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Abstract.  
The complex biological and physical processes that preserve paleoclimate information over centuries or 
longer introduce variations in proxy time series that are unrelated to the true climate. These non-10 
climatic variations act on different timescales and are often referred to as “noise” of a specific color, 
based on similarities between the time series’ power spectrum and the electromagnetic spectrum of 
light. For example, “white noise” equally affects all timescales, where “red noise” dominates only on 
long timescales, similar to longwave red light. Noise spectra in proxy records have far-reaching 
implications in paleoclimate research, but noise characteristics are often assumed based on first 15 
principles rather than estimated directly, risking either inflating or underestimating error at particular 
frequencies. Here, we provide concrete definitions of the various types of timescales-dependent errors 
that are present in proxy data, and review the literature on methods for quantifying noise terms. We then 
synthesize the results of several published studies that use a common empirical approach for estimating 
the noise spectrum in ice core, coral, and tree-ring data. We posit that the colors of proxy noise are 20 
archive-specific, with white noise dominating in depositional archives such as ice cores and marine 
sediment cores, while red noise is more common in biological archives such as tree rings and corals. 
Our synthesis supports assigning specific colored noise terms in proxy system models, data 
assimilations and other experiments. 

1 Introduction 25 

Paleoclimate proxy records archive past climate information via biophysical or depositional pathways 
and preserve it in rings, layers or strata. The processes that create these records integrate non-climatic 
variability alongside the climate signal either during the archiving process, or afterwards as the physical 
record is modified over time (Cook 1987; Evans et al., 2013). Recovering paleoclimate information 
from these archives requires sophisticated data processing and modeling techniques intended to extract 30 
climate-related variance from noisy time series (von Storch et al., 2004; Cook & Kairiukstis 1990; 
Hughes & Ammann 2009; Dee et al., 2016). Recognizing that these methods may be imperfect, the 
challenge lies in rigorously quantifying and minimizing the impact of non-climatic variations on the 
signal of past climate changes. 
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Modification of climate signals in proxy time series  can result in the addition of variance from random 35 
or unrelated fluctuations, loss of variance through smoothing, shifts in timing due to irregularities in the 

deposition or uncertainties in dating, or a combination of 
these effects (Fig. 1). We regard a process that adds 
variance on top of an existing climate signal as a “noise 
process”, whereas the loss of variance through smoothing 40 
also constitutes error (i.e., any difference between the true 
and reconstructed climate at a given timescale), but not 
technically noise. Smoothing processes are typically 
deterministic to some extent. For example, two co-located 
ice-core records with similar physical properties are both 45 
affected by same isotopic diffusion and their correlation at 
a certain time-scale will not be affected if there is no 
additional noise (Whilans & Grootes 1985). It is further 
possible to correct individual records for deterministic 
errors if the process is well-understood (Shiffelbein 1985; 50 
Meko 1981; Dolman et al., 2021a; Shaw et al., 2023). By 
contrast, noise is typically independent, generating 
differences between nearby records as well as to the true 
climate signal. Observation and measurement errors are 
best represented by stochastic, uncorrelated noise unless 55 
they represent systematic bias, for example due to a change 
in the measurement apparatus. Because these types of noise 
are typically independent, averaging, or “stacking” 
individual records reduces noise while retaining the climate 
signal.  60 
 
Both noise and smoothing processes incorporate unique 
timescale-dependent uncertainties alongside climate 
signals. For example, trees integrate multi-decadal age-
growth trends alongside climate variations, such that tree-65 
ring time series are typically ‘detrended’ before they are 
used in reconstructions (Fritts 1976; Cook & Kairiukstis 
1990; Speer 2010). Incomplete removal of age-growth 
trends results in long-term biases in tree-ring data, even if 
interannual correlations with climate data remain 70 
reasonably strong (Melvin & Briffa 2008; Melvin & Briffa 
2014 a,b). By contrast, physical smoothing processes such 
as isotopic diffusion or bioturbation in sediments act on fast 
timescales by removing climate information from within 
deposited layers (Johnson et al., 2000; Whillans & Grootes 75 
1985; Hutson 1980; Peng & Broeker 1984). Smoothing 

Figure 1: Conceptual diagram showing 
integration of different types of timescale-
dependent proxy errors alongside climate signals 
via stochastic noise and subtractive smoothing. 
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dampens the climate signal at annual to centennial timescales, becoming less influential on longer 
timescales such that millennial-scale shifts in climate are retained (Schiffelbein & Hills 1984; Laepple 
& Huybers 2013; Münch & Laepple 2018; Bothe et al., 2019).  
 80 
These timescale-dependent variations can be analyzed in the spectral domain and referred to using 
colors by loose analogy to the frequency spectrum of light (Fig 2). Time series with relatively more 
low- than high-frequency variability are considered to be ‘red’, by analogy to long-wave red light, 
whereas a ‘white’ time series implies that power spectral density is distributed evenly across the 
frequency space.  85 

 
 

Figure 2: Spectral noise models with correlation structures referred to by analogy to colored light. Left panels show a simulated 
time series with the noise spectra shown in the right panels. Top: white noise with no correlation with timescale (𝞫 = 0). Middle: red 
noise (sometimes referred to as pink noise) with a positive relationship to timescale (𝞫 = 1). Bottom: blue noise with a negative 90 
relationship to timescale (𝞫 = -1). Note that 𝞫 values for noise spectra are calculated as the slope of a linear model on a log-log plot, 
and expressed as 𝞫 = slope*-1, following the convention where 𝞫 describes the relationship between power and timescale. 
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Low-frequency temperature variability is generally understood to exhibit increasing power with 
timescale, meaning that noise-free temperature proxy spectra would theoretically display a red spectrum 

(Pelletier 1998; Huybers & Curry, 2006; Zhu et al., 95 
2019). Noise, because it originates from a variety of 
sources may display different correlation structures. 
The integration of noise and climate signals may 
either further ‘redden’ or ‘whiten’ the spectrum by 
modifying the correlation structure of the raw time 100 
series. The relationship between power spectral 
density S(ƒ) and frequency ƒ is often summarized 
using a power-law scaling exponent β such that 
S(𝑓)~f-β (Box 1) (Vautard & Ghil 1989, Fraedrich & 
Blender 2003; Hébert et al., 2021). The exponent β 105 
represents the relationship between frequency (or 
time period) and power spectral density, which 
appears as a linear relationship plotted on a log–log 
scale. By convention, the exponent is defined as the 

negative of the relationship with frequency such that a positive exponent actually represents increasing 110 
variance with timescale. Red noise processes are represented with a positive slope value (β>0); the term 
‘pink noise’ is sometimes used specifically for β=1 (Zhu et al., 2023). Red noise is a common noise 
model that implies autocorrelated errors that affect low-frequencies at a greater magnitude. (Mann et al., 
2007; von Stoch et al., 2009; Smerdon 2012). By contrast, a ‘white’ noise process implies errors 
uncorrelated in time such that the variance is distributed evenly across the frequency space (β=0), 115 
similar to the spectrum of white light. White noise is the simplest and most commonly-applied noise 
model in paleoclimate research (Fisher et al., 1985, Amman & Whal 2007; von Storch et al., 2004; 
Mann et al., 2005, Lee et al., 2008; Smerdon et al., 2010; 2012). Finally, blue noise refers to processes 
with relatively higher variability at high frequencies (β<0). Blue noise is characterized by an anti-
correlated structure, implying rapidly vanishing effects with increasing timescale (Mann & Rutherford 120 
2002; Mann et al., 2007).  
 
Our understanding of proxy noise characteristics has evolved out of the need to reconcile diverging 
results in records that should, in principle, contain the same climate signal. For certain processes, such 
as the effects of measurement error, aliasing due to under-sampling, or depositional noise from 125 
roughness at the snow surface, the noise power spectrum can be derived from first principles and 
expressed in closed-form solutions (Fisher et al., 1985; Schiffelbein, 1985; Kunz et al., 2020; Dolman 
et al., 2021b). In cases where the physical and biological processes affecting proxies are well-
understood, a more flexible approach is to use proxy system models (PSMs) (Jones et al., 2009; 
Vaganov et al., 2011; Evans et al., 2013; Tolwinski-Ward et al., 2011; Dee et al., 2016; Dee et al., 130 
2017; Dolman and Laepple, 2018). In this case, climate data sets of temperature and precipitation from 
instrumental data, climate models or stochastic simulations are used as input to the PSM, and synthetic 
proxy time series are simulated. The spectrum of the noise can then be estimated through comparison to 
the climate time series (Dee et al., 2017).  By omitting processes that are not well-understood, PSMs 

Box 1: Summarizing the timescale-dependency of proxy noise 
using spectral power-laws. 

Power-law scaling in frequency space
The spectral exponent β summarizes the  
      relative contribution of high- and low-  
      frequencies to the total variance.
The power spectral density S(𝑓) is assumed 
     to approximately follow a power-law with 
     frequency 𝑓 such that S(𝑓) ~𝑓-β  
β is typically expressed as the negative slope 
     of a linear regression on a log-log plot of 
     the power spectrum. 
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may underestimate the noise level. For example, stratigraphic noise in ice-core-based proxies can 135 
account for more than half of the isotope signal (Hirsch et al., 2023) but stratigraphic processes are not 
represented in current isotope PSMs (Dee et al., 2015). To account for “known unknowns” recent 
studies have added estimates of noise with specific spectral properties to mimic these extraneous 
sources of variability in PSM output, using models or reanalysis data as external validation. (Dee et al., 
2018; Evans et al., 2014; Zhu et al., 2023; Bothe et al., 2019). 140 
 
Alternatively, empirical proxy noise spectra can be derived by relying solely on proxies by exploiting 
the spatial correlation of climate signals in nearby records, building on the assumption that non-climatic 
noise is independent between records. This approach has the advantage of being able to exploit the full 
length of paleoclimate time series without relying on climate models or short instrumental time series, 145 
and without the assumption that physical processes themselves are well-understood. One limitation is 
that this method relies on the availability of replicated or nearby records that have low time-uncertainty, 
such as corals, tree rings, and banded ice cores or laminated sediments. If empirical noise estimates are 
consistent with those derived from mechanistic models this both validates the processes represented in 
PSMs creates a strong basis for using the resulting noise spectra in a variety of research applications.  150 

In this study, we synthesize noise estimates derived directly from multiple proxy types and interpret 
their spectral characteristics in the context of known biological and physical processes. This provides a 
basis for evaluating signal fidelity and for refining assumptions commonly made in proxy system 
models and other experiments. We present noise estimates published in three studies where noise terms 
were derived using a simple empirical approach that partitions shared signal from independent variance 155 
on all timescales (Münch & Laepple 2018), which we describe in the extended data section (Appendix 
A). We show results for published ice cores from Münch & Laepple 2018, tree rings (McPartland et al., 
2024), and corals (Dolman et al., in revision). By presenting these findings alongside evidence from 
first principles and existing literature we aim to deepen a collective understanding of the behavior of 
proxy noise. 160 

The tree-ring and coral data were sourced from global databases compiled by the Past Global Changes 
(PAGES) initiative (PAGES Consortium 2017; Walter et al., 2023), and the ice-core data represent two 
large clusters of cores from Antarctica and Greenland (Graf et al., 2002; Weißbach et al., 2016; 
Hörhold et al., 2023) (Appendix B). Full details on each result are provided in the aforementioned 
studies. We focus our discussion on the noise spectra and resulting signal-to-noise ratio. Evaluating the 165 
climate signal spectra would ideally involve comparison with data and models, which are beyond the 
scope of this paper. In the extended data section, we reproduce the signal spectra and sample density at 
each frequency to provide all information involved in the noise spectra calculations and their 
uncertainty estimates (Appendix C).  

2 The colors of proxy noise across paleo archives 170 

Our review of published noise estimates demonstrates that tree rings and corals exhibit clear red noise 
spectra with positive scaling exponent β values of 0.8 and 0.5 respectively (Fig 3; a, b) such that the 
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power of the noise increases with timescale (McPartland et al. (2024), Dolman et al. (in revision). As 
the noise increases more than the climate signal, this leads to a decline of the signal-to-noise ratio 
(SNR) (Fig 3; d, e). Tree-ring and coral records result from the growth or accretion of layers by an 175 
individual organism over time such that life history or changes in the biological archiving system may 
affect proxy formation. Evidence suggests that proxy records composed of repeated measurements 
made on single long-lived organisms through time are susceptible to ontogenetic effects, the legacies of 
past disturbances, or slow changes in the behaviour of the sensor.  

In dendroclimatology, the pitfalls associated with tree ontogeny have been well-documented (Fritts 180 
1976; Cook et al. 1995; Esper & Frank 2009). Cambial age impacts both tree-ring width and density 
such that detrending to remove juvenile age trends is a near universal practice  (Cook & Kairiukstis 
1990). Even after detrending, residual age effects could partially explain the persistent low-frequency 
bias observed in tree-ring records (Franke et al., 2013, Ault et al., 2013). Detrending itself can also 
introduce biases at medium-frequencies, particularly when fitting raw time series with negative 185 
exponential curves, regional curves or rigid spline functions (Cook & Peters 1997; Melvin & Briffa 
2008; Melvin & Briffa 2014 a;b, Esper 2003, Briffa & Melvin 2011). Techniques such as “signal-free” 
detrending have aimed at boosting low-frequency variability while minimizing bias (Melvin & Briffa 
2008), but despite retaining more low-frequency variance, tests of this method indicated only minor 
improvements in signal strength and signal-free chronologies retained their red-noise spectra 190 
(McPartland et al. 2020; McPartland et al. 2024). By extension, red noise is likely a feature of bivalve 
and sclerosponge chronologies, which contain similar age-growth trends to those found in trees and are 
detrended using the methods originally developed in dendrochronology (Jones 1983; Rypel et al. 2008; 
Hollyman et al., 2018; McCulloch et al., 2024). Tree rings are also smoothed on fast timescales as a 
result of the carryover, or ‘memory’, of prior years’ growth. Biological memory adds temporal 195 
autocorrelation to tree ring time series which has the effect of steepening the slope of the noise spectra 
by reducing high frequency power spectral density (Zhang et al. 2015; Lucke et al. 2019; McPartland et 
al. 2024). ‘Pre-whitening’ chronologies by adjusting their temporal autocorrelation structure to match 
the climate target improves the interannual correlation between data and proxy (Meko 1981), but by 
virtue of removing additional variability at high-frequencies, decreases the ratio of high to low power 200 
spectral density that defines the noise slope term β.   
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Figure 3:  Estimates of proxy noise spectra (a, b, c) and timescale-dependent signal-to-noise ratios (d, e, f). Top: (a) Mean noise 
spectra for tree-ring width and density records from northern hemisphere tree-ring records, (b) Mean noise spectra for tropical 
coral 𝛅18O and strontium/calcium (Sr/Ca) ratios, (c) Noise spectra for ice core 𝛅18O from Dronning Maud Land (light blue) in 205 
Antarctica and the North Greenland Traverse (dark blue). Dashed lines represent an idealized spectral power-law with a slope β = 
1 for proxies containing predominantly red noise (i.e. tree rings and corals), and with β = 0 for proxies (i.e. ice cores) containing 
predominantly white noise.  Bottom: Timescale-dependent signal-to-noise ratios (SNR) for (d) tree rings, (e) corals, and (f) ice cores. 
Dashed lines represent an SNR of 1. Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric 
bootstrapping estimation method. Detailed methods for estimating proxy noise and SNR values can be found in McPartland et al., 210 
(2024) (tree rings), Münch et al., (2018) (ice cores) and Dolman et al., (under revision) (corals). 

 
Coral aragonite records might similarly be affected by changes in the biology of individual or 
descendent polyps over time resulting in a slow drift in the temperature response of the proxy which 
would appear as low-frequency variability. Such changes could be growth-rate related due to reaction-215 
kinetic effects (Goodkin et al., 2005; Hayashi et al., 2013; Maier et al., 2004; Saenger et al., 2008; 
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Suzuki et al., 2005), result from changes in the calcification process (Lough 2004), or persistent 
baseline shifts in trace element ratios following thermal stress events (D’Olivo & McCulloch 2017; 
D’Olivo et al., 2019) perhaps mediated by changes in the composition of photosynthetic symbionts 
(Berkelmans & van Oppen, 2006; Cohen, 2002; Little et al., 2004).  220 
 
The stacks of ice cores from both Greenland and Antarctica that we analyzed show a high white noise 
level where β is approximately equal to zero (Fig 3 e, f) (Münch & Laepple 2018). As the climate 
variations become more pronounced on longer timescales, this leads to an increasing signal-to-noise 
ratio with time. We argue that proxies that are primarily the result of deposition, rather than growth or 225 
accretion primarily contain white noise stemming from stratigraphic processes. Precipitation 
intermittency and post-depositional redistribution in ice cores result in adjacent measurements that 
represent water from different precipitation events (Laepple et al., 2018; Casado et al., 2020; Zuhr et 
al., 2023). By extension, in marine sediments where foraminifera or diatoms are deposited from the 
water column, each sample represents a new set of individuals such that biological effects are 230 
uncorrelated between measurements. From process-based experiments, it has been demonstrated that 
noise in sediment records is also predominantly white with the signal level increasing as more 
individuals are measured (Kunz et al., 2020, Dolman et al., 2021). In both ice and sediment core records 
of near-surface temperature, seasonal depositional cycles are much stronger than any interannual or 
even millennial climate change and the sparse subsampling of the seasonal signal leads to aliasing of 235 
independent noise within the signal of annual variation (Kunz et al., 2020). Precipitation intermittency 
and depositional redistribution break up the signal of the large seasonal cycle that would appear as a 
large spike in the spectrum at annual timescales if the signal were recorded without disruption. Instead, 
the spike is redistributed as white noise across all frequencies (Casado et al., 2020; Münch et al. 2021). 
 240 
We identified fewer examples of blue noise processes in the paleoclimate literature. Because its effects 
diminish quickly with time, blue noise does not introduce error past fast timescales. An example of a 
true blue noise process is the infilling of troughs on ice sheets as wind redistributes snow causing blue 
noise in noise in annual layer thickness records from ice cores (Fisher et al., 1985). Blue noise models 
have occasionally been tested alongside red and white noise to account for a variety of potential types of 245 
error affecting high-frequencies, and to improve the fit between synthetic proxy records and climate 
model data (Mann et al., 2007; Mann & Rutherford 2002). 
 
Like blue noise, smoothing processes predominantly affect high frequencies and becomes less 
significant with timescale. Biological memory in trees, diffusion in ice cores, and bioturbation in 250 
sediments are all examples of smoothing processes that lead to correlated errors between the climate 
and the proxy signal which theoretically  can be accounted for using deterministic modeling (Matalas et 
al., 1962; Berger et al., 1977; Meko 1981; Ruddiman et al., 1980; Whillans and Grootes, 1985). Given 
such a model, the smoothing effect can be reversed, as we applied in this example to ice core data to 
reverse the effects of diffusion (Shaw et al. 2024) (see Appendix A). If, as in the case of diffusion, the 255 
smoothing process affects the signal and the noise equally, the SNR is unbiased at all timescales 
regardless of whether or not a correction for the smoothing effect is applied.. However, when noise is 
introduced after smoothing (e.g. measurement noise), the attenuated climate signal on the high-
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frequency side will be masked by a relatively stronger noise level, biasing the SNR spectrum 
downwards toward high frequencies. In any case, knowledge about and accounting for smoothing 260 
processes in paleoclimate time series is critical for evaluating the short-term effects of climate forcing 
events such as volcanic eruptions (Esper et al., 2015; Zhang et al., 2015; Lücke et al., 2015), but is 
potentially less critical for reconstructing low-frequency variations in climate. 

3 Time uncertainty and noise color 

Dating for all three proxy types discussed here is primarily achieved by some kind of band dating, or by 265 
counting annual cycles in geochemical tracers. If bands or cycles are missed, or double counted, this 
introduces time-uncertainty and an additional source of error in the reconstructed climate time series 
(Comboul et al. 2014). Time uncertainty has little effect on the shape of individual power spectra when 
the spectra are broadband, as is typical for climate time series (Rhines & Huybers, 2011). However, it 
reduces coherence between records, diminishing high-frequency power in stacked spectra and biasing 270 
SNR estimates downward at shorter timescales (Münch & Laepple, 2018; Fig. D1). The effect of time-
uncertainty acts as a linear transfer function on the stacked spectra and can be estimated and corrected 
for if the time uncertainty is known, although this was not applied here (Appendix D). For the ice-core 
records analysed here, the time-uncertainty is due to potential variations in the accumulation rate 
between volcanic tie-points and is negligible for frequencies below 1/10 years (Münch & Laepple 2018, 275 
their Fig. B1).  
 
For the sub-annual resolution coral records used here, age models mostly come from counting annual 
cycles in the geochemical tracers. However, for most coral records there are no independently dated tie-
points and so it is not possible to directly estimate counting error rates and correct for time-uncertainty. 280 
Simulations with potential error rates derived from corals show that the slope of the SNR is biased in 
the opposite direction to the one we estimate (Fig. D1) and that even for very large error rates of 1 in 10 
years’ time-uncertainty cannot account for the low SNR at decadal timescales. Time uncertainty is 
arguably less of an issue for tree-ring records as they are considered to be precisely dated and 
dendrochronologists routinely employ statistical cross-dating techniques to identify and eliminate dating 285 
errors (Holmes et al 1986). Through this process locally absent rings are identified during cross-dating 
and assigned a no-data value to avoid affecting the final chronology. The strength of the tree-ring SNR 
on sub-decadal timescales is indicative of this dating precision.  
 
For proxy archives that are not annually resolved such as reconstructions from non-varved terrestrial 290 
and marine sediment cores, the irregular spacing of samples in time and larger dating uncertainties 
makes stacking unsuitable for this type of noise estimation, representing a limitation of this approach. 
Alternative methods, such as estimating the SNR as a function of time uncertainty (Reschke et al., 
2018), or applying tuning methods that align proxy records by maximizing covariance and assess 
significance against surrogate data (Haam & Huybers, 2010), may still allow for empirical SNR 295 
estimation in these cases. 
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4 Implications of colored noise for climate reconstruction 

The spectrum of temperature on local to global scales is generally accepted to be red (Huybers & Curry 
2006; Cheung et al., 2017; Hasselmann et al., 1976). For proxies with predominantly white-noise 
spectra such as ice cores and sediments, this implies that the power spectral density of the climate signal 300 
relative to the noise, the SNR increases with timescale. This explains why ice cores are faithful 
recorders of millennial climate variability (e.g. EPICA, 2006), while they fail in many regions to 
reconstruct interannual to decadal changes (Stenni et al., 2017). By contrast, in proxies that contain red 
noise, the SNR will rise more slowly or even decline with timescale if the power of the noise rises more 
steeply than the signal, as we demonstrate in tree rings and corals. These proxies are better recorders of 305 
fast time-scale variability where the ratio of signal to noise is highest. For example, corals can deliver 
unique information on tropical climate dynamics such as the El Niño Southern Oscillation (ENSO) (Fig. 
3), but have challenges reconstructing multidecadal trends (Scott et al., 2010).  
 
The color of the noise thus influences the timescales at which a robust climate signal can be 310 
reconstructed, because it introduces a frequency-dependence to the SNR. Information about proxy noise 
can be used to guide future study design (e.g. what proxies can be used to answer a climatic hypothesis) 
and to optimize the sampling and measuring design (e.g. how many cores are needed; what is the 
optimal sampling resolution to minimize noise). It can also be used to estimate time scale-dependent 
uncertainty in climate reconstructions. For individual proxy time series where the signal increases more 315 
strongly with timescale than the noise, when the signal spectrum is “redder” than the noise, binning to a 
coarser timestep or by applying stronger smoothing reduces the noise. This improves the SNR, albeit at 
the cost of losing information at shorter timescales. The extent to which uncertainty is reduced by 
binning or smoothing depends on the relative spectral slopes of both the signal and noise.  
 320 
Knowing the color and level of proxy noise is valuable for a variety of research contexts in 
paleoclimatology. For example, accurate noise models are important for pseudo-proxy experiments 
(PPEs) in which climate model output is degraded into pseudo-proxy time series to test the skill of 
reconstruction methods and evaluate models (Jones et al. 2009; Smerdon et al. 2012). Often PPEs rely 
on sensitivity tests using different noise levels or spectral colors (Riedywl et al. 2009; Smerdon et al., 325 
2010; Mann and Rutherford, 2002; Gomez-Navaro et al. 2017). Red noise is often tested alongside 
white or sometimes blue noise, but typically using a first-order autoregressive (AR(1)) process with a 
fixed spectral slope (β = 2) (Mann et al. 2007; Riedywl et al. 2009). However, this can lead to 
underestimation of the actual noise, especially at low frequencies where the spectrum of an AR(1) 
process levels out. More recent PPEs have integrated full PSM complexity with realistic noise estimates 330 
(Boothe et al. 2019; Zhu et al. 2023). Finally, accurate noise estimation is important in data 
assimilations and field reconstructions to bring reconstructed time series into better alignment with 
calibration datasets, and to propagate uncertainty in estimates of past climate variability (Goose et al. 
2010; King et al. 2021). 
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Conclusion 335 

Building on prior insights from proxy system modeling, and with reference to a first-principles based 
understanding of proxy formation, we present here an overview of how colored noise is represented in 
different types of paleoclimate archives. Incorporating empirical, proxy-specific noise models as 
presented here into a range of paleoclimate research activities will help to move away from the 
assumption that noise is white or follows a first-order autoregressive process, which can lead to 340 
misinterpreting noise as signal and propagating biases into results. These noise models, or models 
derived using similar stacking and variance-partitioning methods, can be used account for the range of 
unique biological and physical processes affecting proxies in pseudo proxy experiments, data 
assimilation frameworks, and reconstructions efforts to improve the representation of patterns of past 
climate variability. 345 

Appendix  

Appendix A:  Estimating the spectrum of noise 

We apply the method of Münch et al., (2018) of combining clustered proxy records into regional stacks 
and analyzing their variance in the frequency domain. This builds on the assumption that the proxy 
signal is a function of four main components: the climate signal, additive noise that arises during the 350 
proxy creation and archiving stages, measurement noise, and any smoothing processes that act during 
archiving but not on the measurement noise; i.e. 
 

 
 355 
where P, C, N, and 𝚺 stand for the power spectral densities of the proxy signal, the climate signal, the 
proxy noise, and the measurement noise, respectively, and where G is a transfer function that describes 
a specific smoothing process such as biological memory, diffusion, or bioturbation. 
 
Given a regional cluster of n proxy records with a similar climate between sites, the mean power 360 
spectrum, M, averaged across all individual records’ spectra, will yield a precise estimate of the proxy 
spectrum P. By contrast, the power spectrum, S, of the stacked record from averaging all records in the 
time domain, will also contain the full climate signal, but with the noise proportions reduced by a factor 
of n. By combining both quantities one can derive expressions for the climate and noise spectra (Münch 
and Laepple, 2018), 365 
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with the ratio of C:N yielding the frequency-resolved signal-to-noise ratio (SNR). A common 370 
smoothing process equally biases the signal and the noise spectrum, if not corrected for by means of the 
inverse transfer function G-1, and hence its effect cancels out in the SNR spectrum. We note that time 
uncertainty between individual proxy records can be another source of smoothing in the stacked record, 
but it is less straightforward to include into our methodology (Münch and Laepple, 2018) and is 
neglected here. 375 

Appendix B: Data 

B.1 Tree Rings  

For the tree-ring data we analyzed the tree-ring records contained within the Past Global Changes 2k 
(PAGES2k) database, a large database compiled to reconstruct global temperature variations during the 
last two millennia. This network of 647 unique paleoclimate records from around the globe includes 380 
450 tree-ring time series, of which we used 421 records of tree-ring width and density located across the 
Northern hemisphere (PAGES 2013, 2017; Neukom et al., 2019). Spatial clusters were defined using 
250-kilometer radii, such that no two sites were more than 500 kilometers apart. Tree-ring width and 
density records were clustered separately so that the proxies weren’t mixed within clusters. This 
resulted in 253 clusters containing a minimum of 3, and a maximum of 30 sites per cluster. The average 385 
number of sites per cluster was 8. There were 18 density and 235 ring width clusters. The average 
length of the overlapping period was around 450 years. The results of all clusters of both proxy types 
were averaged at the end to derive the signal, noise and SNR.  Uncertainty was calculated using a 
parametric bootstrapping approach. (McPartland et al., 2024). 

B.2 Corals 390 

We used the coral records contained within the PAGES Coral Hydro 2k database to obtain coral SNR 
estimates (Walter et al., 2023). The Coral Hydro2k database contains 54 oxygen (δ18O) and strontium 
calcium (Sr/Ca) records from the global tropics. The database was compiled to reconstruct sea surface 
temperature and ocean hydroclimate variability for the past two centuries. Due to fewer records, 1000 
km spatial clusters were used, resulting in 64 clusters. δ18O and Sr/Ca records were clustered separately 395 
and the results were averaged. More information on the coral data curation is contained in Dolman et 
al., under revision. 

B.3 Ice Cores 

As an example for ice-core derived temperature proxies, we use stable isotope records from the 
Dronning Maud Land region in Antarctica (“DML data” in the following; Graf et al., 2002) and from 400 
central-north Greenland (“NGT data” in the following; Weißbach et al., 2016, Hörhold et al., 2023). 
 
The DML data consist of 15 records, 12 of which cover the time period from 1800 to 1998 CE and 3 
records cover 1000–1998 CE. We combine both datasets by using the individual spectral results (Münch 
and Laepple, 2018) of the shorter records on timescales below decadal and of the longer records on the 405 
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supra-decadal timescales. We apply the diffusion correction as in Münch and Laepple (2018) but do not 
use their time-uncertainty correction. 
 
The NGT data comprise 14 cores covering the time span from 1505 to 1979 CE, including original 
records from the North Greenland Traverse published in Weißbach et al (2016) as well as the extended 410 
NGT records from exploiting new drillings as presented in Hörhold et al., (2023). The corresponding 
NGT spectra shown in Hörhold et al., (2023) were not diffusion-corrected; here, to be able to compare 
the NGT spectra to those from the DML data, we apply a diffusion correction to the NGT spectra 
following the method given in Münch and Laepple (2018) with diffusion length estimates calculated as 
described in Hörhold et al., (2023). Note that the SNR spectrum shown in Hörhold et al., (2023) used 415 
the ratio of the integrated signal and noise spectra, which is related to the correlation with the climate 
signal (Münch and Laepple, 2018), whereas here we show the direct ratio of the spectra. 

Appendix C: Signal, noise and signal-to-noise ratio estimation 

Full results for the uncorrected signal, noise and SNR estimates for tree rings, corals and ice-core data 
(Fig. A1 a,b,c,d). Spectra in Fig. 3 represent truncated versions which have been cut off where sample 420 
density in corals and tree rings drop off (shaded regions), as seen in the spectral density plots (Fig A1 
bottom panels). In both corals and tree rings, the SNR rises again due to the reduction in replication and 
dominance by single or a small number of records with higher SNR than average (Fig A1, a,b) (see 
McPartland et al. 2024; Fig 2, e,f). Confidence intervals on all spectra represent the 10th and 90th 
percentiles from a parametric bootstrapping estimation method. In addition to the truncation due to low 425 
sample size, the lowest two spectral estimates on all spectra are removed during SNR calculation and 
confidence interval estimation a the multitaper approach introduces a small bias at the lowest 
frequencies (Percival & Walden, 1993). 
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Figure C1: Timescale-dependent signal, noise and SNR estimates with sample density plots for tree-rings 430 
(a,e), corals (b,f), and ice-core 𝛅18O  data from Dronning Maud Land in Antarctica (c,g) and the North 
Greenland Traverse (d,h).  Top graphs show signal (blue), noise (green) and SNR (purple) curves, with the 
uncorrected “proxy” spectra (yellow). Confidence intervals on all spectra represent the 10th and 90th 
percentiles from a parametric bootstrapping estimation method. The light grey shading indicates the cut-
off point for spectral estimates presented in Fig. 3 when sample density decreases and the results become 435 
more uncertain. Detailed methods for estimating proxy noise and SNR values can be found in McPartland 
et al., (2024) (tree rings), Münch et al., (2018) (ice cores) and Dolman et al., (under revision) (corals).  	
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Appendix D: Simulated effects of time uncertainty on timescale-dependent signal-to-noise ratios 

To illustrate the potential effects of time uncertainty on estimates of signal-to-noise ratio we used the 440 
approach of Comboul et al. (2014) as implemented by Münch and Laepple (2018). Münch and Laepple 
(2018) show that relative time-uncertainty between records in a stack acts as a linear transfer function, 
reducing power in the stack at high frequencies. The precise shape of the transfer function depends on 
the counting error rate, and on the lengths of the time series, as longer time series allow larger relative 

errors to accumulate. It does not depend on the power spectrum 445 
of the initial “true” signal. Here we show the effect on SNR for 
100-year time series with band counting error rates of 1 in 10, 
50 and 100 years, with equal probability of missing or double 
counting a band. The effect on estimated SNR is shown 
relative to a hypothetical true SNR of 1.  450 

 
 
	
 
 455 
 
 
 
 
 460 
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Data Availability 
This work represents a synthesis of multiple independent research projects. The data needed to 
reproduce the tree-ring and coral data are publicly available through the NOAA National Centers for 
Environmental Information (Emile-Geay et al., 2017; Walter et al., 2023). The original Antarctic ice- 470 
core isotope data are archived at the PANGAEA database (Graf et al., 2002) as well as the Greenland 
data except for core NGRIP whose data is available from the Centre for Ice and Climate of Copenhagen 
University (Weißbach et al., 2016; Hörhold et al.,, 2023). PANGAEA is hosted by the Alfred Wegener 
Institute Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven and the Center for 
Marine Environmental Sciences (MARUM), Bremen, Germany. 475 

Figure D1: The influence of time-
uncertainty on SNR estimated by 
the stacking method. Here time 
uncertainty is simulated for a set of 
100-year records with band 
counting error rates of 1 in 10, 50 
and 100, and a true SNR of 10 at all 
frequencies. The simulation was 
carried out following Münch and 
Laepple (2018) which implements 
the counting error model of 
Comboul et al. (2014). 
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Code Availability 

The general software to conduct the separation of signal and noise in the spectral domain and to perform 
the signal-to-noise ratio analysis is available as the R package proxysnr from the open research data 
repository Zenodo (Münch, 2018). Additionally, specific code to reproduce the tree-ring, coral, and ice-
core analyses, respectively, are also available via Zenodo (McPartland 2024, Dolman 2024; Münch 480 
2025 a,b). 
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