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Abstract. Uncertainty in paleoclimate time series is inherent to the complex biological and physical processes involved in 

forming and archiving them in the environment for centuries or longer. The timescale-dependency of this uncertainty is often 

referred to as “noise” of a particular color based on similarities between the power spectrum of a timeseries and the 

electromagnetic spectrum of light. For example, “white noise” equally affects all timescales, where “red noise” dominates only 10 

on long timescales, similar to longwave red light. In paleoclimate research, the frequency characteristics of proxy noise are 

often assumed based on first principles rather than estimated directly, which risks either inflating or underestimating error at 

particular frequencies. Here, we synthesize several studies that use a common method to estimate the spectrum of error in ice 

core, coral, and tree-ring data. We conceptualize how time-scale dependent noise in proxy time series is created through the 

archive formation and data processing. Our results suggest that the colors of proxy noise are archive- specific, with white noise 15 

dominating in depositional archives such as ice-cores and marine sediment cores, while red noise is likely more common in 

biological archives such as tree rings and corals. Our aim is to clarify these concepts and provide tools for assigning noise 

terms in proxy system models, data assimilations, and other experiments. 

1 Introduction 

Paleoclimate proxy records archive past climate information via biophysical or depositional pathways and preserve it in rings, 20 

layers or strata. The processes that create these records integrate non-climatic variability alongside the climate signal either 

during the archiving process, or afterwards as the physical record is modified over time (Evans et al., 2013; Jones 2009; Cook 

1987). Recovering paleoclimate information from these archives requires sophisticated data processing and modeling 

techniques intended to extract climate-related variance from noisy time series (von Storch et al., 2004; Cook & Kairiukstis 

1990; Hughes & Ammann 2009; Dee et al., 2016). Recognizing that these methods may be imperfect, the challenge lies in 25 

minimizing and rigorously quantifying the impact of non-climatic variance on the signal of past climate variability. 

 

Modification of proxies can either add variance by incorporating spurious or stochastic variations, or remove variance through 

smoothing across observations (Fig. 1). Technically, we regard a process that adds variance on top of an existing climate signal 

as a “noise process”, whereas the removal of variance constitutes error, but not ‘noise’ per se. Processes that remove variance 30 

are typically deterministic to some extent. For example, two ice-core records with similar physical properties are likely to have 
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been similarly affected by isotopic diffusion (Whilans & Grootes 1985). It is possible to correct individual records for 

deterministic errors if the process is well-understood (Shiffelbein 1985; Meko 1981; Dolman et al., 2021a; Shaw et al., 2023). 

By contrast, additive noise is often independent between sites, generating 

differences between individual records as well as to the true climate signal. 35 

Observation and measurement errors are best represented by uncorrelated 

noise, unless they represent systematic bias, for example due to a change in 

the measurement apparatus. Because these types of noise are independent, 

averaging, or “stacking” individual records reduces noise while retaining the 

climate signal.  40 

 

Processes that modify climate signals in proxies result in specific timescale-

dependent uncertainties. For example, tree rings contain correlated trends as 

a result of age-growth effects (Fritts 1976, Speer 2010). Age-growth trends 

create long-term mismatches between climate and tree-ring data, such that 45 

tree-ring timeseries are typically ‘detrended’ before they are used in 

reconstructions (Cook & Kairiukstis 1990; Melvin & Briffa 2008; Melvin & 

Briffa 2014 a,b). Ice cores or sediment records may be modified by physical 

smoothing processes such as isotopic diffusion or bioturbation within the 

deposited layers (Johnson et al., 2000; Whillans & Grootes 1985; Hutson 50 

1980; Peng & Broeker 1984). Smoothing dampens the climate signal on fast 

timescales, becoming less influential on longer timescales (Schiffelbein & 

Hills 1984; Laepple & Huybers 2013; Münch & Laepple 2018; Bothe et al., 

2019).  

 55 

Proxy error can be characterized in the spectral domain and is often referred 

to using colors by loose analogy to the frequency spectrum of light (Fig 2). 

The relationship between power spectral density and frequency is often 

summarized using a power-law scaling exponent β (Box 1) (Vautard & Ghil 

1989, Fraedrich & Blender 2003; Hébert et al., 2021). A ‘white’ noise process 60 

implies that the power spectral density is distributed evenly across the 

frequency space (β=0), similar to the spectrum of white light. White noise is 

uncorrelated in time, and is the simplest and most commonly-applied noise 

model in paleoclimate research (Fisher et al., 1985, Amman & Whal 2007; 

von Storch et al., 2004; Mann et al., 2005, Lee et al., 2008; Smerdon et al., 65 

Figure 1: Conceptual diagram showing 
integration of different types of timescale-
dependent proxy errors alongside climate 
signals via stochastic noise and subtractive 
smoothing. 
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2010). By contrast, processes with relatively more low-frequency variability are termed ‘red’ noise, by analogy to long-wave 

red light, represented with a positive slope value (β>0), or occasionally ‘pink noise’ in the specific case when β=1. Red or 

pink noise implies autocorrelated errors that affect low-

frequencies at a greater magnitude. (Mann et al., 2007; von 

Stoch et al., 2009; Smerdon 2012; Zhu et al., 2023). Finally, 70 

blue noise refers to processes with relatively higher variability 

at high frequencies (β<0). Blue noise is characterized by an 

anti-correlated structure, implying rapidly vanishing effects 

with increasing timescale (Mann & Rutherford 2002; Mann et 

al., 2007).  75 

 

The spectra of proxy noise can be either modeled based on 

mechanistic understanding, or empirically estimated from 

data. In cases where the physical processes affecting proxies 

are well-constrained, the power spectrum of the noise can be 80 

estimated using parametric models based on biophysical mechanisms (Dee et al., 2016; Dee et al., 2017). The effects of additive 

noise from measurement error and under-sampling can also be incorporated into mechanistic models of uncertainty 

(Schiffelbein 1985; Kunz et al., 2020, Dolman et al., 2021b). Proxy errors can also be estimated empirically by comparing 

time series to instrumental records or climate models (Ault et al., 2013; Franke et al., 2013; Reschke et al., 2019). However, 

in the former case, noise estimates are restricted to decadal and sub-decadal time scales for which we have instrumental data. 85 

The latter case assumes that the medium- and low-frequency behavior of the climate system is correct in the models, and thus 

that discrepancies reflect proxy noise rather than uncertainty in climate models (Deser et al., 2012; Maher et al., 2020; Laepple 

et al., 2023).  

 

Alternatively, estimation of noise spectra can be done with relying solely on proxies by exploiting the spatial correlation of 90 

climate signals in co-located records. Below, we present noise estimates derived using a simple empirical approach that 

partitions shared signal from independent variance on all time scales (Münch & Laepple 2018) (Appendix A).We show results 

from three studies that have applied this approach  to ice core (Münch & Laepple 2018), tree ring (McPartland et al., 2024), 

and coral data (Dolman et al., in prep). The tree-ring and coral data were sourced from global databases compiled by the Past 

Global Changes (PAGES) initiative (PAGES Consortium 2017; Walter et al.,, 2023), and the ice core data represent two large 95 

clusters of cores from Antarctica and Greenland (Graf et al., 2002; Weißbach et al.,, 2016; Hörhold et al., 2023) (Appendix 

B). By synthesizing conventional knowledge, evidence from existing literature, and original analysis we aim to deepen a 

collective understanding of the behaviour of proxy noise and its implications for recovering climate signals from paleo data.  

 

Box 1: Summarizing the timescale-dependency of proxy 
noise using spectral power-laws. 

Power-law scaling in frequency space
The spectral exponent β summarizes the  
      relative contribution of high- and low-  
      frequencies to the total variance.
The power spectral density S(ω) is assumed 
     to approximately follow a power-law with 
     frequency ω such that S(ω) ∝ ω-β  
β is typically expressed as the negative slope 
     of a linear regression on a log-log plot of 
     the power spectrum. 
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 100 
Figure 2: Spectral noise models with an analogy to colored light. Left panels show a simulated time series with the noise spectra 
shown in the right panels. Top: white noise with no correlation with timescale (𝞫 = 0). Middle: red noise (sometimes referred to as 
pink noise) with a positive relationship to timescale (𝞫 = 1). Bottom: blue noise with a negative relationship to timescale (𝞫 = -1). 
Note that 𝞫 values for noise spectra are calculated as the slope of a linear model on a log-log plot, and expressed as 𝞫 = slope*-1, 
following the convention where 𝞫 describes the relationship between power and timescale. 105 

2 The colors of proxy noise 

We find that tree rings and corals both exhibit clear red noise spectra with positive scaling exponent β values of 0.8 and 0.5 

respectively (Fig 3; a, b), such that the power of the noise increases with time scale. As the noise increases more than the 

climate signal, this leads to a decline of the signal-to-noise ratio with time scale (Fig 3; d, e). Tree-ring and coral records result 

from the growth or accretion of layers by an individual organism over time such that biological life history may affect proxy 110 

formation. Cambial age impacts both tree-ring width and density, such that detrending to remove juvenile age trends is a near 

universal practice in dendrochronology (Cook & Kairiukstis 1990). Even after detrending, residual age effects could explain 

the persistent low-frequency bias in tree-ring records seen here, and observed in other studies (Franke et al., 2013, Ault et al., 

2013). Similarly, coral aragonite records might be affected by changes in the biology of individual or descendent polyps over 

time which may result in a slow drift in the temperature response of the proxy and appear as low-frequency variability, possibly 115 
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related to changes in the calcification process (Lough 2004), or persistent baseline shifts in trace element ratios following 

thermal stress events (D’Olivo & McCulloch 2017; D’Olivo et al., 2019). By extension, red noise might also be a feature of 

bivalve and sclerosponge chronologies, which contain similar age-growth trends to those found in trees (Jones 1983; Rypel et. 

al 2008; Hollyman et al., 2018; McCulloch et al., 2024). In general, records composed of repeated measurements made on 

single long-lived organisms through time are susceptible to ontogenetic effects, the legacies of past disturbances, or slow 120 

changes in the behaviour of the sensor.  

 

The stacks of ice cores from both Greenland and Antarctica that we analyzed show a high white noise level where β is 

approximately equal to zero (Fig 3 e, f). As the climate variations become more pronounced on longer time scales, this leads 

to an increasing signal-to-noise ratio with time. We posit that proxies that are primarily the result of deposition, rather than 125 

growth or accretion primarily contain white noise. Precipitation intermittency and depositional redistribution in ice cores result 

in adjacent measurements potentially representing water from different precipitation events (Laepple et al., 2018; Casado et 

al., 2020; Zuhr et al., 2023). Similarly, in marine sediments where foraminifera or diatoms are deposited from the water 

column, each sample represents a new set of individuals such that biological effects are uncorrelated between measurements. 

Therefore, noise in sediment records is also predominantly white with a noise level decreasing as more individuals are 130 

measured (Kunz et al., 2020, Dolman et al., 2021). In both ice core and sediment core records, seasonal depositional cycles 

are much stronger than any interannual or even millennial climate change and the sparse subsampling of the seasonal signal 

leads to aliasing of independent noise within the signal of annual variation (Kunz et al., 2020).  

 

We identified fewer examples of blue noise processes in the paleoclimate literature. Because its effects diminish quickly with 135 

time, blue noise does not introduce error past fast time scales. An example of a true blue noise process is the infilling of troughs 

on ice sheets as wind redistributes snow causing blue noise in noise in annual layer thickness records from ice-cores (Fisher et 

al., 1985). Blue noise models have occasionally been used in proxy system models to account for a variety of potential types 

of error affecting high-frequencies (Mann et al., 2007; Mann & Rutherford 2002). 

 140 

Like blue noise, smoothing processes predominantly affect high frequencies and become less significant with timescale. 

Biological memory in trees, diffusion in ice cores, and bioturbation in sediments are all examples of smoothing processes that 

lead to correlated errors between the climate and the proxy signal which, in theory, can be accounted for using deterministic 

modeling (Matalas et al., 1962; Berger et al., 1977; Meko 1981; Ruddiman et al., 1980; Whillans and Grootes, 1985). Given 

such a model, the smoothing effect can be reversed, as applied in our example to ice core data to reverse the effects of diffusion 145 

(see Appendix A). If the smoothing process affects the climate signal and the proxy noise equally during deposition or 

accretion, the signal-to-noise ratio (SNR) is unbiased at all timescales, regardless of whether or not a correction for the 

smoothing effect is applicable, as is the case for diffusion in ice cores. However, when noise is introduced after smoothing 

(e.g. measurement noise), the attenuated climate signal on the high-frequency side will be masked by a relatively stronger 
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noise level , biasing the SNR spectrum downwards toward high frequencies. In any case, knowledge about and accounting for 150 

smoothing processes in paleoclimate time series is critical for evaluating the short-term effects of climate forcing events such 

as volcanic eruptions (Esper et al., 2015; Zhang et al., 2015; Lücke et al., 2015), but is potentially less critical for reconstructing 

low-frequency variations in climate. 

 
Figure 3:  Estimates of proxy noise spectra (a, b, c) and timescale-dependent signal-to-noise ratios (d, e, f). Top: (a) Mean noise 155 
spectra for tree-ring width and density records from northern hemisphere tree-ring records, (b) Mean noise spectra for tropical 
coral 𝛅18O and strontium/calcium (Sr/Ca) ratios, (c) Noise spectra for ice core 𝛅18O from Dronning Maud Land (light blue) in 
Antarctica and the North Greenland Traverse (dark blue). Dashed lines represent an idealized spectral power-law with a slope β = 
1 for proxies containing predominantly red noise (i.e. tree rings and corals), and with β = 0 for proxies (i.e. ice cores) containing 
predominantly white noise.  Bottom: Timescale-dependent signal-to-noise ratios (SNR) for (d) tree rings, (e) corals, and (f) ice cores. 160 
Dashed lines represent an SNR of 1. Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric 
bootstrapping estimation method. Detailed methods for estimating proxy noise and SNR values can be found in McPartland et al., 
(2024) (tree rings), Münch et al., (2018) (ice cores) and Dolman et al., (under consideration) (corals).   

3 Implications  

The spectrum of temperature on local to global scales is generally accepted to be red (Huybers & Curry 2006; Cheung et al., 165 

2017; Hasselmann et al.,, 1976). For proxies with predominantly white-noise spectra such as ice cores and sediments, this 

implies that the power spectral density of the climate signal relative to the noise, the signal-to-noise ratio (SNR), increases 
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with timescale. This explains why ice cores are faithful recorders of millennial climate variability (e.g. EPICA, 2006), while 

they fail in many regions to reconstruct interannual to decadal changes (Stenni et al., 2017). By contrast, in proxies that contain 

red noise, the SNR will rise more slowly or even decline with timescale if the power of the noise rises more steeply than the 170 

signal, as we demonstrate in tree rings and corals. These proxies are better recorders of fast time-scale variability where the 

ratio of signal to noise is highest. For example, corals are faithful recorders of interannual variability and can deliver unique 

information on tropical climate dynamics such as the El Niño Southern Oscillation (ENSO) (Fig. 3), but have challenges 

reconstructing multidecadal trends (Scott et al., 2010).  

 175 

The color of the noise thus determines at which timescales a robust climate signal can be reconstructed. Information about 

proxy noise can be used to guide future study design (i.e. what proxies can be used to answer a climatic hypothesis) and to 

optimize the sampling and measuring design (i.e. how many cores are needed; what is the optimal sampling resolution to 

minimize noise). It can also be used to estimate time scale-dependent uncertainty in climate reconstructions. Error from proxies 

with white noise spectra is reduced by averaging in time so in reconstructions that draw on records with white noise spectra, 180 

error should be reduced with the addition of more records. In the case of red noise that mimics the spectrum of the climate, 

uncertainty depends on the slope of the noise relative to that of the climate. If the slope of the noise is steeper than that of the 

climate, even with averaging in time the error will still overwhelm the signal on the longest timescales. The shape of proxy 

noise therefore influences the time scales at which estimates of past climate are more or less certain. If unaccounted for, colored 

noise can be misinterpreted as past climate variability.  185 

Colored noise models such as those described here are appropriate for use in research activities where the behavior of proxy 

noise is often assumed rather than estimated. For example, the use of empirical, proxy-specific noise models in pseudoproxy 

experiments will improve their use in evaluating climate model performance, particularly on long time scales (Jones et al., 

2006, Dee et al., 2016; Smerdon et al., 2020). Climate field reconstructions and data assimilation methods often assume white 

noise, which risks misconstruing noise as signal, potentially leading to biased results. In climate field reconstructions and data 190 

assimilation frameworks proxy-specific noise models could be used to improve the representation of spatio-temporal modes 

of past climate variability.  

Conclusion 

Here, we present an overview of how colored noise is created and can be represented in different types of paleo archives. By 

synthesizing the results of multiple recent studies, we show the distinct nature of noise and signals across archives and discuss 195 

how colored noise should be conceptualized in paleoclimate data. These noise models, or models derived using similar 

methods, can be implemented within paleoclimate research as a way to account for the range of unique biological and physical 

processes affecting proxies.  
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Appendix  

Appendix A:  Estimating the spectrum of noise 200 

We apply the method of Münch et al., (2018) of combining clustered proxy records into regional stacks and analyzing their 

variance in the frequency domain. It builds on the assumption that the proxy signal is a function of four main components: the 

climate signal, additive noise that arises during the proxy creation and archiving stages, measurement noise, and any smoothing 

processes that act during archiving but not on the measurement noise; i.e. 

 205 

 
 

where P, C, N, and 𝚺 stand for the power spectral densities of the proxy signal, the climate signal, the proxy noise, and the 

measurement noise, respectively, and where G is a transfer function that describes a specific smoothing process such as 

biological memory, diffusion, or bioturbation. 210 

 

Given a regional cluster of n proxy records with a similar climate between sites, the mean power spectrum, M, averaged across 

all individual records’ spectra, will yield a precise estimate of the proxy spectrum P. By contrast, the power spectrum, S, of 

the stacked record from averaging all records in the time domain, will also contain the full climate signal, but with the noise 

proportions reduced by a factor of n. By combining both quantities one can derive expressions for the climate and noise spectra 215 

(Münch and Laepple, 2018), 

 

 

 
 220 

with the ratio of C:N yielding the frequency-resolved signal-to-noise ratio (SNR). A common smoothing process equally biases 

the signal and the noise spectrum, if not corrected for by means of the inverse transfer function G-1, and hence its effect cancels 

out in the SNR spectrum. We note that time uncertainty between individual proxy records can be another source of smoothing 

in the stacked record, but it is less straightforward to include into our methodology (Münch and Laepple, 2018) and is neglected 

here. 225 
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Appendix B: Data 

B.1 Tree Rings  

For the tree-ring data we analyzed the tree-ring records contained within the Past Global Changes 2k (PAGES2k) database, a 

large database compiled to reconstruct global temperature variations during the last two millennia. This network of 647 unique 230 

paleoclimate records from around the globe includes 450 tree-ring timeseries, of which we used 421 records of tree-ring width 

and density located across the Northern hemisphere (PAGES 2013, 2017; Neukom et al.,, 2019). Spatial clusters were defined 

using 250-kilometer radii, such that no two sites were more than 500 kilometers apart. Tree-ring width and density records 

were clustered separately. This resulted in 186 clusters of sites. More information om the analysis of the PAGES tree-ring 

database is available in McPartland et al (2024). 235 

B.2 Corals 

We used the coral records contained within the PAGES Coral Hydro 2k database to obtain coral SNR estimates (Walter et al., 

2023). The Coral Hydro2k database contains 54 oxygen (δ18O) and strontium calcium (Sr/Ca) records from the global tropics. 

The database was compiled to reconstruct sea surface temperature and ocean hydroclimate variability for the past two centuries. 

Due to fewer records, 1000 km spatial clusters were used, resulting in 64 clusters. δ18O and Sr/Ca records were clustered 240 

separately and the results are averaged. More information on the coral data curation is contained in Dolman et al., under 

consideration. 

B.3 Ice Cores 

As an example for ice-core derived temperature proxies, we use stable isotope records from the Dronning Maud Land region 

in Antarctica (“DML data” in the following; Graf et al., 2002) and from central-north Greenland (“NGT data” in the following; 245 

Weißbach et al.,, 2016, Hörhold et al.,, 2023). 

 

The DML data consist of 15 records, 12 of which cover the time period from 1800 to 1998 CE and 3 records cover 1000–1998 

CE. We combine both datasets by using the individual spectral results (Münch and Laepple, 2018) of the shorter records on 

time scales below decadal and of the longer records on the supra-decadal time scales. We apply the diffusion correction as in 250 

Münch and Laepple (2018) but do not use their time-uncertainty correction. 

 

The NGT data comprise 14 cores covering the time span from 1505 to 1979 CE, including original records from the North 

Greenland Traverse published in Weißbach et al (2016) as well as the extended NGT records from exploiting new drillings as 

presented in Hörhold et al., (2023). The corresponding NGT spectra shown in Hörhold et al., (2023) were not diffusion-255 

corrected; here, to be able to compare the NGT spectra to those from the DML data, we apply a diffusion correction to the 

NGT spectra following the method given in Münch and Laepple (2018) with diffusion length estimates calculated as described 
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in Hörhold et al., (2023). Note that the SNR spectrum shown in Hörhold et al., (2023) used the ratio of the integrated signal 

and noise spectra, which is related to the correlation with the climate signal (Münch and Laepple, 2018), whereas here we 

show the direct ratio of the spectra. 260 

Data Availability 

This work represents a synthesis of multiple independent research projects. The data needed to reproduce the tree-ring and 

coral data are publicly available through the NOAA National Centers for Environmental Information (Emile-Geay et al.,, 

2017; Walter et al., 2023). The original Antarctic ice core isotope data are archived at the PANGAEA database (Graf et al.,, 

2002) as well as the Greenland data except for core NGRIP whose data is available from the Centre for Ice and Climate of 265 

Copenhagen University (Weißbach et al.,, 2016; Hörhold et al.,, 2023). PANGAEA is hosted by the Alfred Wegener Institute 

Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven and the Center for Marine Environmental Sciences 

(MARUM), Bremen, Germany. 

Code Availability 

The general software to conduct the separation of signal and noise in the spectral domain and to perform the signal-to-noise 270 

ratio analysis is available as the R package proxysnr from the open research data repository Zenodo (Münch, 2018). 

Additionally, specific code to reproduce the tree-ring, coral, and ice-core analyses, respectively, are also available via Zenodo 

(McPartland 2024, Dolman 2024; Münch 2024). 
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