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Abstract 15 

Quantification of proxy records obtained from geological archives is key for extending the 16 

observational record to estimate the rate, strength, and impact of past climate changes, but also 17 

to validate climate model simulations, improving future climate predictions. SCUBIDO 18 

(Simulating Climate Using Bayesian Inference with proxy Data Observations), is a new 19 

statistical model for reconstructing palaeoclimate variability and its uncertainty using Bayesian 20 

inference on multivariate non-biological proxy data. We have developed the model for 21 

annually laminated (varved) lake sediments as they provide a high-temporal resolution to 22 

reconstructions with precise chronologies. This model uses non-destructive X-Ray 23 

Fluorescence core scanning (XRF-CS) data (chemical elemental composition of the sediments) 24 

because it can provide multivariate proxy information at a near continuous, sub-mm resolution, 25 

and when applied to annually laminated (varved) lake sediments or sediments with high 26 

accumulation rates, the reconstructions can be of an annual resolution. However, the model 27 

could be applied to other multivariate proxy datasets.  28 

 SCUBIDO uses a calibration period of instrumental climate data and overlapping 29 

µXRF-CS data to learn about the direct relationship between each geochemical element 30 

(reflecting different depositional processes) and climate, but also the covariant response 31 

between the elements and climate. The understanding of these relationships is then applied to 32 
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the rest of the record to transform the proxy values into a posterior distribution of palaeoclimate 33 

with quantified uncertainties. In this paper, we describe the mathematical details of this 34 

Bayesian approach and show detailed walk-through examples that reconstruct Holocene annual 35 

mean temperature from two varved lake records from central England and southern Finland. 36 

We choose to use varved sediments to demonstrate this approach as SCUBIDO does not 37 

include a chronological module and thus the tight chronology associated with varved sediments 38 

is important. The out-of-sample validation for both sites show a good agreement between the 39 

reconstructed and instrumental temperatures emphasising the validity of this approach. The 40 

mathematical details and code have been synthesised into the R package, SCUBIDO, to 41 

simplify encourage others to use this modelling approach and produce their own 42 

reconstructions. Whilst the model has been designed and tested on varved sediments, µXRF-43 

CS data from other types of sediment records which record a climate signal could also benefit 44 

from this approach. 45 

1.0 Introduction  46 

Anthropogenic climate change over the most recent decades have heightened the need to look 47 

beyond the instrumental period to find common patterns to both today’s climate and future 48 

climate projections (IPCC, 2023; Kaufman and McKay, 2022). This calls for chronologically 49 

constrained, climate-sensitive proxy records to extend the understanding of climate variability 50 

beyond the instrumental period. These reconstructions can be used to contextualise present 51 

changes observed in the climate system, identify recurrent trends which are unable to be 52 

observed in the short instrumental record (e.g. decadal-centennial variability), and be used as 53 

potential analogues for future climate scenarios (Bova et al., 2021; Liu et al., 2020; Snyder, 54 

2010). In addition, quantitative reconstructions provide the opportunity to perform climate 55 

sensitivity experiments between proxy reconstructions and climate model simulations, 56 

strengthening climate projections for the future (Kageyama et al., 2018; Burls and Sagoo, 2022; 57 

Zhu et al., 2022).  58 

 The Holocene Epoch (11,700 years to present, where present is 1950 CE) has been the 59 

focus of many proxy and modelling investigations (e.g. Liu et al., 2014; Bader et al., 2020; 60 

Kaufman et al., 2020a; Bova et al., 2021; Erb et al., 2022). This time period experienced 61 

temperatures which were similar to today, and the availability of proxy records makes the 62 

Holocene a favourable interglacial to investigate climate variability across multi-millennial 63 

timescales. Recently, there have been a number of new reconstructions of global temperature 64 

which are based on large proxy dataset compilations (Kaufman et al., 2020a; Kaufman et al., 65 
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2020b; Osman et al., 2021; Erb et al., 2022). These synthesise different marine (Osman et al., 72 

2021), or a combination of terrestrial and marine (Kaufman et al., 2020b) proxy records and 73 

either use statistical approaches (Kaufman et al., 2020a) or combine these with data 74 

assimilation (Osman et al., 2021; Erb et al., 2022) to reconstruct climate both spatially and 75 

temporally. These have provided great insight into climate variability across large spatial 76 

scales, of which are not possible when looking at individual site records. However, they all 77 

have a common limitation which is the temporal resolution of their reconstructions. Due to the 78 

nature of the proxies included in the large datasets (e.g. pollen, isotopes, foraminiera), the proxy 79 

signal is often non-continuous creating a median reconstuction resolution of ca. 100-200 years 80 

(Kaufman et al., 2020b). Whilst this temporal resolution is acceptable to look at spatially 81 

extensive and long-term climate variability across centennial to millennial timescales 82 

(Cartapanis et al., 2022), higher frequency variability such as the multi-decadal climate system 83 

is unable to be investigated, even though this is key to improve climate predictions within this 84 

century (Cassou et al., 2018). Erb et al. (2022) produced a global temperature reconstruction at 85 

a decadal resolution. However, they used the Temp12k dataset which only 11 out of the 1,276 86 

records have a decadal, or higher temporal resolution, and some records having a resolution of  87 

up to 700 years (Kaufman et al., 2020b; Erb et al., 2022). This meant that in order for them to 88 

achieve a decadal reconstruction they have to leverage from transient climate simulations in a 89 

data assimilation approach to upscale their temporal resolution to decadal. Whilst a lot can be 90 

learnt from their reconstruction, using the transient simulations means that much of the decadal 91 

climate variability observed in this reconstruction would be forced by the model, rather than 92 

the proxy data itself.  93 

Reconstructions of climate from a proxy record, whether this be a single-site, or a 94 

compilation of multiple sites, require a transformation from the qualitative climate information 95 

derived from proxy values to a quantified climate parameter with physical units of 96 

measurements (i.e. °C, mm of precipitation) (Chevalier et al., 2020). A number of statistical or 97 

mechanistic methods can be used, each with varying levels of complexity, uncertainties, and 98 

functionality (Tingley et al., 2012). Each method requires a calibration stage or training set 99 

relying on modern observations of the relationship between the proxy and climate which is 100 

then projected onto the proxy data (Juggins and Birks, 2012). Quantitative approaches have 101 

matured from rather simplistic methods including linear regression (e.g. Imbrie and Kipp, 102 

1971), to methods of increased complexity such as weighted averaging regression (e.g. ter 103 

Braak and Juggins, 1993; Liu et al., 2020), composite plus scaling (e.g. Jones et al., 2009; 104 
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Kaufman et al., 2020a), modern analogue techniques (e.g. Jiang et al., 2010), and artificial 115 

neural networks (e.g. Wegmann and Juame-Santero, 2023) which are summarised well in 116 

Chevalier et al. (2020). Interpreting the palaeoclimate record and reconstructing climate can be 117 

complex and often faced with several challenges including uncertain chronologies, 118 

assumptions in proxy formation and preservation, and non-stationary relationships between the 119 

climate system and proxy response through time (Sweeney et al., 2018; Cahill et al., 2023). 120 

This is especially true when the archives used to reconstruct climate have faced significant 121 

alterations due to rising anthropogenic activity over the last several thousands of years, 122 

questioning the stationarity of proxy-climate relationships. Each of these complexities have led 123 

to a greater reliance on hierarchical statistical approaches, such as Bayesian statistics to 124 

reconstruct climate through time (Tingley et al., 2012).  125 

Bayesian statistics is an approach based on Bayes’ Theorem and can be summarised as 126 

applying prior knowledge to update the probability of a hypothesis when new data becomes 127 

available (van de Schoot et al., 2021). It has been used to answer many statistical problems 128 

which has included reconstructing palaeoclimate (e.g. Haslett et al., 2006; Parnell et al., 2015; 129 

Tierney et al., 2019; Cahill et al., 2023). Many frequentist (non-Bayesian) approaches to 130 

reconstruct climate mentioned previously often struggle to capture the complex relationships 131 

inherent between climate and proxy data. This occurs when the learnt relationship in the 132 

calibration interval or training data is fixed, and then applied directly onto the palaeo data which 133 

results in the assumption of a stationary relationship through time, and fixed uncertainty 134 

estimates (Birks et al., 2012; Sweeney et al., 2018; Zander et al., 2024). However, we argue 135 

that climate often exhibits non-stationary behaviour and this needs to be captured in the chosen 136 

model. By contrast, a Bayesian approach allows a continued update about the belief of the 137 

relationship between the proxy, the climate, and associated parameters (Chu and Zhao, 2011). 138 

In addition, Bayesian analysis can holistically account for different sources of uncertainty 139 

influencing a reconstruction (Birks et al., 2012; Sweeney et al., 2018). Bayesian methods can 140 

consider the uncertainties at all stages of the modelling process and model these as joint 141 

probability distributions producing properly quantified uncertainties with credible intervals 142 

(Tingley and Huybers, 2010; Sweeney et al., 2018; Cahill et al., 2023). 143 

A rising number of studies have used a Bayesian framework in their climate 144 

reconstructions (e.g. Haslett et al., 2006; Holmström et al., 2015; Parnell et al., 2015; Tierney 145 

et al., 2019; Hernández et al., 2020; Cahill et al., 2023). However, they provide low temporal 146 

resolutions as they are based on non-continuously sampled proxies, resulting in reconstructions 147 

of climate across multi-decadal to centennial timescales. This calls for a greater number of 148 
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quantified climate reconstructions using hierarchical modelling from records with refined 157 

chronologies and proxies sampled at a high resolution.  158 

Micro X-ray Fluorescence core scanning (µXRF-CS hereafter) is a non-destructive 159 

approach which provides multivariate information about the geochemical composition of 160 

marine and lacustrine sediment cores (Davies et al., 2015). The geochemical information 161 

produced by µXRF-CS provides relative changes in the element abundance (Bertrand et al., 162 

2024).  Unlike alternative geochemical proxies (e.g. stable isotopes) or biological proxies (e.g. 163 

pollen, foraminifera) which require discrete sampling, the µXRF-CS approach scans sediment 164 

sequences continuously enabling the proxy data to be produced at very high sampling 165 

resolutions (up to 0.2 mm). When this approach is applied on sediment sequences with either 166 

sufficient sedimentation rates (>0.5 mm per year) or annual laminations (varves) (Zolitschka 167 

et al., 2015), it can provide proxy information at a seasonal to decadal timescale. µXRF-CS has 168 

mostly been used to qualitatively reconstruct palaeoenvironments, as the relative changes in 169 

geochemical composition of sediments are a direct response to the changing climatic and 170 

environmental conditions in the lake-catchment system (Peti and Augustinus, 2022). 171 

Our main goal here is to combine the advantages of using Bayesian inference in climate 172 

reconstructions with the palaeoclimate value of varved records. In this methods-based paper 173 

we aim to i) present a Bayesian approach to transform multivariate µXRF-CS data into a 174 

quantitative palaeoclimate dataset, ii) demonstrate the applicability of this approach on two 175 

varved lake records from Europe, iii) compare the output of the Bayesian model to previously 176 

published reconstructions to test the climatic reliability, and iv) promote its use through the 177 

user-friendly R package, SCUBIDO.  178 

 179 

2.0 Methods 180 

2.1 Proxy data 181 

The modelling approach has been built for the use of µXRF-CS data as the chosen proxy. Raw 182 

µXRF-CS data originates in the form of element intensities which is often non-linear to the 183 

concentration of elements in the sediment and can also be affected by the sediment’s physical 184 

properties, measurement time and sample geometry, therefore we use centred-log ratios (clr 185 

hereafter) to mitigate against these problems (Aitchison, 1986; Tjallingii et al., 2007; Weltje 186 

and Tjallingii, 2008; Weltje et al., 2015; Dunlea et al., 2020). Transforming raw elements to 187 

clr-elements requires a dataset with minimal low or null counts (Bertrand et al., 2024). 188 
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Therefore, elements with excessive null values should be removed before performing the 196 

transformation. Following this, this approach does not assume that any element has a stronger 197 

relationship with climate thus, we pass all elements which were able to be clr-transformed to 198 

the model. 199 

 200 

2.3 Bayesian framework 201 

For our quantitative reconstruction of climate given the µXRF-CS proxy data, we use Bayesian 202 

inference and base our framework on the modelling approach described in Parnell et al. (2015) 203 

and Hernández et al. (2020). Below we outline the notation used throughout:  204 

§ 𝐶	is used to represent the value of the climate variable at each time point. 205 

§ We use 𝑋𝑅𝐹!" to indicate the central logged transformed µXRF-CS data at each depth 206 

of the sediment core (𝑖) where 𝑖 = 1,… , 𝑛 depths. As the µXRF-CS data is multivariate, 207 

𝑗 reflects the number of different central log ratio transformed elements (𝑗	 =208 

	1, … , 𝑛	elements).	 209 

§ 𝑡! denotes the calibrated age (𝑡) of each depth (𝑖)	in cal years BP (before present where 210 

present refers to 1950). It is important to note that SCUBIDO does not contain a 211 

geochronological module and thus age uncertainty is not considered in this modelling 212 

approach.   213 

§ 𝜃	is used to represent the parameters (𝜇, 𝛽#, 𝛽$, 𝛽%) which govern the relationship 214 

between each of the µXRF-CS elements at each time point and the climate variable. 215 

These are subscripted with 𝑗 to denote the element to which they refer to. 216 

§ s& is used to represent the standard deviation of climate per unit of time for our random 217 

walk model detailed in this paper.  218 

§ A superscripted 𝑚 and 𝑓 are applied to each of the variables when referring to the 219 

modern and fossil data sets respectively. For example, 𝐶'	equates to the modern 220 

climate, and 𝑋𝑅𝐹( refers to the fossil µXRF-CS data.  221 

More definitions of variables and model parameters used in the model framework are presented 222 

in Supplementary Table 1. 223 

The Bayesian posterior distribution we aim to calculate is outlined below:  224 

(1) 225 

𝑝"𝐶
! , q,s"%𝑋𝑅𝐹

! , 𝐶#, 𝑋𝑅𝐹#) 	∝ 𝑝(𝑋𝑅𝐹#|𝐶#, q) ∙ 𝑝"𝑋𝑅𝐹
!
%𝐶
! , q) ∙ 𝑝(𝐶! , 𝐶#|s")	𝑝(s")	𝑝(q) 226 
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 232 

The posterior distribution on the left side of the equation 𝑝"𝐶! , q,s"%𝑋𝑅𝐹! , 𝐶#, 𝑋𝑅𝐹#) 233 

represents the probability distribution of the fossil climate given fossil and modern µXRF-CS 234 

data, and modern climate. We use the likelihood expression 𝑝(𝑋𝑅𝐹'|𝐶', q) to represent the 235 

calibration period where we learn about the relationship between the µXRF-CS data and 236 

climate variable, discussed in more detail in Sect. 2.3.2.  𝑝(𝑋𝑅𝐹(>𝐶
( , q) then represents the 237 

likelihood of the fossil data given the climate, and finally (𝐶! , 𝐶#|s") represents the prior 238 

distribution associated with the fossil climate and its dynamics over time.  239 

 240 

2.3.1 Model fitting 241 

To fit the above model, we follow the computational shortcut of Parnell et al. (2015) which 242 

assumes that all the information about the calibration parameters (q), comes from the modern 243 

data. This means that the model is fit in two parts, with the first being the estimation of q within 244 

a calibration period, and then the second part which estimates the fossil climate (𝐶() and s&. 245 

Thus, the resulting model becomes: 246 

(2) 247 

𝑝"𝐶
! , q,s"%𝑋𝑅𝐹

! , 𝐶#, 𝑋𝑅𝐹#) 	∝ 𝑝(q	,s"|𝑋𝑅𝐹#, 𝑐#) ∙ 𝑝"𝑋𝑅𝐹
!	%	𝐶

! , q	,s") ∙ 𝑝(𝐶! , 𝐶#|s")	𝑝(s") 248 

 249 

The first term on the right-hand side (in blue) is estimated separately and represents the 250 

posterior distribution of the modern calibration relationship parameters which is then not 251 

further learnt from the fossil data in the second part of the model fit. Given the different parts 252 

of the modelling approach, we split the following section into two, firstly fitting the modern 253 

calibration period (Section 2.3.2), and then secondly using what is learnt from this stage to 254 

reconstruct fossil climate (Section 2.3.3). 255 

 256 

2.3.2 Calibration model fitting 257 

Like all quantitative transformations of palaeoclimate, the first step is to understand the 258 

relationship between the proxy and the climate variable. In our modelling approach this 259 

relationship is learnt from the first term on the right-hand side of Equation 2 260 

(𝑝(q	,s"|𝑋𝑅𝐹#, 𝑐#)) and includes not only the causal relationship between the individual 261 

µXRF-CS elements and climate, but also the covariance between the elements. The data used 262 

for this section of the model is the most recent period and must be aligned with an overlapping 263 

period of instrumental climate (𝐶') and we call this our calibration dataset.  264 
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This step assumes that some of the variability observed in the proxy data is controlled 270 

by the climate variable, this is sometimes referred to a ‘forward’ model. Here we want to 271 

estimate the posterior distribution of the 𝜃 parameters (𝛽#,	𝛽$,	𝛽%,	𝜇#) and the climate variability 272 

parameter s&, from a joint probability distribution using the following: 273 

(3) 274 

𝑝(𝜃,s&|	𝑋𝑅𝐹', 𝐶') 	∝ 𝑝(𝑋𝑅𝐹'|𝐶', 𝜃) ∙ 𝑝(𝐶'|s&) ∙ 𝑝(𝜃)	𝑝(s&) 275 

 276 

We use 𝑝(𝜃) to represent the prior distribution of the parameters 𝛽#,	𝛽$,	𝛽%,	𝜇#, with s& 277 

and 𝑝(𝐶'|s&) representing the prior distribution on modern climate (we use a random walk 278 

with standard deviation s& at each time point). 𝑝(𝑋𝑅𝐹'|𝐶', 𝜃) is our likelihood distribution, 279 

and finally the parameter’s posterior distribution is represented by 𝑝(𝜃,s& 	|	𝑋𝑅𝐹', 𝐶').  280 

To approximate the relationship between the clr-transformed µXRF-CS data and the 281 

climate, we use a multivariate normal polynomial regression model for each of the µXRF 282 

elements:  283 

(4) 284 

𝑋𝑅𝐹!'	~	𝑀𝑉𝑁(𝑀! , Σ) 285 

𝑀! =	 [𝜇!$, 	𝜇!%	, . . . , 	𝜇!$$] 286 

 287 

𝜇!"	 = 𝛽#" 	+ 	𝛽$" ∙ 𝐶(𝑡!) +	𝛽%" 	𝐶(𝑡!)% 288 

 289 

The mean term 𝜇!"	captures the relationship between climate and assumes a quadratic 290 

relationship with a single mode when 𝛽%" < 0. We use S	 to represent the covariance matrix of 291 

the relationship between each of the different elements which are not explained by 𝜇!". We 292 

acknowledge that other more complex models could be used to fit the relationship between the 293 

climate and the µXRF-CS elements rather than a polynomial model explained here. However, 294 

when experimenting this with a more complicated P-spline model we experienced overfitting 295 

and a significant reduction in the computational speed, whereas the polynomial regression 296 

model is sufficient to capture the relationships between the elements and climate without 297 

having a large computational burden.  298 

Vague normal distributions are used for the priors on 𝛽#,	𝛽$, and 	𝛽%, an inverse Wishart 299 

prior on Σ, and finally a vague uniform prior distribution for s&:  300 

(5) 301 

𝐵+" 	~	𝑁(0,100), 𝐵$" 	~	𝑁(0,100), 𝐵%" 	~	𝑁(0,100) 302 
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Σ,$	~	𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑅, 𝑘 + 1) 307 

  308 

For the prior distribution on climate, we use a continuous time random walk:  309 

(6) 310 

 311 

𝑃(𝐶!')	~	𝑁(𝐶!,$' 	, 𝜔!) 312 

𝜔! =	(𝑡!' −	𝑡!,$' ) ∙ 	𝜎&% 313 

 314 

We give 𝜎& a vague uniform distribution: 𝜎& 	~	𝑈(0,100). The choice behind using vague 315 

priors in this part of the model is what we do not want to make any assumption about the 316 

relationship between the µXRF-CS elements and climate and instead allow the model to learn 317 

about the data itself.  318 

 319 

2.3.3 Fossil model fitting 320 

Once the model has learnt about the relationship between the µXRF-CS data and climate, the 321 

second part of the computational shortcut can commence (Parnell et al., 2015). This first 322 

involves using the learnt relationship from the calibration period to create marginal data 323 

posteriors (MDPs) which represent all the information about fossil climate contained in one 324 

layer of µXRF data. Thus, we initially estimate the 𝐶( using only the information within a 325 

particular time slice (𝑋𝑅𝐹(). Using only the information from one time slice at a time allows 326 

the model to marginalise over the parameters (𝜃) and reduce the dimensionality of the data. 327 

This step decreases the computational burden of estimating both the climate-proxy relationship 328 

and the fossil climate values in the same step. Information on the MDP fitting can be found in 329 

Supplementary Information 2 and in more detail in Parnell et al. (2015; 2016). 330 

To accurately capture the climate dynamics of the fossil period, we include a more 331 

informed prior for the random walk of fossil climate by re-using the continuous time random 332 

walk from the modern calibration module and combine each of the individual MDP layers once 333 

they are corrected. This enables us to create a complete joint posterior distribution of the 334 

combined 𝐶( and 𝐶' and fit the model detailed in Equation 2. As above, the varying time steps 335 

are captured via a dynamic precision term: 336 

(7) 337 

 338 

𝑃W𝐶!
(
X	~	𝑁(𝐶!,$

( 	, 𝜔!) 339 
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𝜔! = W𝑡!
( −	𝑡!,$

(
X ∙ 	𝜎&

% 350 

 351 

To fully learn the climate dynamics standard deviation parameter from both the fossil and the 352 

modern data we set a log-normal prior distribution for 𝜎&: 353 

(8) 354 

𝜎& 	~	LN(𝑎, 𝑏)	 355 

 356 

The values 𝑎 and 𝑏 are chosen to match the posterior distribution from the modern calibration 357 

model fit.  358 

The model produces an ensemble of posterior climate paths that cover the fossil and 359 

modern periods. This considers the uncertainties in the µXRF-CS proxy climate relationship 360 

with a mild smoothing constraint arising from the random walk prior. The ensemble can then 361 

be summarised by taking the median value of the posterior distribution 𝐶( and calculating the 362 

50% and 95% credible interval of the reconstruction using the 2.5%, 25%, 75%, and 97.5% 363 

percentiles for plotting. 364 

 365 

Section 3.0 Walk through example  366 

This next section of the paper provides a walk-through example of each stage of the Bayesian 367 

model fitting on real life µXRF-CS data. In an attempt to make this modelling approach as 368 

user-friendly as possible, we have produced the R package SCUBIDO (Simulating Climate 369 

Using Bayesian Inference with proxy Data Observations) which synthesise the modelling 370 

process into several distinct steps. The package can be downloaded from the GitHub repository: 371 

https://github.com/LauraBoyall/SCUBIDO alongside a walk-through example and a link to a 372 

video tutorial on how to use the R package.  373 

We first demonstrate this example on the lake sediments of Diss Mere, a small lake in 374 

the UK containing Holocene varved sediments. This site has been chosen due to the sediments 375 

being annually laminated for much of the Holocene (from 10 to 2 thousand years before 1950 376 

CE, cal. BP hereafter); it therefore has a refined chronology based on annual layer counts with 377 

age uncertainties of less than a few decades (Martin-Puertas et al., 2021), which is important 378 

for this modelling approach as we do not model or consider chronological uncertainty. The 379 

averaged sedimentation rate for the varved sequence is 0.4 mm/year with variability between 380 

0.1 and 1.8 mm/year (Martin-Puertas et al., 2021). The most recent two millennia are recorded 381 

in the top 9 m of the sediment sequence, where the annual laminations are poorly preserved, 382 
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and counting was not possible. However, the chronology has been constrained through a series 392 

of radiometric dating techniques (14C, 137Cs) and tephrochronology, providing a high average 393 

sedimentation rate of ca. 0.5 cm/year and described in detail in Boyall et al. (2024) and 394 

summarised in Supplementary Information 3. Both the modern sediment depositional 395 

processes, and palaeo sediments have been studied in detail through modern lake monitoring, 396 

microfacies analysis and analysis of the µXRF-CS record, which all highlighted that the main 397 

environmental processes explaining the sediment deposition in the lake has not changed 398 

through time and respond to climate variations on seasonal to multi-centennial timescales 399 

(Boyall et al., 2023; Martin-Puertas et al., 2023; Boyall et al., 2024). Whilst human activity 400 

had an impact on the lake sedimentation in the last 2,000 years, i.e. increased detrital input into 401 

the lake (Boyall et al., 2024), the lake sedimentation and sediment composition keeps 402 

responding to the annual lake cycle (monomictic), which is driven by climate parameters such 403 

as temperature and wind speed (Boyall et al., 2023). The sensitivity of these sediments to 404 

weather and climate variability thus provides scope for testing this modelling approach.  405 

The Diss Mere sediments were scanned using an ITRAX µXRF-Core scanner (Cox 406 

Analytical Systems) at the GFZ-Potsdam and geochemical elements include Si, S, K, Ca, Ti, 407 

V, Mn, Fe, Rb, Sr and Zr at 200 µm resolution with a dwell time of 6 s and was later resampled 408 

to 400 µm for processing (Boyall et al., 2024). These elements were chosen based on having a 409 

standard error <15% (Boyall et al., 2024), and not too many null values to perform the clr 410 

transformation (Bertrand et al., 2024).  411 

Boyall et al. (2024) found a good visual relationship between the µXRF-CS data, 412 

specifically the element calcium (Ca) (linked to temperature-induced authigenic calcite 413 

precipitation deposited during spring to early Autumn), and annual mean temperature evolution 414 

through the Holocene (Davis et al., 2003; Kaufman et al., 2020a; Rasmussen et al., 2007). 415 

Whilst this study found the strongest relationship to climate with Ca, all the elements are used 416 

in this modelling approach given that SCUBIDO models the covariance between the elements 417 

and learns from these relationships.  For the first two thousand years of the geochemical record 418 

between ca. 10,300 cal a BP and 8,100 cal a BP, the environmental interpretation of the element 419 

data reflected a non-climate, local signal associated with the stabilisation of the lake 420 

depositional environment during the early Holocene (Boyall et al., 2024). Therefore, we 421 

attempt this modelling approach on only the geochemical data from 8,100 cal a BP to present. 422 

We emphasise to future users of SCUBIDO that they should also conduct a qualitative analysis 423 

of the µXRF-CS data and environmental interpretation prior to using SCUBIDO to ensure that 424 
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their record is climate sensitive and has not been subjected to significant alterations from 438 

human activity.  439 

 440 

3.1 Data set up 441 

One of the most fundamental considerations for any type of palaeoclimate reconstruction is the 442 

choice of climate variable to reconstruct (e.g. annual mean temperatures, precipitation, growing 443 

season) given that different proxies are sensitive to a number of climate drivers (Sweeney et 444 

al., 2018). The SCUBIDO modelling approach can be easily adapted to reconstruct different 445 

climate parameters with overlapping instrumental data. However, it is important to note that 446 

not all lakes are responsive to every climate parameter of interest and thus the outputs may not 447 

be useful. For example, we attempted to run SCUBIDO on the Diss Mere µXRF-CS data to 448 

reconstruct both annual mean temperature and precipitation. However, the SCUBIDO output 449 

for precipitation from Diss Mere was not successful as the reconstruction was completely flat, 450 

not resembling precipitation variability and there was no predictive power between the 451 

elements and instrumental precipitation. Annual mean temperature on the other hand worked 452 

well, which support the temperature signal recorded in the µXRF-CS data during the Holocene 453 

(Boyall et al., 2024). Another point to highlight at this stage is that we run the Bayesian model 454 

using a multivariate dataset made of the elements measured by the µXRF scanner. We do so to 455 

avoid any bias through time as the climate-proxy relationship might not be stable over time. 456 

SCUBIDO also includes the relationship between elements (covariance) to deal with this issue. 457 

As the top of the µXRF-CS data (most recent period of sediment accumulation) begins at 1932 458 

CE, a long-term instrumental temperature data set was required to get a sufficient length for 459 

the model to learn about the climate - proxy relationship. We therefore rely on the Hadley 460 

Central England Temperature (HadCET, Met Office) data which is the longest monthly 461 

temperature dataset available. However, it is worth noting that whilst this is the best 462 

instrumental record that we could use for Diss Mere given the long record, the meteorological 463 

stations used in this period of the record are not proximal to the site, and therefore some of the 464 

local temperature changes which are recorded in the proxy record, may not have been recorded 465 

by the meteorological station or vice versa.  466 

 The first step was to divide the data into two: the modern calibration dataset (containing 467 

an age index (𝑡), modern µXRF-CS data (𝑋𝑅𝐹') and the overlapping instrumental climate 468 

data	(𝐶')), and then the fossil data (containing the age (𝑡) and µXRF-CS data for the remaining 469 

data (𝑋𝑅𝐹()). As there are many µXRF-CS data points per year we linearly interpolated the 470 
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data to resample to annual means and align the 𝑋𝑅𝐹' dataset with the corresponding year in 480 

the HadCET dataset. We begin the calibration dataset at 1700 CE, and the top of the µXRF-CS 481 

data finishes at 1932 CE, and because of a short gap where there was no  µXRF-CS data present, 482 

it meant that the calibration dataset was 193 years long. Temperatures were converted into 483 

anomalies from the mean of the calibration period as this not only removes the arbitrary mean 484 

of the temperature reconstruction making the data more comparable, but it can also better 485 

constrain the climate values that the model can predict (see Supplementary Information 2). The 486 

fossil data was provided in its original temporal resolution ranging between 5 data points per 487 

year to >25 data points per year depending on the sediment accumulation rate. This resulted in 488 

59,461 time slices covering the period between 8,100 cal a BP and 1699 CE.  489 

We check the model convergence using R̂ values (Gelman and Rubin., 1992; Brooks 490 

and Gelman., 1998) and evaluate the performance of the model using both in sample and out-491 

of-sample posterior predictive calibration checks (Gelman et al., 2008). We detail this analysis 492 

in more detail below.  493 

 494 

3.2 Model fitting  495 

The full model was run within the SCUBIDO R package. This package depends on JAGS (Just 496 

Another Gibbs Sampler, Plummer, 2003) through the R package ‘R2jags’ (Su and Yajima, 497 

2021) to fit the modern calibration model and part of the fossil modelling stage. We ran the 498 

calibration model for 100,000 iterations and ignored the first 40,000 runs to allow the model to 499 

settle. We repeated this process four times using different starting values to run the MCMC in 500 

parallel. The R̂ values were consistently <1.05 indicating that the algorithm had successfully 501 

converged during the Markov Chain Monte Carlo (MCMC) process (Gelman and Rubin., 1992; 502 

Brooks and Gelman., 1998. Vehtari et al., 2021; Su and Yajima, 2021). Fig. 1 shows the 503 

quadratic relationships between the individual µXRF-CS elements and temperature in the 504 

calibration period.  505 

  506 

 507 

 508 

 509 

 510 

 511 
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 538 

In more conventional approaches where µXRF-CS data is used to qualitatively 539 

reconstruct climate, only one element, or pair of elements (in the form of a ratio) is used at a 540 

time to reconstruct climate (for example Zander et al., 2024). This would be equivalent to our 541 

approach if had we used a diagonal structure for ∑ (Equation 4). Such a diagonal structure 542 

treats every element as independent and therefore may falsely reduce the uncertainty in the 543 

resulting reconstructions. However, the novel contribution of our model is that it includes a 544 

multivariate response regression approach that also models the covariances between the 545 

elements, and so we argue produces more realistic, but also more uncertain reconstructions. 546 

This explains why Fig. 1 shows only weak relationships between the individual 11 elements 547 

and temperature. When each of these relationships are combined in the multivariate response 548 

regression it provides a more precise posterior estimate of climate. 549 

The fossil reconstruction stage for Diss Mere used 2,000 iterations and ignored the first 550 

200 runs and repeated this process four times. Fewer iterations are required for this stage for 551 

convergence as the model complexity is substantially reduced compared to the modern 552 

calibration stage as MDPs are used. R̂ values were <1.05 indicating satisfactory convergence 553 

Figure 2: Relationship between the µXRF-CS elements and instrumental annual mean temperature from the 
calibration period. Individual µXRF-CS elements plotted against the instrumental climate anomaly data for each 
year. The quadratic relationships are represented by the lines with the solid lines representing the uncertainty 
ranges of 50%, 95% (dotted), 75% (dashed). Note that this modelling approach uses multivariate response 
regression however these plots display the individual response between each element and climate, hence the weak 
relationships plotted.   
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of the algorithm. The full reconstruction using all the SCUBIDO functions took approximately 558 

16 hours on a standard computer using a single core.  559 

 560 

3.3 Model validation 561 

As a more rigorous test of the model performance, and to maximise the use of the palaeoclimate 562 

reconstructions for climate services and model calibration, we further test its uncertainty 563 

calibration properties using an out-of-sample five-fold cross validation routine (Mauri et al., 564 

2015; Chevalier et al., 2020). We removed 20% of the modern data and re-fit the full model to 565 

obtain posterior estimates of the climate variable for years which the model has not seen during 566 

the training phase. We repeated this step five times such that each observation year is removed 567 

once. We can then compare these out-of-sample predicted climate values with the true values 568 

in the modern data and see how often their uncertainty ranges cross with the true values. For 569 

example, in an ideal model 95% of these values would lie within the 95% interval and 50% in 570 

the 50% interval etc. Though in real-world data, the estimated proportion inside the credible 571 

intervals may be slightly higher or lower, out-of-sample evaluation of climate reconstructions 572 

seems not to be a common feature in the literature, but we would strongly advocate this in the 573 

future, especially if a goal is for the reconstructions to be used beyond the palaeoclimate 574 

community to, for example, help constrain climate model simulations. 575 

The results of the five-fold cross validation showed that in 97.4% of the 193 calibration 576 

temperatures, the reconstructions fell within the 95% credible interval (Fig. 2). The coverage 577 

percentage for each individual fold ranged by 5.4%, from 94.6% to 100%. This demonstrates 578 

the validity of the modelling approach and shows that most of the temperature variability 579 

observed in the instrumental record is captured within the confidence intervals of the 580 

reconstructed climate.  581 
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 596 

 597 

The coefficient of determination (r2) for the true and reconstructed temperature is 0.42 598 

(P = < 0.001), which suggests that there is some skill in the model prediction of the median 599 

values, however it does suggest that not all the median values perfectly align with the true 600 

instrumental temperature. This is not uncommon for palaeoclimate reconstructions, especially 601 

as we are comparing proxy data that can also be affected by non-climate factors, such as human 602 

activity and internal lake processes. In addition we are using instrumental temperature data 603 

which is not located proximal to the lake and contains large uncertainties, especially in the 604 

earliest years of the HadCET dataset (Parker et al., 2010). Nevertheless, the coverage 605 

percentage and overall good fit of the model can provide a reasonable assumption of the 606 

validity of this approach. 607 

Section 4.0 Annually resolved annual mean temperature reconstructions in 608 

Europe 609 

4.1 Case site 1: Diss Mere, Central England 610 

 611 

Figure 2: Results from the out-of-sample validation with true instrumental temperatures and reconstructed 
temperatures. Coloured dots represent the temperature values and error bars represent the predicted 
temperature’s 95% uncertainty interval for each of the five folds. Note that the red dashed line is not the 
regression line and instead reflects the 1:1 relationship between true and reconstructed temperatures. Formatted: Indent: First line:  1.27 cm
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The reconstruction of annually resolved temperatures for the past 8,100 cal a BP given the 639 

µXRF-CS from Diss Mere using Bayesian inference is presented in Fig. 3. The median 640 

Holocene temperature reconstructed from Diss Mere is 9.65 °C and has a maximum range of 641 

1.68 °C with temperature anomalies between -1.26 °C and 0.42 °C (7.90°C and 9.58 °C 642 

absolute temperatures). Most of the temperatures before ca. 2,000 cal a BP are cooler than 643 

present (9.16 °C) with only isolated centennial-scale periods where temperatures are warmer 644 

(Fig. 3). The centennial to interannual variability is, however, reduced in the last two millennia, 645 

which may be reflecting the switch to non-varved sediments at this time. The first millennium 646 

of the common era is slightly warmer than today remaining similar to present (Fig. 3).  647 

 648 

4.2 Case site 2: Lake Nautajärvi, Southern Finland 649 

We have applied the SCUBIDO approach to reconstruct Holocene annual mean temperature 650 

from Nautajärvi, a lake in southern Finland with a different lithology and sedimentation 651 

processes than Diss Mere. Lake Nautajärvi is also a varved lake but shows uninterrupted 652 

laminated sediments from the early Holocene to present (Ojala and Alenius, 2005). Except for 653 

the first 200 years of the record (9,852 – 9,625 cal a BP) when varves are thick (ca. 5 mm) due 654 

to a high detrital input during the formation of the lake (Ojala and Alenius, 2005; Ojala et al., 655 

2008b), the sedimentation rate at Nautajärvi (0.2-1.6 mm/year) is similar to the varve thickness 656 

Figure 3: Annually resolved temperature reconstruction from Diss Mere. Dark green line represents the 
median reconstruction with 50th percentile and 95th percentile in darker green and light green, respectively. 
The data is presented in anomalies for the UK long-term average 1991-2020 and the dashed grey line marks 
the centred mean of 0 °C using this period.  

Deleted: 97 657 
Deleted: 5658 
Deleted: 0659 
Deleted: 9660 
Deleted: 66661 
Deleted: 65 662 
Deleted: Inclusive of the credible intervals, the 663 
reconstructed Holocene variance is slightly greater than the 664 
instrumental period with a standard deviation of 0.63 °C for 665 
the reconstruction and 0.61 °C for the HadCET instrumental 666 
temperature. …667 
Deleted:  similar to present time variability668 

Deleted: stratigraphy 669 

Deleted: o670 
Deleted:  an671 

Deleted:  – 672 



 18 

of Diss Mere (0.1-1.4 mm/year). Analysis of both the sediments and the µXRF-CS data from 673 

Nautajärvi revealed that the lake, and subsequent sediment record is responsive to climate 674 

variability (Ojala et al., 2008a; Lincoln et al. 2025) thus is a good record to also apply this 675 

Bayesian methodology on. Table 1 summarises the characteristics of the modelling approach 676 

applied on lake Nautajärvi varved sediment sequence for full details about the µXRF-CS data 677 

from Nautajärvi please refer to Lincoln et al. (2025).  678 

 679 
Table 1. Summary table of the Lake Nautajärvi data used for the Bayesian reconstruction. More information about the 680 
µXRF-CS instrument set up is presented in Lincoln et al. (2025). 681 

µXRF-CS details 

µXRF-CS set up 

µXRF-CS elements used Al, Si, S, K, Ca, Ti, V, Cr, 
Mn, Fe, Cu, Rb, Sr, and Zr 

Instrument set up 

Sediments were scanned 
with a dwell time of 6 s, 
conducted using a Rh tube 
Rh-X-ray source operated at 
30 kV and 60 mA.  

Calibration data 
Meteorological data 

Temperature data for 
Nautajärvi was from 16 
weather stations within a 
200 km radius from the lake 
obtained gathered using the 
‘rnoaa’ package 
(Chamberlain et al., 2024). 
Annual mean temperature is 
used. Data preservation from 
the interwar years (1918-
1945) is limited and/or 
missing thus these have been 
excluded from the 
calibration dataset 
(Supplementary Fig. 2) 

Age range -70 to 68 cal a BP 
Number of time slices 102  

Reconstruction data Age range 69 to 9829 cal a BP 
Number of time slices 16418 
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Figure 4 shows the annual temperature reconstruction from Nautajärvi for the past ca. 687 

9,800 years overlaid on top of the Diss Mere reconstruction. The average Holocene temperature 688 

reconstructed from Nautajärvi is 5.1 °C (Supplementary Fig. 4) and had a range of 1.60 °C 689 

between 4.22 °C and 6.03 °C (-0.39 °C and 1.22 °C, anomalies) which is within the range of 690 

variability observed during the instrumental period. Overall, the reconstructed Holocene 691 

temperatures at Nautajärvi is cooler than present, except for the period between ca. 7,000 and 692 

4,000 cal a BP where temperatures are warmer and experience greater variability.  693 

 694 

The comparison of Nautajärvi and Diss Mere through the Holocene shows slightly 695 

different multi-millennial temperature evolutions where temperatures in England steadily 696 

increase whereas Finland reaches maximum temperatures in the mid-Holocene and then 697 

decreases thereafter (Fig. 4). We discuss millennial-scale trends in the next section when we 698 

compare our reconstructions with published low-resolution Holocene temperature 699 

reconstructions. On multi-decadal to centennial timescales, there is a good agreement between 700 

the anomaly values at both sites showing similar trends and amplitude of change, especially 701 

with the variability during the mid-Holocene from ca. 4,000 to 6,500 cal, yr BP (Supplementary 702 

Fig. 5). Larger variability in Diss Mere (England) prior to 6,500 cal yr BP compared to 703 

Nautajärvi (Finland) might be reflecting different regional climate sensitivity during a period 704 

when the instability of the Laurentide ice sheet and hydrological changes in the Baltic Sea 705 

Figure 4. Annually resolved temperature reconstruction from Nautajärvi for the past ca 9,800 years (pink) overlaid 
on Diss Mere’s reconstruction (green). Dark pink line represents the median reconstruction with 50th percentile and 
95th percentile in darker pink and light pink, respectively. The anomalies are calculated with reference to the 1991-
2020 mean from the instrumental data. The grey dashed line marks the 0 °C mean. 
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region was still having an important role on the reconfiguration of the climate system and 714 

spatial distribution of climate patterns in the Northern Hemisphere (Yu and Harrison, 1995; 715 

Wastegård, 2022). 716 

 717 

4.3 Palaeoclimate comparisons  718 

Neither Diss Mere nor Nautajärvi have previously published reconstructions of annual mean 719 

temperature to compare to and test whether the temperatures produced from the SCUBIDO 720 

modelling approach are sensible on longer timescales. Whilst there have been some 721 

publications from these lake records which discuss climate variability, the proxies discussed 722 

are either not interpreted as temperature (e.g. summer varve thickness from Diss Mere, Martin-723 

Puertas et al. 2023), reflect temperature in the summer season only (e.g. the Caclr record from 724 

Diss Mere, Boyall et al. 2024), or reconstruct the Growing Degree Day (e.g. from Nautajärvi 725 

in Ojala et al. 2008a) and thus may not capture the same variability and trends as our annual 726 

mean temperature reconstructions. Therefore, we compare our reconstruction results with large 727 

spatial multi-proxy reconstructions (Temp12k, Kaufman et al., 2020a) and data assimilation 728 

results (LGMR, Osman et al., 2021; Holocene-DA, Erb et al., 2022) for the same period (Fig. 729 

5). We choose these reconstructions to compare with because they are all based on large-scale 730 

data compilations utilising a range of models and proxy types. The Temp12k and Holocene-731 

DA reconstructions both use the Temperature 12k proxy database (Kaufman et al., 2020b) with 732 

the Temp-12k reconstruction using a multi-method ensemble to reconstruct temperatures at a 733 

centennial resolution (Kaufman et al., 2020a) and the Holocene-DA using an updated version 734 

of this dataset in a data assimilation framework to combine with transient climate simulations 735 

in order to get a reconstruction of temperature at a decadal resolution (Erb et al., 2022). On the 736 

other hand, the LGMR reconstruction uses only marine proxy records in a data assimilation 737 

approach to produce a reconstruction of temperature at a multi-centennial resolution.  738 

The multi-millennial trends in the reconstructions are best demonstrated with both Fig. 739 

5a and b showing the clear evolution of temperatures through the Holocene. Fig. 5a shows the 740 

slope from linear models conducted on the different reconstructions to explore the evolution of 741 

temperature through time. The Diss Mere, Holocene-DA (Erb et al., 2022), and LGMR (Last 742 

Glacial Maximum Reanalysis, Osman et al., 2021) linear models all demonstrate an 743 

amelioration of temperature through the Holocene with similar rates of warming, especially 744 

during the early to mid-Holocene where there are almost no differences between the records 745 

(Fig. 5a). The Temp-12k reconstruction from Kaufman et al. (2020a) and the Nautajärvi 746 
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reconstruction from this study deviate from the general increasing trend observed in the other 751 

reconstructions and instead show an overall decrease in temperature from the early to late 752 

Holocene (Fig. 5a). These records have a more definitive early Holocene Thermal Maximum 753 

(HTM) with cooling thereafter in comparison with the other reconstructions, hence the linear 754 

model describing a general decrease in temperature through time. As part of the current 755 

discussion on the Holocene temperature conundrum (Liu et al., 2020), the differences in 756 

temperature evolution between the reconstructions may be a factor of a seasonal bias, which 757 

has been already noted for the Temp-12k reconstruction reflecting mostly summer conditions 758 

and/or spatial imbalances in proxy distributions, especially in the higher latitudes (Bova et al., 759 

2021; Erb et al., 2022).  760 

The amplitude of variability from the SCUBIDO-produced reconstructions from this 761 

study is much larger than the global reconstructions. Ultimately this is because the LGMR and 762 

Temp12k have low temporal resolutions causing the reconstruction to be smoothed, and 763 

contains a range of proxy types. Whilst the Holocene-DA reconstruction technically has data 764 

every 10 years, as mentioned in their study, the reconstruction does not contain robust decadal 765 

information from the proxy records and is achieved instead by utilising both proxy and transient 766 

models together and thus the low amplitude is still inherent from the low-resolution proxy data 767 

used. 768 
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 774 

4.3.1 The last two millennia 775 

Reconstructing palaeoclimate for the Common Era (past 2,000 years) has been the focus of 776 

many climate studies (e.g. Smerdon and Pollack, 2016; PAGES2k Consortium, 2017a; Tardif 777 

et al., 2019; Anchukaitis and Smerdon, 2022). To test the Bayesian reconstructions from this 778 

Figure 5: Comparison between different Holocene temperature reconstructions in anomalies. Note that the reference 
period for all these reconstructions is the mean between 2000 to 0 cal a BP. a) linear relationships between the 
reconstructed temperature and time for Diss Mere (green) Nautajärvi (purple), LGMR (Osman et al., 2021) (blue), 
Temp12k (Kaufman et al., 2020) (Yellow) and the Holocene-DA (Erb et al., 2022) (orange). b) The reconstructions 
from the above studies with Diss Mere and Nautajärvi resampled to 100 years to explore the centennial scale variability 
and match the resolution of the other reconstructions. The LGMR and Temp12k are presented at a 200-year. The 
envelopes for each line in the respective colours represent the uncertainty for each reconstruction. c) a focus window 
on the common era with the Diss Mere temperature reconstruction with the LMR (Tardif et al., 2019) (orange) for a 
grid 5°W:15°E, 50:60°N. The solid bold lines are at 10-year decadal moving average whereas the transparent envelopes 
are the original annual resolution.  
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study through a period of increased anthropogenic disturbance, we compare the reconstructions 781 

to the Last Millennium Reanalysis (LMR, Tardif et al., 2019) (Fig. 5c). Whilst the LMR and 782 

the Bayesian reconstructions are annual, we decide to compare at a 10-year resolution to reduce 783 

noise and explore the main decadal-scale trends between each record. Despite increased 784 

anthropogenic disturbance to the lake system over the past 2,000 years at Diss Mere (Boyall et 785 

al., 2024), and a disruption to the proxy signal and lake functioning, the comparison between 786 

the overall trend of the LMR and Bayesian temperature reconstructions are good and show 787 

similar temporal evolutions (Fig. 5c).  788 

In the first millennia (0-1000 CE), the LMR is much less variable than the Bayesian 789 

reconstructions, probably attributed to the very low number of proxy records used for the first 790 

few hundred years of the reconstruction (Tardif et al., 2019). Between ca. 500 and 1000 CE 791 

each of the reconstructions are very similar (Fig. 5c) and following 1000 CE temperatures 792 

decrease. There are some periodic increases in temperature at around 1100 – 1300 CE, mostly 793 

seen at Nautajärvi, but these might be reflecting the Medieval Climate Anomaly as they begin 794 

to decrease across all reconstructions at ca. 1300 CE.  795 

The good consistency between the records highlights that despite the different sediment 796 

varve characteristics, varve formation processes, and interactions between sedimentation and 797 

human activity, the Bayesian approach is able to reconstruct a quantified, local to regional 798 

climate record from the µXRF-CS.  799 

5.0 Conclusions and recommendations for future use of SCUBIDO 800 

This study presents the first attempt at reconstructing quantitative annual mean temperatures 801 

from multivariate µXRF-data from sediment records using Bayesian inference. Several 802 

methodological decisions were made when building SCUBIDO which we believe can help 803 

contribute to the advancement of climate reconstructions within the community. The most 804 

important choice was to use Bayesian inference to not only get a single temperature estimate 805 

at each time point, but to also get a full posterior distribution to properly quantify uncertainties. 806 

In addition, we designed the model to include all geochemical elements and have SCUBIDO 807 

model their covariances instead of relying on prior assumptions about relationships, and the 808 

final choice was to synthesise SCUBIDO into an R package for the community. We believe 809 

that this was the best way to be as user friendly as possible as we think others could find this 810 

approach interesting and help make new annually resolved palaeoclimate reconstructions.  811 

The ability of Bayesian in handling various types of data, changing 812 

timesteps/resolutions, and gaps within datasets has been utilised in this study, for example, 813 
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there are periods within both the µXRF-CS records from Diss Mere and Nautajärvi which have 835 

short gaps and periods where the sedimentation rates are variable resulting in changing time 836 

steps. However, this was easily mitigated against by using a Bayesian framework. 837 

In this paper we apply SCUBIDO to two proxy records to reconstruct Holocene annual 838 

mean temperature in Europe and the results showed consistency with previously published 839 

paleoclimate reconstructions on a multi-millennial timescale. However, given the model and 840 

the high-resolution proxy data from this study it provides a much more detailed overview of 841 

temperature evolution through the Holocene by increasing the resolution to annual at a single 842 

site. Of course, the records we compared to (Holocene-DA, Temp12k, and LGMR) have the 843 

advantage of also being spatial reconstructions and not just temporal like in our study. The goal 844 

would be for more people in the palaeoclimate community to use SCUBIDO and thus produce 845 

more reconstructions of an annual resolution to then be incorporated into these large data 846 

compilations.   847 

Whilst we encourage other groups to use this approach on their µXRF-CS records, there 848 

are some precautions which should be taken since SCUBIDO does not provide a physical 849 

model between the climate and geochemical sediment composition. Like all palaeoclimate 850 

reconstructions using different statistical techniques, there is still some assumption that the 851 

proxy-climate relationship does not deviate too much through time to what is observed in the 852 

calibration period. This is important to consider when sites have experienced substantial 853 

alterations in human activity or other depositional changes, and we recommend to carefully 854 

check that the major shifts in the climate reconstruction are explained from climate or rather 855 

be explained by changes in the sedimentology (e.g. transitions from varved to non-varved 856 

deposits and changes in the varve microfacies). Because of this, we encourage users to 857 

qualitatively interpret their µXRF-CS records to see whether the lake remains sensitive to 858 

climate through time, as well as finding the climate parameter to which the lake is sensitive to 859 

and be cautious of the results if there are substantial human-induced changes to the µXRF-CS 860 

record. 861 

Finally, because µXRF-CS data is highly site-specific and sensitive to local systems, it 862 

is not possible to calibrate one site and apply that calibration period on another µXRF-CS lake 863 

record which may be common in other proxies e.g. pollen (Parnell et al., 2016).  864 

Future developments of the SCUBIDO approach should include integrating age 865 

uncertainty into the model as currently age ensembles are not used. This means that at present 866 

lake data with stronger chronological age models would likely produce better reconstructions, 867 
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as aligning the calibration instrumental climate data with the correct layers of µXRF-CS data 874 

is important. This is an important consideration for future users who do not have a varve 875 

sequence or a tight chronology in their lake records. Another potential avenue for future 876 

development using SCUBIDO is to incorporate additional meteorological datasets and model 877 

them alongside temperature. Since other meteorological processes likely contribute to the noise 878 

in the reconstruction, capturing their joint dependencies may lead to improved reconstruction 879 

accuracy. 880 
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page: https://github.com/LauraBoyall/SCUBIDO. The µXRF-CS data for Diss Mere can be 891 

found here:  https://zenodo.org/records/15168266, and Nautajarvi on Zenodo here: 892 

https://zenodo.org/records/14645779. The data used to compare the Diss Mere and Nautajärvi 893 

reconstructions to in Figure 5 are found at https://www.ncei.noaa.gov/access/paleo-894 

search/study/29712 for the Temp12k reconstruction (Kaufman et al. 2020a), here 895 

(https://zenodo.org/records/6426332) for the Holocene-DA reconstruction from Erb et al. 896 

(2022), the LGMR reconstruction (Osman et al. 2021) can be found at 897 

https://www.ncei.noaa.gov/access/paleo-search/study/33112, and finally the LMR of Tardif et 898 

al. (2019) can be found at: https://atmos.washington.edu/~hakim/lmr/. The instrumental 899 

temperature dataset used to calibrate Diss Mere can be downloaded from: 900 

https://www.metoffice.gov.uk/hadobs/hadcet/data/download.html and the data to calibrate 901 

Nautajärvi was downloaded using the rnoaa R package (https://github.com/ropensci/rnoaa). 902 
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