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Abstract.

The complex biological and physical processes that shape and preserve paleoclimate information over centuries or longer
introduce variations in proxy records that are unrelated to the climate signals being reconstructed. These variations often
depend on the timescale and are referred to as “noise” of a specific color, based on similarities between a time series’ power
spectrum and the electromagnetic spectrum of light. For example, “white noise” equally affects all timescales, where “red
noise” dominates only on long timescales, similar to longwave red light. Noise spectra for proxy records have far-reaching
implications in paleoclimate research, but noise characteristics are often assumed based on first principles rather than estimated
directly, risking either inflating or underestimating error at particular frequencies. Here, we provide concrete definitions of
types of timescales-dependent errors and review methods for estimating these errors in different types of proxy data. We then
synthesize the results of several studies that use a common empirical approach for estimating the noise spectrum in ice core,
coral, and tree-ring data. We posit that the colors of proxy noise are archive- specific, with white noise dominating in
depositional archives such as ice-cores and marine sediment cores, while red noise is likely more common in biological
archives such as tree rings and corals. Our findings can support assigning colored noise terms in proxy system models, data

assimilations and other experiments.

1 Introduction

Paleoclimate proxy records archive past climate information via biophysical or depositional pathways and preserve it in rings,
layers or strata. The processes that create these records integrate non-climatic variability alongside the climate signal either
during the archiving process, or afterwards as the physical record is modified over time (Cook 1987; Evans et al., 2013).
Recovering paleoclimate information from these archives requires sophisticated data processing and modeling techniques
intended to extract climate-related variance from noisy time series (von Storch et al., 2004; Cook & Kairiukstis 1990; Hughes
& Ammann 2009; Dee et al., 2016). Recognizing that these methods may be imperfect, the challenge lies in rigorously

quantifying and minimizing the impact of non-climatic variations on the signal of past climate changes.

Modification of proxy records can result in the addition of variance from random or unrelated fluctuations, loss of variance

through smoothing, shifts in timing due to irregularities in the deposition or uncertainties in dating, or a combination of these



effects (Fig. 1). We regard a process that adds variance on top of an existing climate signal as a “noise process”, whereas the

loss of variance through smoothing also constitutes error, but not technically noise. Smoothing processes are typically
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Figure 1: Conceptual diagram showing integration
of different types of timescale-dependent proxy
errors alongside climate signals via stochastic
noise and subtractive smoothing.

deterministic to some extent. For example, two ice-core records with similar
physical properties are both affected by same isotopic diffusion and their
correlation at a certain time-scale will not be affected if there is no additional
noise (Whilans & Grootes 1985). It is further possible to correct individual
records for deterministic errors if the process is well-understood
(Shiffelbein 1985; Meko 1981; Dolman et al., 2021a; Shaw et al., 2023). By
contrast, noise is typically independent, generating differences between
individual records as well as to the true climate signal. Observation and
measurement errors are best represented by stochastic, uncorrelated noise
unless they represent systematic bias, for example due to a change in the
measurement apparatus. Because these types of noise are typically
independent, averaging, or “stacking” individual records reduces noise

while retaining the climate signal.

Both noise and smoothing processes incorporate unique timescale-
dependent uncertainties alongside climate signals. For example, trees
incorporate multi-decadal age-growth trends alongside climate variations,
such that tree-ring time series are typically ‘detrended’ before they are used
in reconstructions (Fritts 1976; Cook & Kairiukstis 1990; Speer 2010).
Incomplete removal of age-growth trends results in long-term biases in tree-
ring data, even if interannual correlations with climate data remain
reasonably strong (Melvin & Briffa 2008; Melvin & Briffa 2014 a,b).
Physical smoothing processes such as isotopic diffusion or bioturbation in
sediments acts within the deposited layers on to remove climate information
on fast timescales (Johnson et al., 2000; Whillans & Grootes 1985; Hutson
1980; Peng & Broeker 1984). Smoothing dampens the climate signal on fast
timescales, becoming less influential on longer timescales such that
millennial-scale shifts in climate are retained (Schiffelbein & Hills 1984;

Laepple & Huybers 2013; Miinch & Laepple 2018; Bothe et al., 2019).
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The timescale-dependent variations of a time series can be analyzed in the spectral domain and referred to using colors by
loose analogy to the frequency spectrum of light (Fig 2). Time series with relatively more low- than high-frequency
variability are considered to be ‘red’, by analogy to long-wave red light, whereas a ‘white’ time series implies that power

spectral density is distributed evenly across the frequency space.
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Figure 2: Spectral noise models with correlation structures referred to by analogy to colored light. Left panels show a simulated
time series with the noise spectra shown in the right panels. Top: white noise with no correlation with timescale (8 = 0). Middle: red
noise (sometimes referred to as pink noise) with a positive relationship to timescale (8 = 1). Bottom: blue noise with a negative
relationship to timescale (8 = -1). Note that B8 values for noise spectra are calculated as the slope of a linear model on a log-log plot,
and expressed as f8 = slope*-1, following the convention where B describes the relationship between power and timescale.

Low-frequency temperature variability is generally understood to exhibit increasing power with timescale, meaning that noise-
free temperature proxy spectra would theoretically display a red spectrum (Pelletier 1998; Huybers & Curry, 2006; Zhu et al.,
2019). Noise, because it originates from a variety of sources may display different correlation structures. The integration of
noise and climate signals may either further ‘redden’ or ‘whiten’ the spectrum by modifying the correlation structure of the
raw time series. The relationship between power spectral density S(f) and frequency f is often summarized using a power-law
scaling exponent 8 such that S(/)~f* (Box 1) (Vautard & Ghil 1989, Fraedrich & Blender 2003; Hébert et al., 2021). The

exponent f represents the relationship between frequency (or time period) and power spectral density, which appears as a
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linear relationship plotted on a log—log scale. By convention, the exponent is defined as the negative of the relationship with

frequency such that a positive exponent actually represents increasing variance with timescale. Red noise processes are

p ~ represented with a positive slope value (£>0); the term ‘pink
Power-law scaling in frequency space
® The spectral exponent 3 summarizes the

relative contribution of high- and low-
frequencies to the total variance. errors that affect low-frequencies at a greater magnitude. (Mann

noise’ is sometimes used specifically for f=1 (Zhu et al. 2023).

Red noise is a common noise model that implies autocorrelated

® The power spectral density S(f) is assumed et al., 2007; von Stoch et al., 2009; Smerdon 2012). By contrast,
to approximately follow a power-law with
frequency f such that S(f) ~f*

® B s typically expressed as the negative slope
of a linear regression on a log-log plot of

a ‘white’ noise process implies errors uncorrelated in time such
that the variance is distributed evenly across the frequency space

(f=0), similar to the spectrum of white light. White noise is the

the power spectrum. ) simplest and most commonly-applied noise model in
Box 1: Summarizing the timescale-dependency of proxy noise paleoclimate research (Fisher et al., 1985, Amman & Whal 2007;
using spectral power-laws. von Storch et al., 2004; Mann et al., 2005, Lee et al., 2008;

Smerdon et al., 2010; 2012). Finally, blue noise refers to
processes with relatively higher variability at high frequencies ($<0). Blue noise is characterized by an anti-correlated structure,

implying rapidly vanishing effects with increasing timescale (Mann & Rutherford 2002; Mann et al., 2007).

Our understanding of proxy noise characteristics has evolved out of the need to reconcile diverging results in records that
should contain the same climate signal. For certain processes, such as the effects of measurement error, aliasing due to under-
sampling, or depositional noise from roughness at the snow surface, the noise power spectrum can be derived from first
principles and expressed in closed-form solutions (Fisher et al., 1985; Schiffelbein, 1985; Kunz et al., 2020; Dolman et al.,
2021b). In cases where the physical and biological processes affecting proxies are well understood, a more flexible approach
is to use proxy system models (PSMs) (Jones et al., 2009; Vaganov et al. 2011; Evans et al. 2013; Tolwinski-Ward et al. 2011;
Dee et al., 2016; Dee et al., 2017; Dolman and Laepple, 2018). In this case, climate data sets of temperature and precipitation
from instrumental data, climate models or stochastic simulations are used as input to the PSM, and synthetic proxy time series
are simulated. The spectrum of the noise can then be estimated through comparison to the climate time series (Dee et al., 2017).
By omitting processes that are not well-understood, PSMs risk underestimating the noise level. For example, stratigraphic
noise in ice-core-based proxies can account for more than half of the isotope signal (Hirsch et al., 2023) but stratigraphic
processes are not represented in current isotope PSMs (Dee et al., 2015). To account for “known unknowns” recent studies
have added estimates of noise with specific spectral properties to mimic these extraneous sources of variability in PSM output,

using models or reanalysis data as external validation. (Dee et al., 2018; Evans et al. 2014; Zhu et al. 2023; Bothe et al. 2019).

Alternatively, empirical proxy noise spectra can be derived by relying solely on proxies by exploiting the spatial correlation

of climate signals in nearby records, building on the assumption that non-climatic noise is independent between records. This
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approach has the advantage of being able to exploit the full length of paleoclimate time series without relying on climate
models or short instrumental time series, and without the assumption that physical processes themselves are well-understood.
One limitation is that this method relies on the availability of replicated or nearby records that have low time-uncertainty, such
as corals, tree rings, and banded ice cores or laminated sediments. If empirical noise estimates are consistent with those derived
from mechanistic models this both validates the processes represented in PSMs creates a strong basis for using the resulting

noise spectra in a variety of research applications.

In this study, we synthesize noise estimates derived directly from multiple proxy types and interpret their spectral
characteristics in the context of known biological and physical processes. This contribution provides a basis for evaluating
signal fidelity and for refining assumptions commonly made in proxy system models and other experiments. We present noise
estimates published in three studies where noise terms were derived using a simple empirical approach that partitions shared
signal from independent variance on all timescales (Miinch & Laepple 2018), and described the extended data section
(Appendix A). We show results for published ice cores from Miinch & Laepple 2018, tree rings (McPartland ef al., 2024), and
corals (Dolman ef al., in revision). By presenting these findings alongside evidence from first principles and existing literature

we aim to deepen a collective understanding of the behaviour of proxy noise.

The tree-ring and coral data were sourced from global databases compiled by the Past Global Changes (PAGES) initiative
(PAGES Consortium 2017; Walter et al., 2023), and the ice core data represent two large clusters of cores from Antarctica and
Greenland (Graf ef al., 2002; Weillbach et al.,, 2016; Horhold et al., 2023) (Appendix B). Full details on each result are
provided in the aforementioned studies. We focus our discussion on the noise spectra and resulting signal-to-noise ratio.
Evaluating the climate signal curves would ideally involve comparison with data and models, which are beyond the scope of
this paper. In the extended data section, we reproduce the signal spectra and sample density at each frequency to provide all

information involved in the noise spectra calculations and their uncertainty estimates (Appendix C).

2 The colors of proxy noise

Our synthesis demonstrates that tree rings and corals exhibit clear red noise spectra with positive scaling exponent f values of
0.8 and 0.5 respectively (Fig 3; a, b) such that the power of the noise increases with timescale. As the noise increases more
than the climate signal, this leads to a decline of the signal-to-noise ratio (SNR) with timescale (Fig 3; d, ¢). Tree-ring and
coral records result from the growth or accretion of layers by an individual organism over time such that life history or changes
in the biological archiving system may affect proxy formation. We posit that proxy records composed of repeated
measurements made on single long-lived organisms through time are susceptible to ontogenetic effects, the legacies of past

disturbances, or slow changes in the behaviour of the sensor.
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Figure 3: Estimates of proxy noise spectra (a, b, ¢) and timescale-dependent signal-to-noise ratios (d, e, f). Top: (a) Mean noise
spectra for tree-ring width and density records from northern hemisphere tree-ring records, (b) Mean noise spectra for tropical
coral 8+O and strontium/calcium (Sr/Ca) ratios, (c) Noise spectra for ice core 8*O from Dronning Maud Land (light blue) in
Antarctica and the North Greenland Traverse (dark blue). Dashed lines represent an idealized spectral power-law with a slope f =
1 for proxies containing predominantly red noise (i.e. tree rings and corals), and with § = 0 for proxies (i.e. ice cores) containing
predominantly white noise. Bottom: Timescale-dependent signal-to-noise ratios (SNR) for (d) tree rings, (e) corals, and (f) ice cores.
Dashed lines represent an SNR of 1. Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric
bootstrapping estimation method. Detailed methods for estimating proxy noise and SNR values can be found in McPartland et al.,
(2024) (tree rings), Miinch et al., (2018) (ice cores) and Dolman et al., (under revision) (corals).

In trees, cambial age impacts both tree-ring width and density, such that detrending to remove juvenile age trends is a near
universal practice in dendrochronology (Cook & Kairiukstis 1990). Even after detrending, residual age effects could partially
explain the persistent low-frequency bias observed in tree-ring records (Franke et al., 2013, Ault et al., 2013). Detrending itself

can also introduce biases at medium-frequencies, particularly when fitting raw time series with negative exponential curves,
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regional curves or rigid spline functions (Melvin &Briffa 2008; Melvin & Briffa 2014 a;b, Esper 2003, Briffa & Melvin 2011).
Techniques such as “signal-free” detrending have aimed at boosting low-frequency variability while minimizing bias (Melvin
& Briffa 2008), but despite retaining more low-frequency variance, tests of this method indicated only minor improvements
in signal strength and signal-free chronologies retained their red-noise spectra (McPartland et al. 2020; McPartland et al. 2024).
By extension, red noise is likely a feature of bivalve and sclerosponge chronologies, which contain similar age-growth trends
to those found in trees and are detrended using the methods originally developed in dendrochronology (Jones 1983; Rypel et.
al 2008; Hollyman et al., 2018; McCulloch et al., 2024). Tree rings are also smoothed on fast timescales as a result of the
carryover, or ‘memory’, of prior years’ growth. Biological memory adds temporal autocorrelation to tree ring time series which
has the effect of steepening the slope of the noise spectra by reducing high frequency power spectral density (Zhang et al.
2015; Lucke et al. 2019; McPartland et al. 2024). ‘Pre-whitening’ chronologies by adjusting their temporal autocorrelation
structure to match the climate target improves the interannual correlation between data and proxy (Meko 1981), but by virtue
of removing additional variability at high-frequencies, decreases the ratio of high to low power spectral density that defines

the noise slope term f£.

Coral aragonite records might be affected by changes in the biology of individual or descendent polyps over time resulting in
a slow drift in the temperature response of the proxy which would appear as low-frequency variability. Such changes could be
growth-rate related due to reaction-kinetic effects (Goodkin et al., 2005; Hayashi et al., 2013; Maier et al., 2004; Saenger et
al., 2008; Suzuki et al., 2005), result from changes in the calcification process (Lough 2004), or persistent baseline shifts in
trace element ratios following thermal stress events (D’Olivo & McCulloch 2017; D’Olivo et al., 2019) perhaps mediated by
changes in the composition of photosynthetic symbionts (Berkelmans and van Oppen, 2006; Cohen, 2002; Little et al., 2004).

The stacks of ice cores from both Greenland and Antarctica that we analyzed show a high white noise level where f is
approximately equal to zero (Fig 3 e, f). As the climate variations become more pronounced on longer timescales, this leads
to an increasing signal-to-noise ratio with time. We argue that proxies that are primarily the result of deposition, rather than
growth or accretion primarily contain white noise stemming from stratigraphic processes. Precipitation intermittency and post-
depositional redistribution in ice cores result in adjacent measurements that represent water from different precipitation events
(Laepple et al., 2018; Casado et al., 2020; Zuhr et al., 2023). By extension, in marine sediments where foraminifera or diatoms
are deposited from the water column, each sample represents a new set of individuals such that biological effects are
uncorrelated between measurements. From process-based experiments, it has been demonstrated that noise in sediment records
is also predominantly white with the signal level increasing as more individuals are measured (Kunz et al., 2020, Dolman et
al., 2021). In both ice and sediment core records of near-surface temperature, seasonal depositional cycles are much stronger
than any interannual or even millennial climate change and the sparse subsampling of the seasonal signal leads to aliasing of
independent noise within the signal of annual variation (Kunz et al.,, 2020). Precipitation intermittency and depositional

redistribution break up the signal of the large seasonal cycle that would appear as a large spike in the spectrum at annual
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timescales if the signal were recorded without disruption. Instead, the spike is redistributed as white noise across all frequencies

(Casado et al., 2020; Miinch et al. 2021).

We identified fewer examples of blue noise processes in the paleoclimate literature. Because its effects diminish quickly with
time, blue noise does not introduce error past fast timescales. An example of a true blue noise process is the infilling of troughs
on ice sheets as wind redistributes snow causing blue noise in noise in annual layer thickness records from ice-cores (Fisher et
al., 1985). Blue noise models have occasionally been tested alongside red and white noise to account for a variety of potential
types of error affecting high-frequencies, and to improve the fit between synthetic proxy records and climate model data (Mann

et al., 2007; Mann & Rutherford 2002).

Like blue noise, smoothing processes predominantly affect high frequencies and becomes less significant with timescale.
Biological memory in trees, diffusion in ice cores, and bioturbation in sediments are all examples of smoothing processes that
lead to correlated errors between the climate and the proxy signal which, in theory, can be accounted for using deterministic
modeling (Matalas ef al., 1962; Berger et al., 1977; Meko 1981; Ruddiman ef al., 1980; Whillans and Grootes, 1985). Given
such a model, the smoothing effect can be reversed, as applied in our example to ice core data to reverse the effects of diffusion
(Shaw et al. 2024) (see Appendix A). If the smoothing process affects the signal and the noise equally during deposition or
accretion, the SNR is unbiased at all timescales, regardless of whether or not a correction for the smoothing effect is applicable,
as is the case for diffusion in ice cores. However, when noise is introduced after smoothing (e.g. measurement noise), the
attenuated climate signal on the high-frequency side will be masked by a relatively stronger noise level, biasing the SNR
spectrum downwards toward high frequencies. In any case, knowledge about and accounting for smoothing processes in
paleoclimate time series is critical for evaluating the short-term effects of climate forcing events such as volcanic eruptions
(Esper et al., 2015; Zhang et al., 2015; Liicke et al., 2015), but is potentially less critical for reconstructing low-frequency

variations in climate.

Dating for all three proxy types discussed here is primarily achieved by some kind of band counting, or by counting annual
cycles in geochemical tracers. If bands or cycles are missed, or double counted, this introduces time-uncertainty and an
additional source of error in the reconstructed climate time series (Comboul et al. 2014). Time uncertainty has little effect on
the shape of individual power spectra when the spectra are broadband, as is typical for climate time series (Rhines & Huybers,
2011). However, it reduces coherence between records, diminishing high-frequency power in stacked spectra and biasing SNR
estimates downward at shorter timescales (Miinch & Laepple, 2018; Fig. D1). The effect of time-uncertainty acts as a linear
transfer function on the stacked spectra and can be estimated and corrected for if the time uncertainty is known, although this
was not applied here (Appendix D). For the ice-core records analysed here, the time-uncertainty is due to potential variations
in the accumulation rate between volcanic tie-points and is negligible for frequencies below 1/10 years (Miinch & Laepple

2018, their Fig. B1). For the sub-annual resolution coral records used here, age models mostly come from counting annual
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cycles in the geochemical tracers. However, for most coral records there are no independently dated tie-points and so it is not
possible to directly estimate counting error rates and correct for time-uncertainty. Simulations with potential error rates derived
from corals show that the slope of the SNR is biased in the opposite direction to the one we estimate (Fig. D1) and that even
for very large error rates of 1 in 10 years’ time-uncertainty cannot account for the low SNR at decadal timescales. Time
uncertainty is arguably less of an issue for tree-ring records as they are considered to be precisely dated and
dendrochronologists routinely employ statistical cross-dating techniques to identify and eliminate dating errors (Holmes et al
1986). Through this process locally absent rings are identified during cross-dating and assigned a no-data value to avoid
affecting the final chronology. The strength of the tree-ring SNR on sub-decadal timescales is indicative of this dating

precision.

For proxy archives that are not annually resolved such as reconstructions from non-varved terrestrial and marine sediment
cores, the irregular spacing of samples in time and larger dating uncertainties makes stacking unsuitable for this type of noise
estimation, representing a limitation of this approach. Alternative methods, such as estimating the SNR as a function of time
uncertainty (Reschke et al., 2018), or applying tuning methods that align proxy records by maximizing covariance and assess

significance against surrogate data (Haam & Huybers, 2010), may still allow for empirical SNR estimation in these cases.

3 Implications

The spectrum of temperature on local to global scales is generally accepted to be red (Huybers & Curry 2006; Cheung et al.,
2017; Hasselmann et al., 1976). For proxies with predominantly white-noise spectra such as ice cores and sediments, this
implies that the power spectral density of the climate signal relative to the noise, the SNR increases with timescale. This
explains why ice cores are faithful recorders of millennial climate variability (e.g. EPICA, 2006), while they fail in many
regions to reconstruct interannual to decadal changes (Stenni et al., 2017). By contrast, in proxies that contain red noise, the
SNR will rise more slowly or even decline with timescale if the power of the noise rises more steeply than the signal, as we
demonstrate in tree rings and corals. These proxies are better recorders of fast time-scale variability where the ratio of signal
to noise is highest. For example, corals can deliver unique information on tropical climate dynamics such as the El Nifio

Southern Oscillation (ENSO) (Fig. 3), but have challenges reconstructing multidecadal trends (Scott ef al., 2010).

The color of the noise thus influences the timescales at which a robust climate signal can be reconstructed, because it introduces
a frequency-dependence to the SNR. Information about proxy noise can be used to guide future study design (i.e. what proxies
can be used to answer a climatic hypothesis) and to optimize the sampling and measuring design (i.e. how many cores are
needed; what is the optimal sampling resolution to minimize noise). It can also be used to estimate time scale-dependent
uncertainty in climate reconstructions. For individual proxy time series where the signal increases more strongly with timescale

than the noise, when the signal spectrum is “redder” than the noise, binning to a coarser timestep or by applying stronger
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smoothing reduces the noise. This improves the SNR, albeit at the cost of losing information at shorter timescales. The extent

to which uncertainty is reduced by binning or smoothing depends on the relative spectral slopes of both the signal and noise.

Knowing the color and level of proxy noise is valuable for a variety of research contexts in paleoclimatology. For example,
accurate noise models are important for pseudo-proxy experiments (PPEs) in which climate model output is degraded into
pseudo-proxy time series to test the skill of reconstruction methods and evaluate models (Jones et al. 2009; Smerdon et al.
2012). Often PPEs reley on sensitivity tests using different noise levels or spectral colors (Riedywl et al. 2009; Smerdon et al.,
2010; Mann and Rutherford, 2002; Gomez-Navaro et al. 2017). Red noise may be tested alongside white or sometimes blue
noise, but typically using a first-order autoregressive (AR(1)) process with a fixed spectral slope (f = 2) (Mann et al. 2007;
Riedywl et al. 2009). However, this can lead to underestimation of the actual noise, especially at low frequencies where the
spectrum of an AR(1) process levels out. More recent PPEs have integrated full PSM complexity with realistic noise estimates
(Boothe et al. 2019; Zhu et al. 2023). Finally, accurate noise estimation is important in data assimilations and field
reconstructions to bring reconstructed time series into better alignment with calibration datasets, and propagate uncertainty in

estimates of past climate variability (Goose et al. 2010; King et al. 2021).

Conclusion

Building on prior insights from proxy system modeling, and with reference to a first-principles based understanding of proxy
formation, we present here an overview of how colored noise is represented in different types of paleoclimate archives.
Incorporating empirical, proxy-specific noise models as presented here into a range of paleoclimate research activities. This
will help to move away from the assumption that noise is white or follows a first-order autoregressive process, which can
lead to misinterpreting noise as signal and propagating biases into results. These noise models, or models derived using
similar stacking and variance-partitioning methods, can be used account for the range of unique biological and physical
processes affecting proxies in pseudo proxy experiments, data assimilation frameworks, and reconstructions efforts to

improve the representation of patterns of past climate variability.

Appendix
Appendix A: Estimating the spectrum of noise

We apply the method of Miinch ef al., (2018) of combining clustered proxy records into regional stacks and analyzing their
variance in the frequency domain. It builds on the assumption that the proxy signal is a function of four main components: the
climate signal, additive noise that arises during the proxy creation and archiving stages, measurement noise, and any smoothing

processes that act during archiving but not on the measurement noise; i.e.
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P=f(CN,EG)=G(C+N)+X

where P, C, N, and X stand for the power spectral densities of the proxy signal, the climate signal, the proxy noise, and the
measurement noise, respectively, and where G is a transfer function that describes a specific smoothing process such as

biological memory, diffusion, or bioturbation.

Given a regional cluster of n proxy records with a similar climate between sites, the mean power spectrum, M, averaged across
all individual records’ spectra, will yield a precise estimate of the proxy spectrum P. By contrast, the power spectrum, S, of
the stacked record from averaging all records in the time domain, will also contain the full climate signal, but with the noise
proportions reduced by a factor of n. By combining both quantities one can derive expressions for the climate and noise spectra
(Miinch and Laepple, 2018),

-1\
G

no

C=—"" g S-M/n); N=—" g—1<M—S—

n—1 n—1

with the ratio of C: N yielding the frequency-resolved signal-to-noise ratio (SNR). A common smoothing process equally biases
the signal and the noise spectrum, if not corrected for by means of the inverse transfer function G/, and hence its effect cancels
out in the SNR spectrum. We note that time uncertainty between individual proxy records can be another source of smoothing
in the stacked record, but it is less straightforward to include into our methodology (Miinch and Laepple, 2018) and is neglected

here.

Appendix B: Data
B.1 Tree Rings

For the tree-ring data we analyzed the tree-ring records contained within the Past Global Changes 2k (PAGES2k) database, a
large database compiled to reconstruct global temperature variations during the last two millennia. This network of 647 unique
paleoclimate records from around the globe includes 450 tree-ring time series, of which we used 421 records of tree-ring width
and density located across the Northern hemisphere (PAGES 2013, 2017; Neukom et al., 2019). Spatial clusters were defined
using 250-kilometer radii, such that no two sites were more than 500 kilometers apart. Tree-ring width and density records
were clustered separately so that the proxies weren’t mixed within clusters. This resulted in 253 clusters containing a minimum
of 3, and a maximum of 30 sites per cluster. The average number of sites per cluster was 8. There were 18 density sites and

235 ring width clusters. The average length of the overlapping period was around 450 years. The results of all clusters of both
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proxy types were averaged at the end to derive the signal, noise and SNR. Uncertainty was calculated using a parametric

bootstrapping approach. (McPartland et al., 2024).

B.2 Corals

We used the coral records contained within the PAGES Coral Hydro 2k database to obtain coral SNR estimates (Walter ef al.,
2023). The Coral Hydro2k database contains 54 oxygen (5'%0) and strontium calcium (Sr/Ca) records from the global tropics.
The database was compiled to reconstruct sea surface temperature and ocean hydroclimate variability for the past two centuries.
Due to fewer records, 1000 km spatial clusters were used, resulting in 64 clusters. §'*0 and Sr/Ca records were clustered
separately and the results were averaged. More information on the coral data curation is contained in Dolman et al., under

revision.

B.3 Ice Cores

As an example for ice-core derived temperature proxies, we use stable isotope records from the Dronning Maud Land region
in Antarctica (“DML data” in the following; Graf et al., 2002) and from central-north Greenland (“NGT data” in the following;
Weillbach ef al., 2016, Horhold et al., 2023).

The DML data consist of 15 records, 12 of which cover the time period from 1800 to 1998 CE and 3 records cover 1000—-1998
CE. We combine both datasets by using the individual spectral results (Miinch and Laepple, 2018) of the shorter records on
timescales below decadal and of the longer records on the supra-decadal timescales. We apply the diffusion correction as in

Miinch and Laepple (2018) but do not use their time-uncertainty correction.

The NGT data comprise 14 cores covering the time span from 1505 to 1979 CE, including original records from the North
Greenland Traverse published in Weiflbach et al (2016) as well as the extended NGT records from exploiting new drillings as
presented in Horhold et al., (2023). The corresponding NGT spectra shown in Horhold et al., (2023) were not diffusion-
corrected; here, to be able to compare the NGT spectra to those from the DML data, we apply a diffusion correction to the
NGT spectra following the method given in Miinch and Laepple (2018) with diffusion length estimates calculated as described
in Horhold et al., (2023). Note that the SNR spectrum shown in Horhold et al., (2023) used the ratio of the integrated signal
and noise spectra, which is related to the correlation with the climate signal (Miinch and Laepple, 2018), whereas here we

show the direct ratio of the spectra.

Appendix C: Signal, noise and signal-to-noise ratio estimation

Full results for the uncorrected signal, noise and SNR estimates for tree rings, corals and ice core data (Fig. Al a,b,c,d).
Spectra in Fig. 3 represent truncated versions which have been cut off where sample density in corals and tree rings drop off

(shaded regions), as seen in the spectral density plots (Fig Al bottom panels). In both corals and tree rings, the SNR rises
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again due to the reduction in replication and dominance by single or a small number of records with higher SNR than
average (Fig A1, a,b) (see McPartland et al. 2024; Fig 2, ef). Confidence intervals on all spectra represent the 10th and 90th
percentiles from a parametric bootstrapping estimation method. In addition to the truncation due to low sample size, the
lowest two spectral estimates on all spectra are removed during SNR calculation and confidence interval estimation a the

multitaper approach introduces a small bias at the lowest frequencies (Percival & Walden, 1993).

(a) Tree rings (b) Corals (c) Ice (Antarctica) (d) Ice (Greenland)
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Figure C1: Timescale-dependent signal, noise and SNR estimates with sample density plots for tree-rings (a,e), corals
(b,f), and ice core 8'%0 data from Dronning Maud Land in Antarctica (c,g) and the North Greenland Traverse (d,h).
Top graphs show signal (blue), noise (green) and SNR (purple) curves, with the uncorrected “proxy” spectra (yellow).
Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric bootstrapping estimation
method. The light grey shading indicates the cut-off point for spectral estimates presented in Fig. 3 when sample density
decreases and the results become more uncertain. Detailed methods for estimating proxy noise and SNR values can be
found in McPartland et al., (2024) (tree rings), Miinch et al., (2018) (ice cores) and Dolman et al., (under revision)
(corals).
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Appendix D: Simulated effects of time uncertainty on timescale-dependent signal-to-noise ratios

65 To illustrate the potential effects of time uncertainty on estimates of signal-to-noise ratio we used the approach of Comboul et
al. (2014) as implemented by Miinch and Laepple (2018). Miinch and Laepple (2018) show that relative time-uncertainty
between records in a stack acts as a linear transfer function, reducing power in the stack at high frequencies. The precise shape
of the transfer function depends on the counting error rate, and on the lengths of the time series, as longer time series allow

larger relative errors to accumulate. It does not depend on the power spectrum

of the initial “true” signal. Here we show the effect on SNR for 100-year time
Frequency (1/Year)

001  0.033 0.1 0.5 series with band counting error rates of 1 in 10, 50 and 100 years, with equal
1000 T e~ T T T T T ] probability of missing or double counting a band. The effect on estimated
SNR is shown relative to a hypothetical true SNR of 1.
0.100 A

Figure DI1: The influence of time-
0.010 - uncertainty on SNR estimated by the
stacking method. Here time uncertainty is
simulated for a set of 100-year records with
0.001 4 band counting error rates of 1 in 10, 50 and
100, and a true SNR of 10 at all frequencies.
The simulation was carried out following

[any
P4
«n

100 0.03 0.1 05  Miinch and Laepple (2018) which
Timescale (years) implements the counting error model of
Comboul et al. (2014).
== 1in 10
Counting error rate === 1 in 50
== 1in 100

90 Data Availability
This work represents a synthesis of multiple independent research projects. The data needed to reproduce the tree-ring and
coral data are publicly available through the NOAA National Centers for Environmental Information (Emile-Geay et al., 2017;
Walter et al., 2023). The original Antarctic ice core isotope data are archived at the PANGAEA database (Graf et al., 2002) as
well as the Greenland data except for core NGRIP whose data is available from the Centre for Ice and Climate of Copenhagen
95  University (Weilbach et al., 2016; Horhold et al.,, 2023). PANGAEA is hosted by the Alfred Wegener Institute Helmholtz
Centre for Polar and Marine Research (AWI), Bremerhaven and the Center for Marine Environmental Sciences (MARUM),

Bremen, Germany.
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Code Availability

The general software to conduct the separation of signal and noise in the spectral domain and to perform the signal-to-noise
ratio analysis is available as the R package proxysnr from the open research data repository Zenodo (Miinch, 2018).
Additionally, specific code to reproduce the tree-ring, coral, and ice-core analyses, respectively, are also available via Zenodo

(McPartland 2024, Dolman 2024; Miinch 2024).
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