative analysis of the XRF-CS data and environmental 321 

interpretation before using the model presented in this paper to investigate if their record is 322 

climate sensitive.  323 

 324 
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3.1 Data set up 325 

One of the most fundamental considerations for any type of palaeoclimate reconstruction is the 326 

choice of climate variable to reconstruct (e.g. annual mean temperatures, precipitation, growing 327 

season) given that different proxies are sensitive to a number of climate drivers (Sweeney et 328 

al., 2017). The SCUBIDO modelling approach can be easily adapted to reconstruct different 329 

climate parameters with overlapping instrumental data. However, it is important to note that 330 

not all lakes are responsive to every climate parameter of interest and thus the outputs may not 331 

be useful. For example, we attempted to run SCUBIDO on the Diss Mere XRF-CS data to 332 

reconstruct both temperature and precipitation, however the correlations between instrumental 333 

precipitation and individual elements were low and thus the model did not find a good enough 334 

relationship. Annual mean temperature on the other hand worked well, which support the 335 

temperature signal recorded in the qualitative XRF-CS data during the Holocene (Boyall et al., 336 

2024). Another point to highlight at this stage is that we run the Bayesian model using a 337 

multivariate dataset made of the elements measured by the XRF scanner, which differentiate 338 

SCUBIDO from other recent reconstructions based on varved sediments (Zander et al., 2024). 339 

We do so to avoid any bias through time as the climate-proxy relationship might not be stable 340 

over time. SCUBIDO also includes the relationship between elements (covariance) to deal with 341 

this issue. As the top of the XRF-CS data (most recent period of sediment accumulation) begins 342 

at 1932 CE, a long-term instrumental temperature data set was required to get a sufficient length 343 

for the model to learn about the climate - proxy relationship. We therefore rely on the Hadley 344 

Central England Temperature (HadCET, Met Office) data which has been collecting 345 

temperature data since 1659 CE.  346 

 The first step was to divide the data into two: the modern calibration dataset (containing 347 

an age index (𝑡), modern XRF-CS data (𝑋𝑅𝐹𝑚) and the overlapping instrumental climate 348 

data (𝐶𝑚)), and then the fossil data (containing the age (𝑡) and XRF-CS data for the remaining 349 

data (𝑋𝑅𝐹𝑓)). 𝑋𝑅𝐹𝑚 was resampled to annual means and was aligned with the corresponding 350 

year in the HadCET dataset. Given the start of the HadCET dataset beginning at 1659 CE and 351 

the top of the XRF-CS data finishing at 1932 CE, and a short gap where there was no  XRF-352 

CS data present, it meant that the calibration dataset was 290 years long. Temperatures were 353 

converted into anomalies from the mean of the calibration period as this not only removes the 354 

arbitrary mean of the temperature reconstruction making the data more comparable, but it can 355 

also better constrain the climate values in which the model picks from (see Supplementary 356 

Information 1). The fossil data was provided in its original temporal resolution ranging between 357 

https://doi.org/10.5194/cp-2024-82
Preprint. Discussion started: 20 December 2024
c© Author(s) 2024. CC BY 4.0 License.



 12 

5 data points per year to >25 data points per year depending on the sediment accumulation rate. 358 

This resulted in 56,069 time slices covering the period between 8,100 cal a BP and 1658 CE.  359 

We check the model convergence using R̂ values (Gelman and Rubin., 1992; Brooks 360 

and Gelman., 1998) and evaluate the performance of the model using both in sample and out 361 

of sample posterior predictive calibration checks (Gelman et al., 2008). We detail this analysis 362 

in more detail below.  363 

 364 

3.2 Model fitting 365 

The full model was fitted using within the SCUBIDO R package. This package depends on 366 

JAGS (Just Another Gibbs Sampler, Plummer, 2003) through the R package ‘R2jags’ (Su and 367 

Yajima, 2021) to fit the modern calibration model and part of the fossil modelling stage. We 368 

ran the calibration model for 100,000 iterations with a burn-in period of 40,000 and used a total 369 

of 4 chains. The R̂ values were consistently <1.05 indicating that the algorithm had successfully 370 

converged during the Markov Chain Monte Carlo (MCMC) process (Vehtari et al., 2021; Su 371 

and Yajima, 2021). Fig. 1 shows the quadratic relationships between the individual XRF-CS 372 

elements and temperature in the calibration period.  373 

 374 

Figure 1: Relationship between the XRF-CS elements and instrumental annual mean temperature from the 

calibration period. Individual XRF-CS elements plotted against the instrumental climate anomaly data for each 

year. The quadratic relationships are represented by the lines with the solid lines representing the uncertainty 

ranges of 50%, 95% (dotted), 75% (dashed).  
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In more conventional approaches where XRF-CS data is used to qualitatively 375 

reconstruct climate, only one element, or pair of elements (in the form of a ratio) is used at a 376 

time to reconstruct climate (for example Zander et al., 2024). This would be equivalent to our 377 

approach if had we used a diagonal structure for ∑ (equation 4). Such a diagonal structure treats 378 

every element as independent and therefore may falsely reduce the uncertainty in the resulting 379 

reconstructions. However, the novel contribution of our model is that it includes a multivariate 380 

response regression approach that also models the covariances between the elements, and so 381 

we argue produces more realistic, but also more uncertain reconstructions.  382 

The fossil reconstruction stage for Diss Mere used 2,000 iterations with a burn-in period 383 

of 200 with a total of 4 chains. Fewer iterations are required for this stage for convergence as 384 

the model complexity is substantially reduced compared to the modern calibration stage as 385 

MDPs are used. R̂ values were <1.05 indicating satisfactory convergence of the algorithm. The 386 

full reconstruction using all the SCUBIDO functions took approximately 16 hours on a 387 

standard computer using a single core.  388 

 389 

3.3 Model validation 390 

As a more rigorous test of the model performance, we further test its uncertainty calibration 391 

properties using an out of sample five-fold cross validation routine. Thus, we remove 20% of 392 

the modern data and re-fit the full model to obtain posterior estimates of the climate variable 393 

for years which the model has not seen during the training phase. We repeat this step five times 394 

such that each observation year is removed once. We can compare these out of sample predicted 395 

climate values with the true values in the modern data and see how often their uncertainty 396 

ranges cross with the true values. For example, in an ideal model 95% of these values would 397 

lie within the 95% interval and 50% in the 50% interval etc. Though in real-world data, the 398 

estimated proportion inside the credible intervals may be slightly higher or lower. Out of 399 

sample evaluation of climate reconstructions seems not to be a common feature in the literature 400 

but we would strongly advocate this in the future. 401 

The results of the five-fold cross validation showed that in 80% of the 199 calibration 402 

temperatures, the reconstructions fell within the 95% credible interval (Fig. 2). The coverage 403 

percentage for each individual fold ranged by 13%, from 75% to 88%. Given we are comparing 404 

proxy data that are also affected by non-climate factors in the lake, the nature of the high 405 

resolution (5-25 data points per year) XRF-CS data and the anomalous temperatures recorded 406 

in the HadCET meteorological dataset, it is not surprising that the reconstruction does not 407 
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accurately reconstruct temperature within the 95% credible intervals, 95% of the time. In 408 

addition, given that the calibration period occurs in the non-varved sediments where the 409 

chronology has higher uncertainty (Boyall et al., 2024), it could mean that the XRF-CS data is 410 

not perfectly aligned with the correct instrumental temperature thus lowering the validation 411 

scores. On the other hand, the lower coverage percentage may also arise from the choice of 412 

instrumental temperature data used in the calibration period as the temperatures are more 413 

regional, whereas the XRF-CS proxy data will be recording a local climate signal. In addition, 414 

the earliest years of the HadCET dataset, the temperatures were based on non-instrumental 415 

descriptions of weather and thus also subject to large uncertainties (Parker et al., 2010). 416 

Nevertheless, gaining an 80% coverage percentage is acceptable for this modelling approach. 417 

 418 

Figure 2: Results from the out of sample validation with true instrumental temperatures and reconstructed 

temperatures. Black dots represent the temperature values and error bars represent the predicted 

temperature’s 95% uncertainty interval. 
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Section 4.0 Annually resolved annual mean temperature reconstructions in 419 

Europe 420 

4.1 Case site 1: Diss Mere, Central England 421 

The reconstruction of annually resolved temperatures for the past 8,100 cal a BP given the 422 

XRF-CS from Diss Mere using Bayesian inference is presented in Fig. 3. The median Holocene 423 

temperature reconstructed from Diss Mere is 9.65 C and has a maximum range of 1.97 C 424 

with temperature anomalies between -1.50 C and 0.49 C (7.66C and 9.65 C absolute 425 

temperatures). Most of the temperatures before ca. 2,000 cal a BP are cooler than present (9.16 426 

C) with only isolated centennial-scale periods where temperatures are warmer (Fig. 3). 427 

Inclusive of the credible intervals, the reconstructed Holocene variance is slightly greater than 428 

the instrumental period with a standard deviation of 0.63 C for the reconstruction and 0.61 C 429 

for the HadCET instrumental temperature. The centennial to interannual variability is, 430 

however, reduced in the last two millennia, similar to present time variability. The first 431 

millennium of the common era is slightly warmer than today remaining similar to present (Fig. 432 

3).  433 

 434 

Figure 3: Annually resolved temperature reconstruction from Diss Mere. Dark green line represents the median 

reconstruction with 50th percentile and 95th percentile in darker green and light green, respectively. The data is 

presented in anomalies for the UK long-term average 1991-2020 and the dashed grey line marks the centred mean 

of 0 C using this period.  
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4.2 Case site 2: Lake Nautajärvi, Southern Finland 435 

We have applied the SCUBIDO approach to reconstruct Holocene annual mean temperature 436 

from Nautajärvi, a lake in southern Finland with a different stratigraphy to Diss Mere. Lake 437 

Nautajärvi is also a varved lake but shows an uninterrupted laminated sediment from the early 438 

Holocene to present (Ojala and Alenius, 2005). Except for the first 200 years of the record 439 

(9,852 – 9,625 cal a BP) when varves are thick (ca. 5 mm) due to a high detrital input during 440 

the formation of the lake (Ojala and Alenius, 2005; Ojala et al., 2008b), the sedimentation rate 441 

(0.2 – 1.6 mm/year) is similar to the varve thickness of Diss Mere (0.1 – 1.4 mm/year). Analysis 442 

of both the sediments and the XRF-CS data from Nautajärvi revealed that the lake, and 443 

subsequent sediment record is responsive to climate variability (Ojala et al., 2008a; Lincoln et 444 

al. in review) thus is a good record to also apply this Bayesian methodology on. Table 1 445 

summarises the characteristics of the modelling approach applied on lake Nautajärvi varved 446 

sediment sequence.  447 

Table 1. Summary table of the Lake Nautajärvi data used for the Bayesian reconstruction. 448 

XRF-CS details 

XRF-CS set up  

XRF-CS elements used 
Al, Si, S, K, Ca, Ti, V, Cr, 

Mn, Fe, Cu, Rb, Sr, and Zr 

Calibration data 

Meteorological data 

Temperature data for 

Nautajärvi was from 16 

weather stations within a 

200 km radius from the lake 

obtained gathered using the 

‘rnoaa’ package 

(Chamberlain et al., 2024). 

Annual mean temperature is 

used. Data preservation from 

the interwar years (1918-

1945) is limited and/or 

missing thus these have been 

excluded from the 

calibration dataset 

(Supplementary Figure 1) 

Age range -70 to 68 cal a BP 

Number of time slices 102  

Reconstruction data 
Age range 69 to 9829 cal a BP 

Number of time slices 16418 

 449 

Figure 4 shows the annual temperature reconstruction from Nautajärvi for the past ca. 450 

9,800 years overlaid on top of the Diss Mere reconstruction. The median Holocene temperature 451 

reconstructed from Nautajärvi is 5.1 C (Supplementary Figure 3) and had a range of 1.60 C 452 
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between 4.22 C and 6.03 C (-0.39 C and 1.22 C, anomalies) which is within the range of 453 

variability observed during the instrumental period. Overall, the reconstructed Holocene 454 

temperatures at Nautajärvi is cooler than except for the period between ca. 7,000 and 4,000 cal 455 

a BP where temperatures are warmer and have the highest Holocene variance.  456 

The comparison of Nautajärvi and Diss Mere through the Holocene shows slightly 457 

different multi-millennial temperature evolutions where temperatures in England steadily 458 

increase whereas Finland reaches maximum temperatures in the mid-Holocene and then 459 

decreases thereafter (Fig. 4). We discuss millennial-scale trends in the next section when we 460 

compare our reconstructions with published low-resolution Holocene temperature 461 

reconstructions. On multi-decadal to centennial timescales, there is a good agreement between 462 

the anomaly value reconstructions at both sites showing similar trends and amplitude of 463 

change, especially on variability during the mid-Holocene from ca. 4,000 to 6,500 cal, yr BP 464 

(Supplementary Figure 4). Larger variability in Diss Mere (England) prior to 6,500 cal yr BP 465 

compared to Nautajärvi (Finland) might be reflecting different regional climate sensitivity 466 

during a period when the instability of the Laurentide ice sheet and hydrological changes in the 467 

Baltic Sea region was still having an important role on the reconfiguration of the climate system 468 

and spatial distribution of climate patterns in the Northern Hemisphere (Yu and Harrison, 1995; 469 

Wastegård, 2022). 470 

 471 

Figure 4. Annually resolved temperature reconstruction from Nautajärvi for the past ca 9,800 years overlaid on Diss 

Mere’s reconstruction. Dark pink line represents the median reconstruction with 50th percentile and 95th percentile 

in darker purple and light purple, respectively. The anomalies are calculated with reference to the 1991-2020 mean 

from the instrumental data. The grey dashed line marks the 0 C mean. 
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4.3 Palaeoclimate comparisons  472 

To test whether the temperatures produced from the SCUBIDO modelling approach are 473 

sensible on longer timescales, we compare our results from Diss Mere and Nautajärvi with 474 

previously published proxy reconstructions (Temp12k, Kaufman et al., 2020a) and data 475 

assimilation results (LGMR, Osman et al., 2021; Holocene-DA, Erb et al., 2022) for the same 476 

period (Fig. 5). We choose these reconstructions to compare with because they are all based on 477 

large-scale data compilations utilising a range of models and proxy types. The Temp12k and 478 

Holocene-DA reconstructions both use the Temperature 12k proxy database (Kaufman et al., 479 

2020b) with the Temp-12k reconstruction using a multi-method ensemble to reconstruct 480 

temperatures at a centennial resolution (Kaufman et al., 2020a) and the Holocene-DA using an 481 

updated version of this dataset in a data assimilation framework to combine with transient 482 

climate simulations in order to get a reconstruction of temperature at a decadal resolution (Erb 483 

et al., 2022). On the other hand, the LGMR reconstruction uses only marine proxy records in a 484 

data assimilation approach to produce a reconstruction of temperature at a multi-centennial 485 

resolution.  486 

The multi-millennial trends in the reconstructions are best demonstrated with both Fig. 487 

5a and b showing the clear evolution of temperatures through the Holocene. Fig. 5a shows the 488 

slope from linear models conducted on the different reconstructions to explore the evolution of 489 

temperature through time. The Diss Mere, Holocene-DA (Erb et al., 2022), and LGMR (Last 490 

Glacial Maximum Reanalysis, Osman et al., 2021) linear models all demonstrate an 491 

amelioration of temperature through the Holocene with similar rates of warming, especially 492 

during the mid-Holocene where there are almost no differences between the records (Fig. 5a). 493 

The Temp-12k reconstruction from Kaufman et al. (2020a) and the Nautajärvi reconstruction 494 

from this study deviate from the general increasing trend observed in the other reconstructions 495 

and instead show an overall decrease in temperature from the early to late Holocene (Fig. 5a). 496 

These records have a more definitive early Holocene Thermal Maximum (HTM) with cooling 497 

thereafter in comparison with the other reconstructions, hence the linear model describing a 498 

general decrease in temperature through time. As part of the current discussion on the Holocene 499 

temperature conundrum (Liu et al., 2020), the differences in temperature evolution between the 500 

reconstructions may be a factor of a seasonal bias, which has been already noted for the Temp-501 

12k reconstruction reflecting mostly summer conditions and/or spatial imbalances in proxy 502 

distributions (Bova et al., 2021; Erb et al., 2022).  503 

 504 
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 505 

The amplitude of variability from the SCUBIDO-produced reconstructions from this 506 

study is much larger than the global reconstructions. Ultimately this is because the LGMR and 507 

Temp12k have low temporal resolutions causing the reconstruction to be smoothed, and also 508 

contains a range of proxy types. Whilst the Holocene-DA reconstruction technically has a data 509 

Figure 5: Comparison between different Holocene temperature reconstructions in anomalies. Note that the reference 

period for all these reconstructions is the mean between 2000 to 0 cal a BP. a) linear relationships between the 

reconstructed temperature and time for Diss Mere (green) Nautajärvi (purple), LGMR (Osman et al., 2021) (blue), 

Temp12k (Kaufman et al., 2020) (Yellow) and the Holocene-DA (Erb et al., 2023) (orange). b) The reconstructions 

from the above studies with Diss Mere and Nautajärvi resampled to 100 years to explore the centennial scale variability 

and match the resolution of the other reconstructions. The LGMR and Temp12k presented at a 200-year. The envelopes 

for each line in the respective colours represent the uncertainty for each reconstruction. c) a focus window on the 

common era with the Diss Mere temperature reconstruction with the LMR (Tardif et al., 2019) (orange) for a grid 

5W:15E, 50:60N. The solid bold lines are at 10-year decadal moving average whereas the transparent envelopes are 

the original annual resolution.  
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every 10 years, as mentioned in their study, the reconstruction does not contain robust decadal 510 

information from the proxy records and is achieved instead by utilising both proxy and transient 511 

models together and thus the low amplitude is still inherent from the low-resolution proxy data 512 

used. 513 

 514 

4.3.1 The last two millennia 515 

Reconstructing palaeoclimate for the common era (past 2,000 years) has been the focus of 516 

many climate studies (e.g. Smerdon and Pollack, 2016; PAGES2k Consortium, 2017a; Tardif 517 

et al., 2019; Anchukaitis and Smerdon, 2022). To test the Bayesian reconstructions from this 518 

study through a period of increased anthropogenic disturbance, we compare the reconstructions 519 

to the Last Millennium Reanalysis (LMR, Tardif et al., 2019) (Fig. 5c). Whilst the LMR and 520 

the Bayesian reconstructions are annual, we decide to compare at a 10-year resolution to reduce 521 

noise and explore the main decadal-scale trends between each record.  Despite increased 522 

anthropogenic disturbance to the lake system over the past 2,000 years at Diss Mere (Boyall et 523 

al., 2024), and a disruption to the proxy signal and lake functioning, the comparison between 524 

the overall trend of the LMR and Bayesian temperature reconstructions are good, especially at 525 

Diss Mere (Fig. 5c). Correlation coefficients between the LMR and Diss Mere is r = 0.58, P = 526 

<0.0001, however no statistically significant correlations could be made between Nautajärvi 527 

and the LMR despite the general similar evolution trend in Fig. 5c. 528 

In the first millennia (0-1000 CE), the LMR is much less variable than the Bayesian 529 

reconstructions, with slightly cooler temperatures and negative anomalies (Fig. 5c). The lower 530 

variability in the LMR is probably attributed to the very low number of proxy records used for 531 

the first few hundred years of the reconstruction (Tardif et al., 2019). Despite the minor 532 

differences in the amplitude of variability, each record shows a warmer first millennium 533 

compared to the second, which has been discussed in previous reconstructions (PAGES 534 

Consortium, 2017b; Esper et al., 2024). Once the decrease in temperature occurs at ca. 850 CE 535 

at Diss Mere and LMR and 1200 CE at Nautajärvi, there is a better agreement in both the 536 

temperatures and amplitude of variability until present (Fig. 5c) resulting in a better agreement 537 

between these records than the previous millennium. The consistency between the records 538 

highlights that despite the different sediment varve characteristics, varve formation processes, 539 

and interactions between sedimentation and human activity, the Bayesian approach is able to 540 

reconstruct a quantified, local to regional climate record from the XRF-CS.  541 
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5.0 Conclusions and recommendations for future use of SCUBIDO 542 

This study presents the first attempt at reconstructing quantitative annual mean temperatures 543 

from multivariate XRF-data from sediment records using Bayesian inference. Several 544 

methodological decisions were made when building SCUBIDO which we believe can help 545 

contribute to the advancement of climate reconstructions. The most important choice was to 546 

use of Bayesian inference to not only get a single temperature estimate at each time point, but 547 

to also get a full posterior distribution to properly quantify uncertainties. In addition, we 548 

designed the model to include all geochemical elements and have SCUBIDO model their 549 

covariances instead of relying on prior assumptions about relationships, and the final choice 550 

was to synthesise SCUBDIO into an R package for the community. We believe that this was 551 

the best way to be as user friendly as possible as we think others could find this approach 552 

interesting and help make new annually resolved palaeoclimate reconstructions.  553 

The ability of Bayesian in handing various types of data, changing 554 

timesteps/resolutions, and gaps within datasets has been utilised in this study, for example, 555 

there are periods within both the XRF-CS records from Diss Mere and Nautajärvi which have 556 

short gaps and periods where the sedimentation rates are variable resulting in changing time 557 

steps. However, this was easily mitigated against by using a Bayesian framework. 558 

In this paper we apply SCUBIDO to two proxy records to reconstruct Holocene annual 559 

mean temperature in Europe and the results showed consistency with previously published 560 

paleoclimate reconstructions on a multi-millennial timescale. However, given the model and 561 

the high-resolution proxy data from this study it provides a much more detailed overview of 562 

temperature evolution through the Holocene by increasing the resolution to annual at a single 563 

site. Of course, the records we compared to (Holocen-DA, Temp12k, and LGMR) have the 564 

advantage of also being spatial reconstructions and not just temporal like in our study. The goal 565 

would be for more people in the palaeoclimate community to use SCUBIDO and thus produce 566 

more reconstructions of an annual resolution to then be incorporated into these large data 567 

compilations.   568 

Whilst we encourage other groups to use this approach on their XRF-CS records, there 569 

are some precautions which should be taken since SCUBIDO does not provide a physical 570 

model between the climate and geochemical sediment composition. Like all palaeoclimate 571 

reconstructions using different statistical techniques, there is still some assumption that the 572 

proxy-climate relationship does not deviate too much through time to what is observed in the 573 

calibration period. This is important to consider when sites have experienced substantial 574 

alterations in human activity or other depositional changes, and we recommend to carefully 575 
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check that the major shifts in the climate reconstruction are explained from climate or rather 576 

be explained by changes in the sedimentology (e.g. transitions from varved to non-varved 577 

deposits and changes in the varve microfacies). Because of this, we encourage users to 578 

qualitatively interpret the XRF-CS record to see whether the lake remains sensitive to climate 579 

through time, as well as finding the climate parameter to which the lake is sensitive to. And 580 

finally, because XRF-CS data is highly site-specific and sensitive to local systems, it is not 581 

possible to calibrate one site and apply that calibration period on another XRF-CS lake record 582 

which may be common in other proxies e.g. pollen (Parnell et al., 2016).  583 

Future developments of the SUBIDO approach may include integrating age uncertainty 584 

into the model as currently age ensembles are not used. This means that at present lake data 585 

with stronger chronological age models would likely produce better reconstructions, as 586 

aligning the calibration instrumental climate data with the correct layers of XRF-CS data is 587 

important. 588 
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