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Abstract.  
The complex biological and physical processes that preserve paleoclimate information over centuries or 

longer introduce variations in proxy time series that are unrelated to the true climate. These non-10 

climatic variations act on different timescales and are often referred to as “noise” of a specific color, 

based on similarities between a time series’ power spectrum and the electromagnetic spectrum of light. 

For example, “white noise” equally affects all timescales, where “red noise” dominates only on long 

timescales, similar to longwave red light. Noise spectra in proxy records have far-reaching implications 

in paleoclimate research, but noise characteristics are often assumed based on first principles rather than 15 

estimated directly, risking either inflating or underestimating error at particular frequencies. Here, we 

provide concrete definitions of the various types of timescale-dependent errors that are present in proxy 

data, and review the literature on methods for quantifying noise terms. We then synthesize the results of 

several published studies that use a common empirical approach for estimating the noise spectrum in 

ice-core, coral, and tree-ring data. We posit that the colors of proxy noise are archive-specific, with 20 

white noise dominating in depositional archives such as ice cores and marine sediment cores, while red 

noise is more common in biological archives such as tree rings and corals. Our synthesis supports 

assigning specific colored noise terms in proxy system models, data assimilations and other 

experiments. 

1 Introduction 25 

Paleoclimate proxy records archive past climate information via biophysical or depositional pathways 

and preserve it in rings, layers or strata. The processes that create these records integrate non-climatic 

variability alongside the climate signal either during the archiving process, or afterwards as the physical 

record is modified over time (Cook 1987; Evans et al., 2013). Recovering paleoclimate information 

from these archives requires sophisticated data processing and modeling techniques intended to extract 30 

climate-related variance from noisy time series (von Storch et al., 2004; Cook & Kairiukstis 1990; 

Hughes & Ammann 2009; Dee et al., 2016). Recognizing that these methods may be imperfect, the 

challenge lies in rigorously quantifying and minimizing the impact of non-climatic variations on the 

signal of past climate change. 
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Modification of climate signals in proxy time series can result in the addition of variance from random 35 

or unrelated fluctuations, loss of variance through smoothing, shifts in timing due to irregularities in the 

deposition or uncertainties in dating, or a combination of 

these effects (Fig. 1). We regard a process that adds 

variance on top of an existing climate signal as a “noise 

process”, whereas the loss of variance through smoothing 40 

also constitutes error (i.e., any difference between the true 

and reconstructed climate at a given timescale), but not 

noise, per se. Smoothing processes are typically 

deterministic to some extent. For example, two co-located 

ice-core records with similar physical properties are both 45 

affected by same isotopic diffusion and their correlation at 

a certain time-scale will not be affected in the absence of 

additional noise (Whilans & Grootes 1985). It is further 

possible to correct individual records for deterministic 

errors if the process is well-understood (Shiffelbein 1985; 50 

Meko 1981; Dolman et al., 2021a; Shaw et al., 2023). By 

contrast, noise is typically independent, generating 

differences between nearby records as well as to the true 

climate signal. Observation and measurement errors are 

best represented by stochastic, uncorrelated noise unless 55 

they represent systematic bias, for example due to a change 

in the measurement apparatus. Because these types of noise 

are typically independent, averaging, or “stacking” 

individual records reduces noise while retaining the climate 

signal.  60 

 

Both noise and smoothing processes incorporate unique 

timescale-dependent uncertainties alongside climate 

signals. For example, trees integrate multi-decadal age-

growth trends alongside climate variations, such that tree-65 

ring time series are typically ‘detrended’ before they are 

used in reconstructions (Fritts 1976; Cook & Kairiukstis 

1990; Speer 2010). Incomplete removal of age-growth 

trends results in long-term biases in tree-ring data, even if 

interannual correlations with climate data remain 70 

reasonably strong (Melvin & Briffa 2008; Melvin & Briffa 

2014 a,b). By contrast, physical smoothing processes such 

as isotopic diffusion or bioturbation in sediments act on fast 

timescales by removing climate information from within 

deposited layers (Johnson et al., 2000; Whillans & Grootes 75 

1985; Hutson 1980; Peng & Broeker 1984). Smoothing 

Figure 1: Conceptual diagram showing 

integration of different types of timescale-

dependent proxy errors alongside climate signals 

via stochastic noise and subtractive smoothing. 
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dampens the climate signal at annual to centennial timescales, becoming less influential on longer 

timescales such that millennial-scale shifts in climate are retained (Schiffelbein & Hills 1984; Laepple 

& Huybers 2013; Münch & Laepple 2018; Bothe et al., 2019).  

 80 

These timescale-dependent variations can be analyzed in the spectral domain and referred to using 

colors by loose analogy to the frequency spectrum of light (Fig 2). Time series with relatively more 

low- than high-frequency variability are considered to be ‘red’, by analogy to long-wave red light, 

whereas a ‘white’ time series implies that power spectral density is distributed evenly across the 

frequency space.  85 

 
 

Figure 2: Spectral noise models with correlation structures referred to by analogy to colored light. Left panels show a simulated 

time series with the noise spectra shown in the right panels. Top: white noise with no correlation with timescale (𝞫 = 0). Middle: red 

noise (sometimes referred to as pink noise) with a positive relationship to timescale (𝞫 = 1). Bottom: blue noise with a negative 90 
relationship to timescale (𝞫 = -1). Note that 𝞫 values for noise spectra are calculated as the slope of a linear model on a log-log plot, 

and expressed as 𝞫 = slope*-1, following the convention where 𝞫 describes the relationship between power and increasing timescale. 
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Low-frequency temperature variability is generally understood to exhibit increasing power with 

timescale, meaning that noise-free temperature proxy spectra would theoretically display a red spectrum 

(Pelletier 1998; Huybers & Curry, 2006; Zhu et al., 95 

2019). Noise, because it originates from a variety of 

sources may display different correlation structures. 

The integration of noise and climate signals may 

either further ‘redden’ or ‘whiten’ the spectrum by 

modifying the correlation structure of the raw time 100 

series. The relationship between power spectral 

density S(ƒ) and frequency ƒ is often summarized 

using a power-law scaling exponent β such that 

S(𝑓)~f-β (Box 1) (Vautard & Ghil 1989, Fraedrich & 

Blender 2003; Hébert et al., 2021). The exponent β 105 

represents the relationship between frequency (or 

time period) and power spectral density, which 

appears as a linear relationship plotted on a log–log 

scale. By convention, the exponent is defined as the 

negative of the relationship with frequency such that a positive exponent represents increasing variance 110 

with timescale. Red noise processes are represented with a positive slope value (β>0); the term ‘pink 

noise’ is sometimes used specifically for β=1 (Zhu et al., 2023). Red noise is a common noise model 

that implies autocorrelated errors that affect low-frequencies at a greater magnitude. (Mann et al., 2007; 

von Stoch et al., 2009; Smerdon 2012). By contrast, a ‘white’ noise process implies errors uncorrelated 

in time such that the variance is distributed evenly across the frequency space (β=0), similar to the 115 

spectrum of white light. White noise is the simplest and most commonly-applied noise model in 

paleoclimate research (Fisher et al., 1985, Amman & Whal 2007; von Storch et al., 2004; Mann et al., 

2005, Lee et al., 2008; Smerdon et al., 2010; 2012). Finally, blue noise refers to processes with 

relatively higher variability at high frequencies (β<0). Blue noise, which is less commonly used, is 

characterized by an anti-correlated structure, implying rapidly vanishing effects with increasing 120 

timescale (Mann & Rutherford 2002; Mann et al., 2007).  

 

Our understanding of proxy noise characteristics has evolved out of the need to reconcile diverging 

results in records that should, in principle, contain the same climate signal. For certain processes, such 

as the effects of measurement error, aliasing due to under-sampling, or depositional noise from 125 

roughness at the snow surface, the noise power spectrum can be derived from first principles and 

expressed in closed-form solutions (Fisher et al., 1985; Schiffelbein, 1985; Kunz et al., 2020; Dolman 

et al., 2021b). In cases where the physical and biological processes affecting proxies are well-

understood, a more flexible approach is to use proxy system models (PSMs) (Jones et al., 2009; 

Vaganov et al., 2011; Evans et al., 2013; Tolwinski-Ward et al., 2011; Dee et al., 2016; Dee et al., 130 

2017; Dolman and Laepple, 2018). In this case, climate data sets of temperature and precipitation from 

instrumental data, climate models or stochastic simulations are used as input to the PSM, and synthetic 

proxy time series are simulated. The spectrum of the noise can then be estimated through comparison to 

the climate time series (Dee et al., 2017).  By omitting processes that are not well-understood, PSMs 

Box 1: Summarizing the timescale-dependency of proxy noise 

using spectral power-laws. 
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may underestimate the noise level. For example, stratigraphic noise in ice-core-based proxies can 135 

account for more than half of the isotope signal (Hirsch et al., 2023) but stratigraphic processes are not 

represented in current isotope PSMs (Dee et al., 2015). To account for “known unknowns” recent 

studies have added estimates of noise with specific spectral properties to mimic these extraneous 

sources of variability in PSM output, using models or reanalysis data as external validation. (Dee et al., 

2018; Evans et al., 2014; Zhu et al., 2023; Bothe et al., 2019). 140 

 

Alternatively, empirical proxy noise spectra can be derived by relying solely on proxies by exploiting 

the spatial correlation of climate signals in nearby records, building on the assumption that non-climatic 

noise is independent between records. This approach has the advantage of being able to exploit the full 

length of paleoclimate time series without relying on climate models or short instrumental time series, 145 

and without the assumption that physical processes themselves are well-understood. One limitation is 

that this method relies on the availability of replicated or nearby records that have low time-uncertainty, 

such as corals, tree rings, banded ice cores or laminated sediments. If empirical noise estimates are 

consistent with those derived from mechanistic models this both validates the processes represented in 

PSMs creates a strong basis for using the resulting noise spectra in a variety of research applications.  150 

In this study, we synthesize noise estimates derived directly from multiple proxy types and interpret 

their spectral characteristics in the context of known biological and physical processes. This provides a 

basis for evaluating signal fidelity and for refining assumptions commonly made in proxy system 

models and other experiments. We present noise estimates published in three studies where noise terms 

were derived using a simple empirical approach that partitions shared signal from independent variance 155 

on all timescales (Münch & Laepple 2018), which we describe in the extended data section (Appendix 

A). We show results for published ice cores from Münch & Laepple (2018), tree rings (McPartland et 

al., 2024), and corals (Dolman et al., 2025). By presenting these findings alongside evidence from first 

principles and existing literature we aim to deepen a collective understanding of the behavior of proxy 

noise. 160 

The tree-ring and coral data were sourced from global databases compiled by the Past Global Changes 

(PAGES) initiative (PAGES Consortium 2017; Walter et al., 2023), and the ice-core data represent two 

large clusters of cores from Antarctica and Greenland (Graf et al., 2002; Weißbach et al., 2016; 

Hörhold et al., 2023) (Appendix B). Full details on each result are provided in the aforementioned 

studies. We focus our discussion on the noise spectra and resulting signal-to-noise ratio. Evaluating the 165 

climate signal spectra would ideally involve comparison with data and models, which are beyond the 

scope of this paper. In the extended data section, we reproduce the signal spectra and sample density at 

each frequency to provide all information involved in the noise spectra calculations and their 

uncertainty estimates (Appendix C).  

2 The colors of proxy noise across paleo archives 170 

Our review of published noise estimates demonstrates that tree rings and corals exhibit clear red noise 

spectra with positive scaling exponent β values of 0.8 and 0.5 respectively (Fig 3; a, b) such that the 
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power of the noise increases with timescale (McPartland et al. (2024), Dolman et al. (2025). As the 

noise increases more than the climate signal, this leads to a decline of the signal-to-noise ratio (SNR) 

(Fig 3; d, e). Tree-ring and coral records result from the growth or accretion of layers by an individual 175 

organism over time such that life history or changes in the biological archiving system may affect proxy 

formation. Evidence suggests that proxy records composed of repeated measurements made on single 

long-lived organisms through time are susceptible to ontogenetic effects, the legacies of past 

disturbances, or slow changes in the behavior of the sensor.  

In dendroclimatology, the pitfalls associated with tree ontogeny have been well-documented (Fritts 180 

1976; Cook et al. 1995; Esper & Frank 2009). Cambial age impacts both tree-ring width and density 

such that detrending to remove juvenile age trends is a near universal practice (Cook & Kairiukstis 

1990). Even after detrending, residual age effects could partially explain the persistent low-frequency 

bias observed in tree-ring records (Franke et al., 2013, Ault et al., 2013). Detrending itself can also 

introduce biases at medium-frequencies, particularly when fitting raw time series with negative 185 

exponential curves or rigid spline functions (Cook & Peters 1997; Melvin & Briffa 2008; Melvin & 

Briffa 2014 a;b, Esper 2003, Briffa & Melvin 2011). Techniques such as “signal-free” detrending have 

aimed at boosting low-frequency variability while minimizing bias (Melvin & Briffa 2008), but despite 

retaining more low-frequency variance, tests of this method indicated only minor improvements in 

signal strength and signal-free chronologies retained their red-noise spectra (McPartland et al. 2020; 190 

McPartland et al. 2024). By extension, red noise is likely a feature of bivalve and sclerosponge 

chronologies, which contain similar age-growth trends to those found in trees and are detrended using 

the methods originally developed in dendrochronology (Jones 1983; Rypel et al. 2008; Hollyman et al., 

2018; McCulloch et al., 2024). Tree rings are also smoothed on fast timescales as a result of the 

carryover, or ‘memory’, of prior years’ growth. Biological memory adds temporal autocorrelation to 195 

tree ring time series which has the effect of steepening the slope of the noise spectra by dampening high 

frequency power spectral density (Zhang et al. 2015; Lucke et al. 2019; McPartland et al. 2024). ‘Pre-

whitening’ chronologies by adjusting their temporal autocorrelation structure to match the climate target 

improves the interannual correlation between data and proxy (Meko 1981), but by virtue of removing 

additional variability at high-frequencies, decreases the ratio of high to low power spectral density that 200 

defines the noise slope term β.   
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Figure 3:  Estimates of proxy noise spectra (a, b, c) and timescale-dependent signal-to-noise ratios (d, e, f). Top: (a) Mean noise 

spectra for tree-ring width and density records from the northern hemisphere, (b) Mean noise spectra for tropical coral 𝛅18O and 

strontium/calcium (Sr/Ca) ratios, (c) Noise spectra for ice core 𝛅18O from Dronning Maud Land (light blue) in Antarctica and the 205 
North Greenland Traverse (dark blue). Dashed lines on the top row of panels represent an idealized spectral power-law with a slope 

β = 1 for proxies containing predominantly red noise (i.e. tree rings and corals), and with β = 0 for proxies (i.e. ice cores) containing 

predominantly white noise.  Bottom: Timescale-dependent signal-to-noise ratios (SNR) for (d) tree rings, (e) corals, and (f) ice cores. 

Dashed lines represent an SNR of 1. Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric 

bootstrapping estimation method. Detailed methods for estimating proxy noise and SNR values can be found in McPartland et al., 210 
(2024) (tree rings) and Dolman et al., (2025) (corals). 

 

Coral aragonite records might similarly be affected by changes in the biology of individual or 

descendent polyps over time resulting in a slow drift in the temperature response of the proxy which 

would appear as low-frequency variability. Such changes could be growth-rate related due to reaction-215 

kinetic effects (Goodkin et al., 2005; Hayashi et al., 2013; Maier et al., 2004; Saenger et al., 2008; 
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Suzuki et al., 2005), result from changes in the calcification process (Lough 2004), or persistent 

baseline shifts in trace element ratios following thermal stress events (D’Olivo & McCulloch 2017; 

D’Olivo et al., 2019) perhaps mediated by changes in the composition of photosynthetic symbionts 

(Berkelmans & van Oppen, 2006; Cohen, 2002; Little et al., 2004).  220 

 

The stacks of ice cores from both Greenland and Antarctica that we analyzed show a high white noise 

level where β is approximately equal to zero (Fig 3 e, f) (Münch & Laepple 2018). As the climate 

variations become more pronounced on longer timescales, this leads to an increasing signal-to-noise 

ratio with time. We argue that proxies that are primarily the result of deposition, rather than growth or 225 

accretion primarily contain white noise stemming from stratigraphic processes. Precipitation 

intermittency and post-depositional redistribution in ice cores result in adjacent measurements that 

represent water from different precipitation events (Laepple et al., 2018; Casado et al., 2020; Zuhr et 

al., 2023). By extension, in marine sediments where foraminifera or diatoms are deposited from the 

water column, each sample represents a new set of individuals such that biological effects are 230 

uncorrelated between measurements. From process-based experiments, it has been demonstrated that 

noise in sediment records is also predominantly white with the signal level increasing as more 

individuals are measured (Kunz et al., 2020, Dolman et al., 2021). In both ice and sediment core records 

of near-surface temperature, seasonal depositional cycles are much stronger than any interannual or 

even millennial climate change and the sparse subsampling of the seasonal signal leads to aliasing of 235 

independent noise within the signal of annual variation (Kunz et al., 2020). Precipitation intermittency 

and depositional redistribution break up the signal of the large seasonal cycle that would appear as a 

spike in the spectrum at annual timescales if the signal were recorded without disruption. Instead, the 

spike is redistributed as white noise across all frequencies (Casado et al., 2020; Münch et al. 2021). 

 240 

We identified fewer examples of blue noise processes in the paleoclimate literature. Because its effects 

diminish quickly with time, blue noise does not introduce error past fast timescales. An example of a 

true blue noise process is the infilling of troughs on ice sheets as wind redistributes snow causing blue 

noise in noise in annual layer thickness records from ice cores (Fisher et al., 1985). Blue noise models 

have occasionally been tested alongside red and white noise to account for a variety of potential types of 245 

error affecting high-frequencies, and to improve the fit between synthetic proxy records and climate 

model data (Mann et al., 2007; Mann & Rutherford 2002). 

 

Like blue noise, smoothing processes predominantly affect high frequencies and becomes less 

significant with timescale. Biological memory in trees, diffusion in ice cores, and bioturbation in 250 

sediments are all examples of smoothing processes that lead to correlated errors between the climate 

and the proxy signal which can theoretically be accounted for using deterministic modeling (Matalas et 

al., 1962; Berger et al., 1977; Meko 1981; Ruddiman et al., 1980; Whillans and Grootes, 1985). Given 

such a model, the smoothing effect can be reversed, as we applied in this example to ice core data to 

reverse the effects of diffusion (Shaw et al. 2024) (see Appendix A). If, as in the case of diffusion, the 255 

smoothing process affects the signal and the noise equally, the SNR is unbiased at all timescales 

regardless of whether or not a correction for the smoothing effect is applied. However, when noise is 

introduced after smoothing (e.g. measurement noise), the attenuated climate signal on the high-
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frequency side will be masked by a relatively stronger noise level, biasing the SNR spectrum 

downwards toward high frequencies. In any case, knowledge about and accounting for smoothing 260 

processes in paleoclimate time series is critical for evaluating the short-term effects of climate forcing 

events such as volcanic eruptions (Esper et al., 2015; Zhang et al., 2015; Lücke et al., 2015), but is 

potentially less critical for reconstructing low-frequency variations in climate. 

3 Time uncertainty and noise color 

Dating for all three proxy types discussed here is primarily achieved by some kind of band dating, or by 265 

counting annual cycles in geochemical tracers. If bands or cycles are missed, or double counted, this 

introduces time-uncertainty and an additional source of error in the reconstructed climate time series 

(Comboul et al. 2014). Time uncertainty has little effect on the shape of individual power spectra when 

the spectra are broadband, as is typical for climate time series (Rhines & Huybers, 2011). However, it 

reduces coherence between records, diminishing high-frequency power in stacked spectra and biasing 270 

SNR estimates downward at shorter timescales (Münch & Laepple, 2018; Fig. D1). The effect of time-

uncertainty acts as a linear transfer function on the stacked spectra and can be estimated and corrected 

for if the time uncertainty is known, although this was not applied here (Appendix D). For the ice-core 

records analyzed here, the time-uncertainty is due to potential variations in the accumulation rate 

between volcanic tie-points and is negligible for frequencies below 1/10 years (Münch & Laepple 2018, 275 

their Fig. B1).  

 

For the sub-annual resolution coral records used here, age models mostly come from counting annual 

cycles in the geochemical tracers. However, for most coral records there are no independently dated tie-

points and so it is not possible to directly estimate counting error rates and correct for time-uncertainty. 280 

Simulations with potential error rates derived from corals show that the slope of the SNR is biased in 

the opposite direction to the one we estimate (Fig. D1) and that even for very large error rates of 1 in 10 

years’ time-uncertainty cannot account for the low SNR at decadal timescales. Time uncertainty is 

arguably less of an issue for tree-ring records as they are considered to be precisely dated and 

dendrochronologists routinely employ statistical cross-dating techniques to identify and eliminate dating 285 

errors (Holmes et al 1986). Through this process locally absent rings are identified during cross-dating 

and assigned a no-data value to avoid affecting the final chronology. The strength of the tree-ring SNR 

on sub-decadal timescales is indicative of this dating precision.  

 

For proxy archives that are not annually resolved such as reconstructions from non-varved terrestrial 290 

and marine sediment cores, the irregular spacing of samples in time and larger dating uncertainties 

makes stacking unsuitable for this type of noise estimation, representing a limitation of this approach. 

Alternative methods, such as estimating the SNR as a function of time uncertainty (Reschke et al., 

2018), or applying tuning methods that align proxy records by maximizing covariance and assess 

significance against surrogate data (Haam & Huybers, 2010), may still allow for empirical SNR 295 

estimation in these cases. 
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4 Implications of colored noise for climate reconstruction 

The spectrum of temperature on local to global scales is generally accepted to be red (Huybers & Curry 

2006; Cheung et al., 2017; Hasselmann et al., 1976). For proxies with predominantly white-noise 

spectra such as ice cores and sediments, this implies that the SNR increases with timescale. This 300 

explains why ice cores are faithful recorders of millennial climate variability (e.g. EPICA, 2006), while 

they fail in many regions to reconstruct interannual to decadal changes (Stenni et al., 2017). By 

contrast, in proxies that contain red noise, the SNR will rise more slowly or even decline with timescale 

if the power of the noise rises more steeply than the signal, as we demonstrate in tree rings and corals. 

These proxies are better recorders of fast time-scale variability where the ratio of signal to noise is 305 

highest. For example, corals can deliver unique information on tropical climate dynamics such as the El 

Niño Southern Oscillation (ENSO) (Fig. 3), but have challenges reproducing multidecadal trends (Scott 

et al., 2010). The color of the noise thus influences the timescales at which a robust climate signal can 

be reconstructed because it introduces a frequency-dependence to the SNR.  

 310 

Information about proxy noise can be used to guide future study design (e.g. what proxies can be used 

to answer a climatic hypothesis) and to optimize the sampling and measuring design (e.g. how many 

cores are needed; what is the optimal sampling resolution to minimize noise). It can also be used to 

estimate time scale-dependent uncertainty in climate reconstructions. For individual proxy time series 

where the signal increases more strongly with timescale than the noise, when the signal spectrum is 315 

“redder” than the noise, binning to a coarser timestep or by applying stronger smoothing reduces the 

noise. This improves the SNR, albeit at the cost of losing information at shorter timescales. The extent 

to which uncertainty is reduced by binning or smoothing depends on the relative spectral slopes of both 

the signal and noise.  
 320 

Knowing the color and level of proxy noise is valuable in a variety of research contexts in 

paleoclimatology. For example, accurate noise models are important for pseudo-proxy experiments 

(PPEs) in which climate model output is degraded into pseudo-proxy time series to test the skill of 

reconstruction methods and evaluate models (Jones et al. 2009; Smerdon et al. 2012). Often PPEs rely 

on sensitivity tests using different noise levels or spectral colors (Riedywl et al. 2009; Smerdon et al., 325 

2010; Mann and Rutherford, 2002; Gomez-Navaro et al. 2017). Red noise is often tested alongside 

white or sometimes blue noise, but typically using a first-order autoregressive (AR(1)) process with a 

fixed spectral slope (β = 2) (Mann et al. 2007; Riedywl et al. 2009). However, this can lead to 

underestimation of the actual noise, especially at low frequencies where the spectrum of an AR(1) 

process levels out. More recent PPEs have integrated full PSM complexity with realistic noise estimates 330 

(Boothe et al. 2019; Zhu et al. 2023). Finally, accurate noise estimation is important in data 

assimilations and field reconstructions to bring reconstructed time series into better alignment with 

calibration datasets, and to propagate uncertainty in estimates of past climate variability (Goose et al. 

2010; King et al. 2021). 
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Conclusion 335 

Building on prior insights from proxy system modeling, and with reference to a first-principles based 

understanding of proxy formation, we present here an overview of how colored noise is represented in 

different types of paleoclimate archives. Incorporating empirical, proxy-specific noise models as 

presented here into a range of paleoclimate research activities will help to move away from the 

assumption that noise is white or follows a first-order autoregressive process, which can lead to 340 

misinterpreting noise as signal and propagating biases into results. These noise models, or models 

derived using similar stacking and variance-partitioning methods, can be used account for the range of 

unique biological and physical processes affecting proxies in pseudo proxy experiments, data 

assimilation frameworks, and reconstructions efforts to improve the representation of patterns of past 

climate variability. 345 

Appendix  

Appendix A:  Estimating the spectrum of noise 

We apply the method of Münch et al., (2018) of combining clustered proxy records into regional stacks 

and analyzing their variance in the frequency domain. This builds on the assumption that the proxy 

signal is a function of four main components: the climate signal, additive noise that arises during the 350 

proxy creation and archiving stages, measurement noise, and any smoothing processes that act during 

archiving but not on the measurement noise; i.e. 

 

 
 355 

where P, C, N, and 𝚺 stand for the power spectral densities of the proxy signal, the climate signal, the 

proxy noise, and the measurement noise, respectively, and where G is a transfer function that describes 

a specific smoothing process such as biological memory, diffusion, or bioturbation. 

 

Given a regional cluster of n proxy records with a similar climate between sites, the mean power 360 

spectrum, M, averaged across all individual records’ spectra, will yield a precise estimate of the proxy 

spectrum P. By contrast, the power spectrum, S, of the stacked record from averaging all records in the 

time domain, will also contain the full climate signal, but with the noise proportions reduced by a factor 

of n. By combining both quantities one can derive expressions for the climate and noise spectra (Münch 

and Laepple, 2018), 365 
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with the ratio of C:N yielding the frequency-resolved signal-to-noise ratio (SNR). A common 370 

smoothing process equally biases the signal and the noise spectrum, if not corrected for by means of the 

inverse transfer function G-1, and hence its effect cancels out in the SNR spectrum. We note that time 

uncertainty between individual proxy records can be another source of smoothing in the stacked record, 

but it is less straightforward to include into our methodology (Münch and Laepple, 2018) and is 

neglected here. 375 

Appendix B: Data 

B.1 Tree Rings  

For the tree-ring data we analyzed the tree-ring records contained within the Past Global Changes 2k 

(PAGES2k) database, a large database compiled to reconstruct global temperature variations during the 

last two millennia. This network of 647 unique paleoclimate records from around the globe includes 380 

450 tree-ring time series, of which we used 421 records of tree-ring width and density located across the 

Northern hemisphere (PAGES 2013, 2017; Neukom et al., 2019). Spatial clusters were defined using 

250-kilometer radii, such that no two sites were more than 500 kilometers apart. Tree-ring width and 

density records were clustered separately so that the proxies weren’t mixed within clusters. This 

resulted in 253 clusters containing a minimum of 3, and a maximum of 30 sites per cluster. The average 385 

number of sites per cluster was 8. There were 18 density and 235 ring width clusters. The average 

length of the overlapping period was around 450 years. The results of all clusters of both proxy types 

were averaged at the end to derive the signal, noise and SNR.  Uncertainty was calculated using a 

parametric bootstrapping approach. (McPartland et al., 2024). 

B.2 Corals 390 

We used the coral records contained within the PAGES Coral Hydro 2k database to obtain coral SNR 

estimates (Walter et al., 2023). The Coral Hydro2k database contains 54 oxygen (δ18O) and strontium 

calcium (Sr/Ca) records from the global tropics. The database was compiled to reconstruct sea surface 

temperature and ocean hydroclimate variability for the past two centuries. Due to fewer records, 1000 

km spatial clusters were used, resulting in 64 clusters. δ18O and Sr/Ca records were clustered separately 395 

and the results were averaged. More information on the coral data curation is contained in Dolman et 

al., (2025). 

B.3 Ice Cores 

As an example in ice-core derived temperature proxies, we use stable isotope records from the 

Dronning Maud Land region in Antarctica (“DML data” in the following; Graf et al., 2002) and from 400 

central-north Greenland (“NGT data” in the following; Weißbach et al., 2016, Hörhold et al., 2023). 

 

The DML data consist of 15 records, 12 of which cover the time period from 1800 to 1998 CE and 3 

records cover 1000–1998 CE. We combine both datasets by using the individual spectral results (Münch 

and Laepple, 2018) of the shorter records on timescales below decadal and of the longer records on the 405 
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supra-decadal timescales. We apply the diffusion correction as in Münch and Laepple (2018) but do not 

use their time-uncertainty correction. 

 

The NGT data comprise 14 cores covering the time span from 1505 to 1979 CE, including original 

records from the North Greenland Traverse published in Weißbach et al (2016) as well as the extended 410 

NGT records from exploiting new drillings as presented in Hörhold et al., (2023). The corresponding 

NGT spectra shown in Hörhold et al., (2023) were not diffusion-corrected; here, to be able to compare 

the NGT spectra to those from the DML data, we apply a diffusion correction to the NGT spectra 

following the method given in Münch and Laepple (2018) with diffusion length estimates calculated as 

described in Hörhold et al., (2023). Note that the SNR spectrum shown in Hörhold et al., (2023) used 415 

the ratio of the integrated signal and noise spectra, which is related to the correlation with the climate 

signal (Münch and Laepple, 2018), whereas here we show the direct ratio of the spectra. 

Appendix C: Signal, noise and signal-to-noise ratio estimation 

Full results for the uncorrected signal, noise and SNR estimates for tree rings, corals and ice-core data 

(Fig. A1 a,b,c,d). Spectra in Fig. 3 represent truncated versions which have been cut off where sample 420 

density in corals and tree rings drop off (shaded regions), as seen in the spectral density plots (Fig A1 

bottom panels). In both corals and tree rings, the SNR rises again due to the reduction in replication and 

dominance by single or a small number of records with higher SNR than average (Fig A1, a,b) (see 

McPartland et al. 2024; Fig 2, e,f). Confidence intervals on all spectra represent the 10th and 90th 

percentiles from a parametric bootstrapping estimation method. In addition to the truncation due to low 425 

sample size, the lowest two spectral estimates on all spectra are removed during SNR calculation and 

confidence interval estimation a the multitaper approach introduces a small bias at the lowest 

frequencies (Percival & Walden, 1993). 



14 

 

 
Figure C1: Timescale-dependent signal, noise and SNR estimates with sample density plots for tree rings 430 
(a,e), corals (b,f), and ice-core 𝛅18O  data from Dronning Maud Land in Antarctica (c,g) and the North 

Greenland Traverse (d,h).  Top graphs show signal (blue), noise (green) and SNR (purple) curves, with the 

uncorrected “proxy” spectra (yellow). Confidence intervals on all spectra represent the 10th and 90th 

percentiles from a parametric bootstrapping estimation method. The light grey shading indicates the cut-

off point for spectral estimates presented in Fig. 3 when sample density decreases and the results become 435 
more uncertain. Detailed methods for estimating proxy noise and SNR values can be found in McPartland 

et al., (2024) (tree rings), Münch et al., (2018) (ice cores) and Dolman et al., (2025) (corals).   
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Appendix D: Simulated effects of time uncertainty on timescale-dependent signal-to-noise ratios 

To illustrate the potential effects of time uncertainty on estimates of signal-to-noise ratio we used the 440 

approach of Comboul et al. (2014) as implemented by Münch and Laepple (2018). Münch and Laepple 

(2018) show that relative time-uncertainty between records in a stack acts as a linear transfer function, 

reducing power in the stack at high frequencies. The precise shape of the transfer function depends on 

the counting error rate, and on the lengths of the time series, as longer time series allow larger relative 

errors to accumulate. It does not depend on the power spectrum 445 

of the initial “true” signal. Here we show the effect on SNR for 

100-year time series with band counting error rates of 1 in 10, 

50 and 100 years, with equal probability of missing or double 

counting a band. The effect on estimated SNR is shown 

relative to a hypothetical true SNR of 1.  450 
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Data Availability 

This work represents a synthesis of multiple independent research projects. The data needed to 

reproduce the tree-ring and coral data are publicly available through the NOAA National Centers for 

Environmental Information (Emile-Geay et al., 2017; Walter et al., 2023). The original Antarctic ice- 470 

core isotope data are archived at the PANGAEA database (Graf et al., 2002) as well as the Greenland 

data except for core NGRIP whose data is available from the Centre for Ice and Climate of Copenhagen 

University (Weißbach et al., 2016; Hörhold et al.,, 2023). PANGAEA is hosted by the Alfred Wegener 

Institute Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven and the Center for 

Marine Environmental Sciences (MARUM), Bremen, Germany. 475 

Figure D1: The influence of time-

uncertainty on SNR estimated by 

the stacking method. Here time 

uncertainty is simulated for a set of 

100-year depositional records with 

band counting error rates of 1 in 10, 

50 and 100, and a true SNR of 10 at 

all frequencies. The simulation was 

carried out following Münch and 

Laepple (2018) which implements 

the counting error model of 

Comboul et al. (2014). 
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Code Availability 

The general software to conduct the separation of signal and noise in the spectral domain and to perform 

the signal-to-noise ratio analysis is available as the R package proxysnr from the open research data 

repository Zenodo (Münch, 2018). Additionally, specific code to reproduce the tree-ring, coral, and ice-

core analyses, respectively, are also available via Zenodo (McPartland 2024, Dolman 2024; Münch 480 

2025 a,b). 
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