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Abstract.

The complex biological and physical processes that shape-and-preserve paleoclimate information over
centuries or longer introduce variations in proxy time seriesreeords that are unrelated to the true climate
sfgﬁais—bemg—reeeﬂs%meteé These non-climatic variations-efter actdepend on differentn the-timescales
and are often referred to as “noise” of a specific color, based on similarities between thea time series’
power spectrum and the electromagnetic spectrum of light. For example, “white noise” equally affects
all timescales, where “red noise” dominates only on long timescales, similar to longwave red light.
Noise spectra feint proxy records have far-reaching implications in paleoclimate research, but noise
characteristics are often assumed based on first principles rather than estimated directly, risking either
inflating or underestimating error at particular frequencies. Here, we provide concrete definitions of the
various types of timescales-dependent errors_that are present in proxy data, and review the literature on
methods for -estimating-quantifying noise termsthese-errors-in-differenttypes-of proxy-data. We then
synthesize the results of several published studies that use a common empirical approach for estimating
the noise spectrum in ice core, coral, and tree-ring data. We posit that the colors of proxy noise are
archive--specific, with white noise dominating in depositional archives such as ice-cores and marine
sediment cores, while red noise is-ikely more common in biological archives such as tree rings and

corals. Our synthesis findings-ean-supports assigning specific colored noise terms in proxy system
models, data assimilations and other experiments.

1 Introduction

Paleoclimate proxy records archive past climate information via biophysical or depositional pathways
and preserve it in rings, layers or strata. The processes that create these records integrate non-climatic
variability alongside the climate signal either during the archiving process.; or afterwards as the
physical record is modified over time (Cook 1987; Evans et-alet al.,, 2013). Recovering paleoclimate
information from these archives requires sophisticated data processing and modeling techniques
intended to extract climate-related variance from noisy time series (von Storch et-alet al., 2004; Cook
& Kairiukstis 1990; Hughes & Ammann 2009; Dee et-alet al., 2016). Recognizing that these methods
may be imperfect, the challenge lies in rigorously quantifying and minimizing the impact of non-
climatic variations on the signal of past climate changes.




Modification of climate signals in proxy time series reeerds can result in the addition of variance from
random or unrelated fluctuations, loss of variance through smoothing, shifts in timing due to
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irregularities in the deposition or uncertainties in dating, or
a combination of these effects (Fig. 1). We regard a process
that adds variance on top of an existing climate signal as a
“noise process”, whereas the loss of variance through
smoothing also constitutes error (i.e., any difference
between the true and reconstructed climate at a given
timescale), but not technically noise. Smoothing processes
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Figure 1: Conceptual diagram

via stochastic noise and subtractive smoothing.

showing
integration of different types of timescale-
dependent proxy errors alongside climate signals

are typically deterministic to some extent. For example, two
co-located ice-core records with similar physical properties
are both affected by same isotopic diffusion and their
correlation at a certain time-scale will not be affected if
there is no additional noise (Whilans & Grootes 1985). It is
further possible to correct individual records for
deterministic errors if the process is well-understood
(Shiffelbein 1985; Meko 1981; Dolman et-alet al., 2021a;
Shaw etaket al., 2023). By contrast, noise is typically
independent, generating differences between nearby
individual-records as well as to the true climate signal.
Observation and measurement errors are best represented
by stochastic, uncorrelated noise unless they represent
systematic bias, for example due to a change in the
measurement apparatus. Because these types of noise are
typically independent, averaging, or “stacking” individual
records reduces noise while retaining the climate signal.

Both noise and smoothing processes incorporate unique
timescale-dependent uncertainties alongside climate
signals. For example, trees integrateeerporate multi-decadal
age-growth trends alongside climate variations, such that
tree-ring time series are typically ‘detrended’ before they
are used in reconstructions (Fritts 1976; Cook & Kairiukstis
1990; Speer 2010). Incomplete removal of age-growth
trends results in long-term biases in tree-ring data, even if
interannual correlations with climate data remain
reasonably strong (Melvin & Briffa 2008; Melvin & Briffa
2014 a,b). By contrast, pPhysical smoothing processes such
as isotopic diffusion or bioturbation in sediments act on fast
timescales by removingin-sediments-acts-within-the

depeosited-layers-onto-remove climate information en
fastfrom within deposited layers-timeseales (Johnson et-al-et
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al., 2000; Whillans & Grootes 1985; Hutson 1980; Peng & Broeker 1984). Smoothing dampens the
cllmate signal at annual to centennial timescalesen-fast-timeseales, becoming less influential on longer
timescales such that millennial-scale shifts in climate are retained (Schiffelbein & Hills 1984; Laepple
& Huybers 2013; Miinch & Laepple 2018; Bothe et-alet al., 2019).

These timescale-dependent variations efa-time-series-can be analyzed in the spectral domain and
referred to using colors by loose analogy to the frequency spectrum of light (Fig 2). Time series with
relatively more low- than high-frequency variability are considered to be ‘red’, by analogy to long-wave
red light, whereas a ‘white’ time series implies that power spectral density is distributed evenly across
the frequency space.
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Figure 2: Spectral noise models with correlation structures referred to by analogy to colored light. Left panels show a simulated
time series with the noise spectra shown in the right panels. Top: white noise with no correlation with timescale (8 = 0). Middle: red
noise (sometimes referred to as pink noise) with a positive relationship to timescale (8 = 1). Bottom: blue noise with a negative
relationship to timescale (8 = -1). Note that B8 values for noise spectra are calculated as the slope of a linear model on a log-log plot,
and expressed as f8 = slope*-1, following the convention where B describes the relationship between power and timescale.
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Low-frequency temperature variability is generally understood to exhibit increasing power with
timescale, meaning that noise-free temperature proxy spectra would theoretically display a red spectrum

( Power-law scaling in frequency space h

® The spectral exponent B summarizes the
relative contribution of high- and low-
frequencies to the total variance.

® The power spectral density S(f) is assumed
to approximately follow a power-law with
frequency f such that S(f) ~f*

® f s typically expressed as the negative slope
of a linear regression on a log-log plot of

(Pelletier 1998; Huybers & Curry, 2006; Zhu et-alet
al., 2019). Noise, because it originates from a variety
of sources may display different correlation
structures. The integration of noise and climate
signals may either further ‘redden’ or ‘whiten’ the
spectrum by modifying the correlation structure of
the raw time series. The relationship between power
spectral density S(f) and frequency f is often
summarized using a power-law scaling exponent /3
such that S(/)~f? (Box 1) (Vautard & Ghil 1989,

Fraedrich & Blender 2003; Hébert et-alct al., 2021).
The exponent S represents the relationship between
frequency (or time period) and power spectral
density, which appears as a linear relationship plotted
on a log—log scale. By convention, the exponent is
defined as the negative of the relationship with frequency such that a positive exponent actually
represents increasing variance with timescale. Red noise processes are represented with a positive slope
value (f>0); the term ‘pink noise’ is sometimes used specifically for f=1 (Zhu et-et-et al., 2023). Red
noise is a common noise model that implies autocorrelated errors that affect low-frequencies at a greater
magnitude. (Mann et-alet al., 2007; von Stoch etaket al., 2009; Smerdon 2012). By contrast, a ‘white’
noise process implies errors uncorrelated in time such that the variance is distributed evenly across the
frequency space (f=0), similar to the spectrum of white light. White noise is the simplest and most
commonly-applied noise model in paleoclimate research (Fisher etakef al., 1985, Amman & Whal
2007; von Storch etaket al., 2004; Mann et-akef al., 2005, Lee etakef al., 2008; Smerdon et-aket al.,
2010; 2012). Finally, blue noise refers to processes with relatively higher variability at high frequencies
(f<0). Blue noise is characterized by an anti-correlated structure, implying rapidly vanishing effects
with increasing timescale (Mann & Rutherford 2002; Mann et-al-er al., 2007).

the power spectrum. )

Box 1: Summarizing the timescale-dependency of proxy noise
using spectral power-laws.

Our understanding of proxy noise characteristics has evolved out of the need to reconcile diverging
results in records that should, in principle, contain the same climate signal. For certain processes, such
as the effects of measurement error, aliasing due to under-sampling, or depositional noise from
roughness at the snow surface, the noise power spectrum can be derived from first principles and
expressed in closed-form solutions (Fisher et-aket al., 1985; Schiffelbein, 1985; Kunz et-atet al., 2020;
Dolman et«atet al., 2021b). In cases where the physical and biological processes affecting proxies are
well--understood, a more flexible approach is to use proxy system models (PSMs) (Jones et-et-et al.,
2009; Vaganov et-alet al., 2011; Evans et-alet al., 2013; Tolwinski-Ward et-et-et al., 2011; Dee et-al-et
al., 2016; Dee et-alet al., 2017; Dolman and Laepple, 2018). In this case, climate data sets of
temperature and precipitation from instrumental data, climate models or stochastic simulations are used
as input to the PSM, and synthetic proxy time series are simulated. The spectrum of the noise can then
be estimated through comparison to the climate time series (Dee etatet al., 2017). By omitting
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processes that are not well-understood, PSMs riskunderestimatingmay underestimate the noise level.
For example, stratigraphic noise in ice-core-based proxies can account for more than half of the isotope
signal (Hirsch et-atet al., 2023) but stratigraphic processes are not represented in current isotope PSMs
(Dee et-al-et al., 2015). To account for “known unknowns” recent studies have added estimates of noise
with specific spectral properties to mimic these extraneous sources of variability in PSM output, using
models or reanalysis data as external validation. (Dee et-et-et al., 2018; Evans et-atet al., 2014; Zhu et
et-et al., 2023; Bothe et-alef al., 2019).

Alternatively, empirical proxy noise spectra can be derived by relying solely on proxies by exploiting
the spatial correlation of climate signals in nearby records, building on the assumption that non-climatic
noise is independent between records. This approach has the advantage of being able to exploit the full
length of paleoclimate time series without relying on climate models or short instrumental time series,
and without the assumption that physical processes themselves are well-understood. One limitation is
that this method relies on the availability of replicated or nearby records that have low time-uncertainty,
such as corals, tree rings, and banded ice cores or laminated sediments. If empirical noise estimates are
consistent with those derived from mechanistic models this both validates the processes represented in
PSMs creates a strong basis for using the resulting noise spectra in a variety of research applications.

In this study, we synthesize noise estimates derived directly from multiple proxy types and interpret
their spectral characteristics in the context of known biological and physical processes. This provides a
basis for evaluating signal fidelity and for refining assumptions commonly made in proxy system
models and other experiments. We present noise estimates published in three studies where noise terms
were derived using a simple empirical approach that partitions shared signal from independent variance
on all timescales (Miinch & Laepple 2018), which weand describe ind the extended data section
(Appendix A). We show results for published ice cores from Miinch & Laepple 2018, tree rings
(McPartland et-alet al., 2024), and corals (Dolman et-alet al., in revision). By presenting these findings
alongside evidence from first principles and existing literature we aim to deepen a collective
understanding of the behavieurbehavior of proxy noise.

The tree-ring and coral data were sourced from global databases compiled by the Past Global Changes
(PAGES) initiative (PAGES Consortium 2017; Walter et-et-et al., 2023), and the ice core data represent
two large clusters of cores from Antarctica and Greenland (Graf et-atef al., 2002; Weillbach et-alet
al., 2016; Horhold et-alet al., 2023) (Appendix B). Full details on each result are provided in the
aforementioned studies. We focus our discussion on the noise spectra and resulting signal-to-noise ratio.
Evaluating the climate signal spectraeurves would ideally involve comparison with data and models,
which are beyond the scope of this paper. In the extended data section, we reproduce the signal spectra
and sample density at each frequency to provide all information involved in the noise spectra
calculations and their uncertainty estimates (Appendix C).
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2 The colors of proxy noise_across paleo archives

Our review of published noise estimates demonstrates that tree rings and corals exhibit clear red noise
spectra with positive scaling exponent S values of 0.8 and 0.5 respectively (Fig 3; a, b) such that the
power of the noise increases with timescale (McPartland et-et-et al. (2024), Dolman et-et-et al. (in
revision).- As the noise increases more than the climate signal, this leads to a decline of the signal-to-
noise ratio (SNR) (Fig 3; d, e). Tree-ring and coral records result from the growth or accretion of layers
by an individual organism over time such that life history or changes in the biological archiving system
may affect proxy formation. Evidence suggests-We-pesit that proxy records composed of repeated
measurements made on single long-lived organisms through time are susceptible to ontogenetic effects,
the legacies of past disturbances, or slow changes in the behaviour of the sensor.

In dendroclimatologytrees, -for-example-the pitfalls associated with tree ontogeny have been well-
documented (Fritts 1976; Cook e al. 1995; Esper & Frank 2009). Cambial age impacts both tree-ring
width and density such that detrending to remove juvenile age trends is a near universal practice i#
dendrechronology (Cook & Kairiukstis 1990). Even after detrending, residual age effects could partially
explain the persistent low-frequency bias observed in tree-ring records (Franke et-et-et al., 2013, Ault et
at-et al., 2013). Detrending itself can also introduce biases at medium-frequencies, particularly when
fitting raw time series with negative exponential curves, regional curves or rigid spline functions (Cook
& Peters 1997: Melvin & Briffa 2008; Melvin & Briffa 2014 a;b, Esper 2003, Briffa & Melvin 2011).
Techniques such as “signal-free” detrending have aimed at boosting low-frequency variability while
minimizing bias (Melvin & Briffa 2008), but despite retaining more low-frequency variance, tests of
this method indicated only minor improvements in signal strength and signal-free chronologies retained
their red-noise spectra (McPartland et-alet al. 2020; McPartland et-alet al. 2024). By extension, red
noise is likely a feature of bivalve and sclerosponge chronologies, which contain similar age-growth
trends to those found in trees and are detrended using the methods originally developed in
dendrochronology (Jones 1983; Rypel et-atet al. 2008; Hollyman et-alet al., 2018; McCulloch et-alet
al., 2024). Tree rings are also smoothed on fast timescales as a result of the carryover, or ‘memory’, of
prior years’ growth. Biological memory adds temporal autocorrelation to tree ring time series which has
the effect of steepening the slope of the noise spectra by reducing high frequency power spectral density
(Zhang et-at-et al. 2015; Lucke et-atet al. 2019; McPartland et-et-et al. 2024). ‘Pre-whitening’
chronologies by adjusting their temporal autocorrelation structure to match the climate target improves
the interannual correlation between data and proxy (Meko 1981), but by virtue of removing additional
variability at high-frequencies, decreases the ratio of high to low power spectral density that defines the
noise slope term £.
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Figure 3: Estimates of proxy noise spectra (a, b, ¢) and timescale-dependent signal-to-noise ratios (d, e, f). Top: (a) Mean noise
spectra for tree-ring width and density records from northern hemisphere tree-ring records, (b) Mean noise spectra for tropical
coral 8+O and strontium/calcium (Sr/Ca) ratios, (c) Noise spectra for ice core 8*O from Dronning Maud Land (light blue) in
Antarctica and the North Greenland Traverse (dark blue). Dashed lines represent an idealized spectral power-law with a slope f =
1 for proxies containing predominantly red noise (i.e. tree rings and corals), and with § = 0 for proxies (i.e. ice cores) containing
predominantly white noise. Bottom: Timescale-dependent signal-to-noise ratios (SNR) for (d) tree rings, (e) corals, and (f) ice cores.
Dashed lines represent an SNR of 1. Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric
bootstrapping estimation method. Detailed methods for estimating proxy noise and SNR values can be found in McPartland et-aket
al., (2024) (tree rings), Miinch et-aket al., (2018) (ice cores) and Dolman et-aket al., (under revision) (corals).

Coral aragonite records might similarly be affected by changes in the biology of individual or
descendent polyps over time resulting in a slow drift in the temperature response of the proxy which
would appear as low-frequency variability. Such changes could be growth-rate related due to reaction-
kinetic effects (Goodkin et-aket al., 2005; Hayashi et-al.et al., 2013; Maier etaket al., 2004; Saenger et
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aket al., 2008; Suzuki et-aket al., 2005), result from changes in the calcification process (Lough 2004),
or persistent baseline shifts in trace element ratios following thermal stress events (D’Olivo &
McCulloch 2017; D’Olivo et-alet al., 2019) perhaps mediated by changes in the composition of
photosynthetic symbionts (Berkelmans and-& van Oppen, 2006; Cohen, 2002; Little et-aker al., 2004).

The stacks of ice cores from both Greenland and Antarctica that we analyzed show a high white noise
level where f is approximately equal to zero (Fig 3 e, f) (Miinch & Laepple 2018). As the climate
variations become more pronounced on longer timescales, this leads to an increasing signal-to-noise
ratio with time. We argue that proxies that are primarily the result of deposition, rather than growth or
accretion primarily contain white noise stemming from stratigraphic processes. Precipitation
intermittency and post-depositional redistribution in ice cores result in adjacent measurements that
represent water from different precipitation events (Laepple et-at-et al., 2018; Casado et-atet al., 2020;
Zuhr et-al-et al., 2023). By extension, in marine sediments where foraminifera or diatoms are deposited
from the water column, each sample represents a new set of individuals such that biological effects are
uncorrelated between measurements. From process-based experiments, it has been demonstrated that
noise in sediment records is also predominantly white with the signal level increasing as more
individuals are measured (Kunz et-at-et al., 2020, Dolman et-atet al., 2021). In both ice and sediment
core records of near-surface temperature, seasonal depositional cycles are much stronger than any
interannual or even millennial climate change and the sparse subsampling of the seasonal signal leads to
aliasing of independent noise within the signal of annual variation (Kunz et-et-et al., 2020).
Precipitation intermittency and depositional redistribution break up the signal of the large seasonal cycle
that would appear as a large spike in the spectrum at annual timescales if the signal were recorded
without disruption. Instead, the spike is redistributed as white noise across all frequencies (Casado e#
et-et al., 2020; Miinch et-aler al. 2021).

We identified fewer examples of blue noise processes in the paleoclimate literature. Because its effects
diminish quickly with time, blue noise does not introduce error past fast timescales. An example of a
true blue noise process is the infilling of troughs on ice sheets as wind redistributes snow causing blue
noise in noise in annual layer thickness records from ice-cores (Fisher etatet al., 1985). Blue noise
models have occasionally been tested alongside red and white noise to account for a variety of potential
types of error affecting high-frequencies, and to improve the fit between synthetic proxy records and
climate model data (Mann et-etet al., 2007; Mann & Rutherford 2002).

Like blue noise, smoothing processes predominantly affect high frequencies and becomes less
significant with timescale. Biological memory in trees, diffusion in ice cores, and bioturbation in
sediments are all examples of smoothing processes that lead to correlated errors between the climate
and the proxy signal which theoretically;-in-theery; can be accounted for using deterministic modeling
(Matalas et-et-et al., 1962; Berger et-et-et al., 1977; Meko 1981; Ruddiman et-atef al., 1980; Whillans
and Grootes, 1985). Given such a model, the smoothing effect can be reversed, as we applied in this

example to as-applied-in-ourexampleto-ice core data to reverse the effects of diffusion (Shaw et-aler al.
2024) (see Appendix A). If, as in the case of diffusion, the smoothing process affects the signal and the

noise equally, -during-depesition-oraceretion;the SNR is unbiased at all timescales ;-regardless of
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whether or not a correction for the smoothing effect is applied.applicable;-as-is-the-easefor-diffusionin

iee-cores. However, when noise is introduced after smoothing (e.g. measurement noise), the attenuated
climate signal on the high-frequency side will be masked by a relatively stronger noise level, biasing the
SNR spectrum downwards toward high frequencies. In any case, knowledge about and accounting for
smoothing processes in paleoclimate time series is critical for evaluating the short-term effects of
climate forcing events such as volcanic eruptions (Esper etatet al., 2015; Zhang et-el-et al., 2015;
Liicke et-atet al., 2015), but is potentially less critical for reconstructing low-frequency variations in
climate.

3 Time uncertainty and noise color

Dating for all three proxy types discussed here is primarily achieved by some kind of band
datingeeunting, or by counting annual cycles in geochemical tracers. If bands or cycles are missed, or
double counted, this introduces time-uncertainty and an additional source of error in the reconstructed
climate time series (Comboul et-al-et a/. 2014). Time uncertainty has little effect on the shape of
individual power spectra when the spectra are broadband, as is typical for climate time series (Rhines &
Huybers, 2011). However, it reduces coherence between records, diminishing high-frequency power in
stacked spectra and biasing SNR estimates downward at shorter timescales (Miinch & Laepple, 2018;
Fig. D1). The effect of time-uncertainty acts as a linear transfer function on the stacked spectra and can
be estimated and corrected for if the time uncertainty is known, although this was not applied here
(Appendix D). For the ice-core records analysed here, the time-uncertainty is due to potential variations
in the accumulation rate between volcanic tie-points and is negligible for frequencies below 1/10 years
(Miinch & Laepple 2018, their Fig. B1).

For the sub-annual resolution coral records used here, age models mostly come from counting annual
cycles in the geochemical tracers. However, for most coral records there are no independently dated tie-
points and so it is not possible to directly estimate counting error rates and correct for time-uncertainty.
Simulations with potential error rates derived from corals show that the slope of the SNR is biased in
the opposite direction to the one we estimate (Fig. D1) and that even for very large error rates of 1 in 10
years’ time-uncertainty cannot account for the low SNR at decadal timescales. Time uncertainty is
arguably less of an issue for tree-ring records as they are considered to be precisely dated and
dendrochronologists routinely employ statistical cross-dating techniques to identify and eliminate dating
errors (Holmes et al 1986). Through this process locally absent rings are identified during cross-dating
and assigned a no-data value to avoid affecting the final chronology. The strength of the tree-ring SNR
on sub-decadal timescales is indicative of this dating precision.

For proxy archives that are not annually resolved such as reconstructions from non-varved terrestrial
and marine sediment cores, the irregular spacing of samples in time and larger dating uncertainties
makes stacking unsuitable for this type of noise estimation, representing a limitation of this -approach.
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Alternative methods, such as estimating the SNR as a function of time uncertainty (Reschke et-aker al.,
2018), or applying tuning methods that align proxy records by maximizing covariance and assess
significance against surrogate data (Haam & Huybers, 2010), may still allow for empirical SNR
estimation in these cases.

3-4 IImplications of colored noise for climate reconstruction

The spectrum of temperature on local to global scales is generally accepted to be red (Huybers & Curry
2006; Cheung et-atet al., 2017; Hasselmann et-«atet al., 1976). For proxies with predominantly white-
noise spectra such as ice cores and sediments, this implies that the power spectral density of the climate
signal relative to the noise, the SNR increases with timescale. This explains why ice cores are faithful
recorders of millennial climate variability (e.g. EPICA, 2006), while they fail in many regions to
reconstruct interannual to decadal changes (Stenni e#atef al., 2017). By contrast, in proxies that contain
red noise, the SNR will rise more slowly or even decline with timescale if the power of the noise rises
more steeply than the signal, as we demonstrate in tree rings and corals. These proxies are better
recorders of fast time-scale variability where the ratio of signal to noise is highest. For example, corals
can deliver unique information on tropical climate dynamics such as the El Nifio Southern Oscillation
(ENSO) (Fig. 3), but have challenges reconstructing multidecadal trends (Scott etalet al., 2010).

The color of the noise thus influences the timescales at which a robust climate signal can be
reconstructed, because it introduces a frequency-dependence to the SNR. Information about proxy noise
can be used to guide future study design (et.ge. what proxies can be used to answer a climatic
hypothesis) and to optimize the sampling and measuring design (et.ge. how many cores are needed;
what is the optimal sampling resolution to minimize noise). It can also be used to estimate time scale-
dependent uncertainty in climate reconstructions. For individual proxy time series where the signal
increases more strongly with timescale than the noise, when the signal spectrum is “redder” than the
noise, binning to a coarser timestep or by applying stronger smoothing reduces the noise. This improves
the SNR, albeit at the cost of losing information at shorter timescales. The extent to which uncertainty is
reduced by binning or smoothing depends on the relative spectral slopes of both the signal and noise.

Knowing the color and level of proxy noise is valuable for a variety of research contexts in
paleoclimatology. For example, accurate noise models are important for pseudo-proxy experiments
(PPEs) in which climate model output is degraded into pseudo-proxy time series to test the skill of
reconstruction methods and evaluate models (Jones et-aket al. 2009; Smerdon et-aler al. 2012). Often
PPEs releyrely on sensitivity tests using different noise levels or spectral colors (Riedywl et-al-et al.
2009; Smerdon et-aker al., 2010; Mann and Rutherford, 2002; Gomez-Navaro et-aker al. 2017). Red
noise is often may-be-tested alongside white or sometimes blue noise, but typically using a first-order
autoregressive (AR(1)) process with a fixed spectral slope (8 = 2) (Mann et-aker al. 2007; Riedywl et
aket al. 2009). However, this can lead to underestimation of the actual noise, especially at low
frequencies where the spectrum of an AR(1) process levels out. More recent PPEs have integrated full
PSM complexity with realistic noise estimates (Boothe et-alef al. 2019; Zhu et-aket al. 2023). Finally,
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accurate noise estimation is important in data assimilations and field reconstructions to bring
reconstructed time series into better alignment with calibration datasets, and to propagate uncertainty in
estimates of past climate variability (Goose et-aker al. 2010; King et-aker al. 2021).

Conclusion

Building on prior insights from proxy system modeling, and with reference to a first-principles based
understanding of proxy formation, we present here an overview of how colored noise is represented in
different types of paleoclimate archives. Incorporating empirical, proxy-specific noise models as
presented here into a range of paleoclimate research activities—Fhis will help to move away from the
assumption that noise is white or follows a first-order autoregressive process, which can lead to
misinterpreting noise as signal and propagating biases into results. These noise models, or models
derived using similar stacking and variance-partitioning methods, can be used account for the range of
unique biological and physical processes affecting proxies in pseudo proxy experiments, data
assimilation frameworks, and reconstructions efforts to improve the representation of patterns of past
climate variability.

Appendix
Appendix A: Estimating the spectrum of noise

We apply the method of Miinch et-et-et al., (2018) of combining clustered proxy records into regional
stacks and analyzing their variance in the frequency domain. Thist builds on the assumption that the
proxy signal is a function of four main components: the climate signal, additive noise that arises during
the proxy creation and archiving stages, measurement noise, and any smoothing processes that act
during archiving but not on the measurement noise; i.e.

P=f(CN,EG)=G(C+N)+X

where P, C, N, and Z'stand for the power spectral densities of the proxy signal, the climate signal, the
proxy noise, and the measurement noise, respectively, and where G is a transfer function that describes
a specific smoothing process such as biological memory, diffusion, or bioturbation.

Given a regional cluster of n proxy records with a similar climate between sites, the mean power
spectrum, M, averaged across all individual records’ spectra, will yield a precise estimate of the proxy
spectrum P. By contrast, the power spectrum, S, of the stacked record from averaging all records in the
time domain, will also contain the full climate signal, but with the noise proportions reduced by a factor
of n. By combining both quantities one can derive expressions for the climate and noise spectra (Miinch
and Laepple, 2018),

11



80

85

10

_1\
"y

n /

n n

C= GLS—M/n); N= g—1<M—S—

n—1 n—1
with the ratio of C:N yielding the frequency-resolved signal-to-noise ratio (SNR). A common
smoothing process equally biases the signal and the noise spectrum, if not corrected for by means of the
inverse transfer function G/, and hence its effect cancels out in the SNR spectrum. We note that time
uncertainty between individual proxy records can be another source of smoothing in the stacked record,
but it is less straightforward to include into our methodology (Miinch and Laepple, 2018) and is
neglected here.

Appendix B: Data
B.1 Tree Rings

For the tree-ring data we analyzed the tree-ring records contained within the Past Global Changes 2k
(PAGES2k) database, a large database compiled to reconstruct global temperature variations during the
last two millennia. This network of 647 unique paleoclimate records from around the globe includes
450 tree-ring time series, of which we used 421 records of tree-ring width and density located across the
Northern hemisphere (PAGES 2013, 2017; Neukom et-alet al., 2019). Spatial clusters were defined
using 250-kilometer radii, such that no two sites were more than 500 kilometers apart. Tree-ring width
and density records were clustered separately so that the proxies weren’t mixed within clusters. This
resulted in 253 clusters containing a minimum of 3, and a maximum of 30 sites per cluster. The average
number of sites per cluster was 8. There were 18 density-sites and 235 ring width clusters. The average
length of the overlapping period was around 450 years. The results of all clusters of both proxy types
were averaged at the end to derive the signal, noise and SNR. Uncertainty was calculated using a
parametric bootstrapping approach. (McPartland et-alef al., 2024).

B.2 Corals

We used the coral records contained within the PAGES Coral Hydro 2k database to obtain coral SNR
estimates (Walter ez-alet al., 2023). The Coral Hydro2k database contains 54 oxygen (3'30) and
strontium calcium (Sr/Ca) records from the global tropics. The database was compiled to reconstruct sea
surface temperature and ocean hydroclimate variability for the past two centuries. Due to fewer records,
1000 km spatial clusters were used, resulting in 64 clusters. '*0 and Sr/Ca records were clustered
separately and the results were averaged. More information on the coral data curation is contained in
Dolman et-alet al., under revision.

B.3 Ice Cores

As an example for ice-core derived temperature proxies, we use stable isotope records from the
Dronning Maud Land region in Antarctica (“DML data” in the following; Graf e#«tet al., 2002) and
from central-north Greenland (“NGT data” in the following; Weillbach etet-et al., 2016, Horhold et
atl-et al., 2023).
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The DML data consist of 15 records, 12 of which cover the time period from 1800 to 1998 CE and 3
records cover 1000-1998 CE. We combine both datasets by using the individual spectral results (Miinch
and Laepple, 2018) of the shorter records on timescales below decadal and of the longer records on the
supra-decadal timescales. We apply the diffusion correction as in Miinch and Laepple (2018) but do not
use their time-uncertainty correction.

The NGT data comprise 14 cores covering the time span from 1505 to 1979 CE, including original
records from the North Greenland Traverse published in Weilbach et al (2016) as well as the extended
NGT records from exploiting new drillings as presented in Horhold e#«tef al., (2023). The
corresponding NGT spectra shown in Horhold e#-atef al., (2023) were not diffusion-corrected; here, to
be able to compare the NGT spectra to those from the DML data, we apply a diffusion correction to the
NGT spectra following the method given in Miinch and Laepple (2018) with diffusion length estimates
calculated as described in Horhold et-at-et al., (2023). Note that the SNR spectrum shown in Horhold ez
at-et al., (2023) used the ratio of the integrated signal and noise spectra, which is related to the
correlation with the climate signal (Miinch and Laepple, 2018), whereas here we show the direct ratio of
the spectra.

Appendix C: Signal, noise and signal-to-noise ratio estimation

Full results for the uncorrected signal, noise and SNR estimates for tree rings, corals and ice core data
(Fig. A1 a,b,c,d). Spectra in Fig. 3 represent truncated versions which have been cut off where sample
density in corals and tree rings drop off (shaded regions), as seen in the spectral density plots (Fig Al
bottom panels). In both corals and tree rings, the SNR rises again due to the reduction in replication and
dominance by single or a small number of records with higher SNR than average (Fig A1, a,b) (see
McPartland et-aler al. 2024; Fig 2, e.f). Confidence intervals on all spectra represent the 10th and 90th
percentiles from a parametric bootstrapping estimation method. In addition to the truncation due to low
sample size, the lowest two spectral estimates on all spectra are removed during SNR calculation and
confidence interval estimation a the multitaper approach introduces a small bias at the lowest
frequencies (Percival & Walden, 1993).
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Figure C1: Timescale-dependent signal, noise and SNR estimates with sample density plots for tree-rings
(a,e), corals (b,f), and ice core §'0 data from Dronning Maud Land in Antarctica (c,g) and the North
Greenland Traverse (d,h). Top graphs show signal (blue), noise (green) and SNR (purple) curves, with the
uncorrected “proxy” spectra (yellow). Confidence intervals on all spectra represent the 10th and 90th
percentiles from a parametric bootstrapping estimation method. The light grey shading indicates the cut-
off point for spectral estimates presented in Fig. 3 when sample density decreases and the results become
more uncertain. Detailed methods for estimating proxy noise and SNR values can be found in McPartland
etaket al., (2024) (tree rings), Miinch et-aker al., (2018) (ice cores) and Dolman et-akez al., (under revision)
(corals).
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Appendix D: Simulated effects of time uncertainty on timescale-dependent signal-to-noise ratios

To illustrate the potential effects of time uncertainty on estimates of signal-to-noise ratio we used the
approach of Comboul etet-et al. (2014) as implemented by Miinch and Laepple (2018). Miinch and
Laepple (2018) show that relative time-uncertainty between records in a stack acts as a linear transfer
function, reducing power in the stack at high frequencies. The precise shape of the transfer function
depends on the counting error rate, and on the lengths of the time series, as longer time series allow
larger relative errors to accumulate. It does not depend on the
Frequency (1/¥ear) power spectrum of the initial “true” signal. Here we shqw the
001  0.033 0.1 o5 cffect on SNR for 100-year time series with band counting
1000 E===—=2—————————=7 errorrates of 1in 10, 50 and 100 years, with equal probability
of missing or double counting a band. The effect on estimated
SNR is shown relative to a hypothetical true SNR of 1.

0.100

Figure D1: The influence of time-
0.0104 uncertainty on SNR estimated by
the stacking method. Here time
uncertainty is simulated for a set of

SNR

00011 100-year records with band

. . . : counting error rates of 1 in 10, 50
100 0.03 0.1 05  and 100, and a true SNR of 10 at all
Timescale (years) frequencies. The simulation was

, carried out following Miinch and
= 1in10 Laepple (2018) which implements

Counting error rate == 1 in 50 the counting error model of

== 1in100  Comboul et-alket al. (2014).
Data Availability

This work represents a synthesis of multiple independent research projects. The data needed to
reproduce the tree-ring and coral data are publicly available through the NOAA National Centers for
Environmental Information (Emile-Geay etalef al., 2017; Walter et-al-et al., 2023). The original
Antarctic ice core isotope data are archived at the PANGAEA database (Graf et-atet al., 2002) as well
as the Greenland data except for core NGRIP whose data is available from the Centre for Ice and
Climate of Copenhagen University (Weilbach etet-et al., 2016; Horhold et-atet al.,, 2023).
PANGAEA is hosted by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research
(AWI), Bremerhaven and the Center for Marine Environmental Sciences (MARUM), Bremen,
Germany.
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Code Availability

The general software to conduct the separation of signal and noise in the spectral domain and to perform
the signal-to-noise ratio analysis is available as the R package proxysnr from the open research data
repository Zenodo (Miinch, 2018). Additionally, specific code to reproduce the tree-ring, coral, and ice-
core analyses, respectively, are also available via Zenodo (McPartland 2024, Dolman 2024; Miinch
20254 a.b).

Author Contributions

MYM wrote the manuscript, created figures, and contributed the analysis of tree-ring data. TM
developed the signal-to-noise ratio analysis, contributed the analysis of the ice core data, and helped
write and edit the manuscript. AMD contributed analysis of coral data and the simulations of colored
noise spectra and time uncertainty simulations, and helped write and edit the manuscript. RH helped
write and edit the manuscript. TL developed the signal-to-noise ratio analysis, helped to write and edit
the manuscript, and supervised analysis of all proxy data.

Competing Interests

The authors declare that they have no conflicts of interest.

Acknowledgements

This is a contribution to the SPACE ERC project; this project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program
(Grant Agreement 716092). A. Dolman was supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — Project number 468685498 (A.M.D.) — SPP 2299/Project number
441832482. T. Miinch was supported by the Informationsinfrastrukturen Grant of the Helmholtz
Association as part of the DataHub of the Research Field Earth and Environment. We acknowledge
support by the Open Access Publication Funds of Alfred-Wegener-Institut Helmholtz-Zentrum fiir
Polar- und Meeresforschung. The work profited from discussions at the Climate Variability Across
Scales (CVAS) working group of the Past Global Changes (PAGES) program. We acknowledge the
contributions of Nora Hirsch, Jannis Viola and Vanessa Skiba, along with members of the AWI-Earth
System Diagnostics Group.

References

Ammann, C. M. and Wahl, E. R.: The importance of the geophysical context in statistical evaluations of
climate reconstruction procedures, Climatic Change, 85, 71-88, https://doi.org/10.1007/s10584-007-
9276-x, 2007.

16



20

25

30

35

40

45

50

Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., St. George, S., Otto-Bliesner, B., Woodhouse,
C. A., and Deser, C.: The Continuum of Hydroclimate Variability in Western North America during the
Last Millennium, J. Climate, 26, 5863—5878, https://doi.org/10.1175/JCLI-D-11-00732.1, 2013.

Berger, W. H., Johnson, R. F., and Killingley, J. S.: ‘Unmixing’ of the deep-sea record and the deglacial
meltwater spike, Nature, 269, 661-663, https://doi.org/10.1038/269661a0, 1977.

Berkelmans, R. and van Oppen, M. J. H.: The role of zooxanthellae in the thermal tolerance of corals: a
‘nugget of hope’ for coral reefs in an era of climate change, Proceedings of the Royal Society B:
Biological Sciences, 273, 2305-2312, https://doi.org/10.1098/rspb.2006.3567, 2006.

Bothe, O., Wagner, S., and Zorita, E.: Simple noise estimates and pseudoproxies for the last
21&thinsp;000 years, Earth System Science Data, 11, 1129-1152, https://doi.org/10.5194/essd-11-
1129-2019, 2019.

Briffa, K. R. and Melvin, T. M.: A Closer Look at Regional Curve Standardization of Tree-Ring
Records: Justification of the Need, a Warning of Some Pitfalls, and Suggested Improvements in Its
Application, in: Dendroclimatology, Springer, Dordrecht, 113—145, https://doi.org/10.1007/978-1-4020-
5725-0_5,2011.

Casado, M., Miinch, T., and Laepple, T.: Climatic information archived in ice cores: impact of
intermittency and diffusion on the recorded isotopic signal in Antarctica, Climate of the Past, 16, 1581—
1598, https://doi.org/10.5194/cp-16-1581-2020, 2020.

Cheung, A. H., Mann, M. E., Steinman, B. A., Frankcombe, L. M., England, M. H., and Miller, S. K.:
Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations, J.
Climate, 30, 4763—4776, https://doi.org/10.1175/JCLI-D-16-0712.1, 2017.

Cohen, A. L.: The Effect of Algal Symbionts on the Accuracy of Sr/Ca Paleotemperatures from Coral,
Science, 296, 331-333, https://doi.org/10.1126/science.1069330, 2002.

Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., and Thompson, D. M.: A
probabilistic model of chronological errors in layer-counted climate proxies: applications to annually
banded coral archives, Climate of the Past, 10, 825-841, https://doi.org/10.5194/cp-10-825-2014, 2014.

Cook, E. R.: The decomposition of tree-ring series for environmental studies, Tree-ring bulletin (USA),
1987.

Cook, E. R. and Kairiukstis, L. A.: Methods of Dendrochronology: Applications in the Environmental
Sciences, Springer Science & Business Media, 403 pp., 1990.

Cook, E. R. and Peters, K.: Calculating unbiased tree-ring indices for the study of climatic and
environmental change, The Holocene, 7, 361-370, https://doi.org/10.1177/095968369700700314, 1997.

17



55

60

65

70

75

80

Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., and Funkhouser, G.: The “segment length
curse” in long tree-ring chronology development for palaecoclimatic studies, The Holocene, 5, 229-237,
https://doi.org/10.1177/095968369500500211, 1995.

Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson, D. m.: PRYSM: An
open-source framework for PRoxY System Modeling, with applications to oxygen-isotope systems,
Journal of Advances in Modeling Earth Systems, 7, 1220—1247,
https://doi.org/10.1002/2015MS000447, 2015.

Dee, S. G., Steiger, N. J., Emile-Geay, J., and Hakim, G. J.: On the utility of proxy system models for
estimating climate states over the common era, J. Adv. Model. Earth Syst., 8, 1164—1179,
https://doi.org/10.1002/2016MS000677, 2016.

Dee, S. G., Parsons, L. A., Loope, G. R., Overpeck, J. T., Ault, T. R., and Emile-Geay, J.: Improved
spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications
for multi-decadal variability, Earth and Planetary Science Letters, 476, 34—46,
https://doi.org/10.1016/j.epsl.2017.07.036, 2017.

Dee, S. G., Russell, J. M., Morrill, C., Chen, Z., and Neary, A.: PRYSM v2.0: A Proxy System Model
for Lacustrine Archives, Paleoceanography and Paleoclimatology, 33, 1250-1269,
https://doi.org/10.1029/2018PA003413, 2018.

D’Olivo, J. P. and McCulloch, M. T.: Response of coral calcification and calcifying fluid composition
to thermally induced bleaching stress, Sci Rep, 7, 2207, https://doi.org/10.1038/s41598-017-02306-x,
2017.

D’Olivo, J. P., Georgiou, L., Falter, J., DeCarlo, T. M., Irigoien, X., Voolstra, C. R., Roder, C., Trotter,
J., and McCulloch, M. T.: Long-Term Impacts of the 1997-1998 Bleaching Event on the Growth and
Resilience of Massive Porites Corals From the Central Red Sea, Geochemistry, Geophysics,

Geosystems, 20, 29362954, https://doi.org/10.1029/2019GC008312, 2019.

Dolman, A.: EarthSystemDiagnostics/Dolman-et-al-2024-corals-exaggerate: Code for second
submission of paper, https://doi.org/10.5281/zenodo.14025394, 2024.

Dolman, A., McPartland, M., Felis, T., and Laepple, T.: [preprint] Coral records exaggerate past
decadal tropical climate variability, https://doi.org/10.21203/rs.3.rs-3924954/v1, 9 January 2025.

Dolman, A. M. and Laepple, T.: Sedproxy: a forward model for sediment-archived climate proxies,
Climate of the Past, 14, 1851-1868, https://doi.org/10.5194/cp-14-1851-2018, 2018.

Dolman, A. M., Kunz, T., Groeneveld, J., and Laepple, T.: A spectral approach to estimating the
timescale-dependent uncertainty of paleoclimate records — Part 2: Application and interpretation,
Climate of the Past, 17, 825841, https://doi.org/10.5194/cp-17-825-2021, 2021a.

18



85

90

95

00

05

10

15

Dolman, A. M., Groeneveld, J., Mollenhauer, G., Ho, S. L., and Laepple, T.: Estimating Bioturbation
From Replicated Small-Sample Radiocarbon Ages, Paleoceanography and Paleoclimatology, 36,
€2020PA004142, https://doi.org/10.1029/2020PA004142, 2021b.

Emile-Geay, J., McKay, N. P., Kaufman, D. S., von Gunten, L., Wang, J., Anchukaitis, K. J., Abram, N.
J., Addison, J. A., Curran, M. A. J., Evans, M. N., Henley, B. J., Hao, Z., Martrat, B., McGregor, H. V.,
Neukom, R., Pederson, G. T., Stenni, B., Thirumalai, K., Werner, J. P., Xu, C., Divine, D. V., Dixon,
B., Gergis, J., Mundo, 1. A., Nakatsuka, T., Phipps, S. J., Routson, C., Steig, E. J., Tierney, J. E., Tyler,
J.J., Allen, K. J., Bertler, N. A. N., Bjorklund, J., Chase, B. M., Chen, M.-T., Cook, E. R., de Jong, R.,
DeLong, K. L., Dixon, D. A., Ekaykin, A. A., Ersek, V., Filipsson, H. L., Francus, P., Freund, M. B.,
Frezzotti, M., Gaire, N. P., Gajewski, K. J., Ge, Q., Goosse, H., Gornostaeva, A., Grosjean, M.,
Horiuchi, K., Hormes, A., Husum, K., Isaksson, E., Kandasamy, K., Kawamura, K., Kilbourne, K. H.,
Kog, N., Leduc, G., Linderholm, H. W., Lorrey, A., Mikhalenko, V. N., Mortyn, P. G., Motoyama, H.,
Moy, A. D., Mulvaney, R., Munz, P. M., Nash, D. J., Oerter, H., Opel, T., Orsi, A. J., Ovchinnikov, D.
V., Porter, T. J., Roop, H. A., Saenger, C. P., Sano, M., Sauchyn, D. J., Saunders, K. M., Seidenkrantz,
M.-S., Severi, M., Shao, X., Sicre, M.-A., Sigl, M., Sinclair, K., St. George, S., St. Jacques, J.-M.,
Meloth, T., Thapa, U. K., Thomas, E. R., Turney, C. S. M., Uemura, R., Viau, A. E., Vladimirova, D.
O., Wahl, E. R., White, J. W. C., Yu, Z., and Zinke, J.: NOAA/WDS Paleoclimatology - PAGES2k
Global 2,000 Year Multiproxy Database, https://doi.org/10.25921/YCR3-7588, 2017.

EPICA community members: One-to-one coupling of glacial climate variability in Greenland and
Antarctica, Nature, 444, 195-198, https://doi.org/10.1038/nature05301, 2006.

Esper, J. and Frank, D.: Divergence pitfalls in tree-ring research, Climatic Change, 94, 261-266,
https://doi.org/10.1007/s10584-009-9594-2, 2009.

Esper, J., Cook, E. R., Krusic, P. J., Peters, K., and Schweingruber, F. H.: Tests of the RCS Method for
Preserving Low-Frequency Variability in Long Tree-Ring Chronologies, 2003.

Esper, J., Schneider, L., Smerdon, J. E., Schone, B. R., and Biintgen, U.: Signals and memory in tree-
ring width and density data, Dendrochronologia, 35, 62-70,
https://doi.org/10.1016/j.dendro.2015.07.001, 2015.

Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.: Applications of proxy
system modeling in high resolution paleoclimatology, Quaternary Science Reviews, 76, 16-28,
https://doi.org/10.1016/j.quascirev.2013.05.024, 2013.

Evans, M. N., Smerdon, J. E., Kaplan, A., Tolwinski-Ward, S. E., and Gonzalez-Rouco, J. F.: Climate
field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors,
Geophysical Research Letters, 41, 9127-9134, https://doi.org/10.1002/2014GL062063, 2014.

Fisher, D. A., Reeh, N., and Clausen, H. B.: Stratigraphic Noise in Time Series Derived from Ice Cores,
Annals of Glaciology, 7, 76—83, https://doi.org/10.3189/S0260305500005942, 1985.

19




20

25

30

35

40

45

50

Fraedrich, K. and Blender, R.: Scaling of Atmosphere and Ocean Temperature Correlations in
Observations and Climate Models, Phys. Rev. Lett., 90, 108501,
https://doi.org/10.1103/PhysRevLett.90.108501, 2003.

Franke, J., Frank, D., Raible, C. C., Esper, J., and Bronnimann, S.: Spectral biases in tree-ring climate
proxies, Nature Clim Change, 3, 360—364, https://doi.org/10.1038/nclimate1816, 2013.

Fritts, H.: Tree Rings and Climate, Elsevier, 583 pp., 1976.

Gomez-Navarro, J. J., Zorita, E., Raible, C. C., and Neukom, R.: Pseudo-proxy tests of the analogue
method to reconstruct spatially resolved global temperature during the Common Era, Climate of the
Past, 13, 629-648, https://doi.org/10.5194/cp-13-629-2017, 2017.

Goodkin, N. F., Hughen, K. A., Cohen, A. L., and Smith, S. R.: Record of Little Ice Age sea surface
temperatures at Bermuda using a growth-dependent calibration of coral Sr/Ca, Paleoceanography, 20,
https://doi.org/10.1029/2005PA001140, 2005.

Goosse, H., Crespin, E., de Montety, A., Mann, M. E., Renssen, H., and Timmermann, A.:
Reconstructing surface temperature changes over the past 600 years using climate model simulations
with data assimilation, Journal of Geophysical Research: Atmospheres, 115,
https://doi.org/10.1029/2009JD012737, 2010.

Stable-isotope records from Dronning Maud Land, Antarctica:

Haam, E. and Huybers, P.: A test for the presence of covariance between time-uncertain series of data
with application to the Dongge Cave speleothem and atmospheric radiocarbon records,
Paleoceanography, 25, 14 PP., https://doi.org/201010.1029/2008PA001713, 2010.

Hasselmann, K.: Stochastic climate models Part I. Theory, Tellus, 28, 473485,
https://doi.org/10.3402/tellusa.v28i6.11316, 1976.

Hayashi, E., Suzuki, A., Nakamura, T., Iwase, A., Ishimura, T., Iguchi, A., Sakai, K., Okai, T., Inoue,
M., Araoka, D., Murayama, S., and Kawahata, H.: Growth-rate influences on coral climate proxies

tested by a multiple colony culture experiment, Earth and Planetary Science Letters, 362, 198-206,
https://doi.org/10.1016/j.epsl.2012.11.046, 2013.

Hébert, R., Rehfeld, K., and Laepple, T.: Comparing estimation techniques for timescale-dependent
scaling of climate variability in paleoclimate time series, Nonlinear Processes in Geophysics
Discussions, 1-26, https://doi.org/10.5194/npg-2021-7, 2021.

Hirsch, N., Zuhr, A., Miinch, T., Horhold, M., Freitag, J., Dallmayr, R., and Laepple, T.: Stratigraphic
noise and its potential drivers across the plateau of Dronning Maud Land, East Antarctica, The
Cryosphere, 17, 4207-4221, https://doi.org/10.5194/tc-17-4207-2023, 2023.

20



55

60

65

70

75

80

Hollyman, P. R., Laptikhovsky, V. V., and Richardson, C. A.: Techniques for Estimating the Age and
Growth of Molluscs: Gastropoda, shre, 37, 773—782, https://doi.org/10.2983/035.037.0408, 2018.

Horhold, M., Miinch, T., Weilbach, S., Kipfstuhl, S., Freitag, J., Sasgen, 1., Lohmann, G., Vinther, B.,
and Laepple, T.: Modern temperatures in central-north Greenland warmest in past millennium, Nature,
613, 503507, https://doi.org/10.1038/s41586-022-05517-z, 2023.

Hughes, M. K. and Ammann, C. M.: The future of the past—an earth system framework for high
resolution paleoclimatology: editorial essay, Climatic Change, 94, 247-259,
https://doi.org/10.1007/s10584-009-9588-0, 2009.

Hutson, W. H.: Bioturbation of deep-sea sediments: Oxygen isotopes and stratigraphic uncertainty,
Geology, 8, 127-130, https://doi.org/10.1130/0091-7613(1980)8%253C127:BODSO1%253E2.0.CO;2,
1980.

Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum temperature variability,
Nature, 441, 329-332, https://doi.org/10.1038/nature04745, 2006.

Johnsen, S. J., Clausen, H. B., Cuffey, K. M., Hoffmann, G., Schwander, J., and Creyts, T.: Diffusion of
stable isotopes in polar firn and ice: the isotope effect in firn diffusion, in: Physics of Ice Core Records,
vol. 159, edited by: Hondoh, T., Hokkaido University Press, Sapporo, Japan, 121-140, 2000.

Jones, D. S.: Sclerochronology: Reading the Record of the Molluscan Shell: Annual growth increments
in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity,
American Scientist, 71, 384-391, 1983.

Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher,
J., Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K.
M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Kiittel, M., Mosley-Thompson,
E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and
Xoplaki, E.: High-resolution palacoclimatology of the last millennium: a review of current status and
future prospects, The Holocene, 19, 3—49, https://doi.org/10.1177/0959683608098952, 2009.

King, J. M., Anchukaitis, K. J., Tierney, J. E., Hakim, G. J., Emile-Geay, J., Zhu, F., and Wilson, R.: A
Data Assimilation Approach to Last Millennium Temperature Field Reconstruction Using a Limited
High-Sensitivity Proxy Network, https://doi.org/10.1175/JCLI-D-20-0661.1, 2021.

Kunz, T., Dolman, A. M., and Laepple, T.: A spectral approach to estimating the timescale-dependent
uncertainty of paleoclimate records — Part 1: Theoretical concept, Climate of the Past, 16, 1469—1492,
https://doi.org/10.5194/cp-16-1469-2020, 2020.

21



85

90

95

00

05

10

Laepple, T. and Huybers, P.: Reconciling discrepancies between Uk37 and Mg/Ca reconstructions of
Holocene marine temperature variability, Earth and Planetary Science Letters, 375, 418—429,
https://doi.org/10.1016/j.epsl.2013.06.006, 2013.

Laepple, T., Miinch, T., Casado, M., Hoerhold, M., Landais, A., and Kipfstuhl, S.: On the similarity and
apparent cycles of isotopic variations in East Antarctic snow pits, The Cryosphere, 12, 169—-187,
https://doi.org/10.5194/tc-12-169-2018, 2018.

Lee, T. C. K., Zwiers, F. W., and Tsao, M.: Evaluation of proxy-based millennial reconstruction
methods, Clim Dyn, 31, 263281, https://doi.org/10.1007/s00382-007-0351-9, 2008.

Little, A. F., van Oppen, M. J. H., and Willis, B. L.: Flexibility in Algal Endosymbioses Shapes Growth
in Reef Corals, Science, 304, 1492—1494, https://doi.org/10.1126/science. 1095733, 2004.

Lough, J. M.: A strategy to improve the contribution of coral data to high-resolution paleoclimatology,
Palacogeography, Palaeoclimatology, Palacoecology, 204, 115143, https://doi.org/10.1016/S0031-
0182(03)00727-2, 2004.

Liicke, L. J., Hegerl, G. C., Schurer, A. P., and Wilson, R.: Effects of Memory Biases on Variability of
Temperature Reconstructions, Journal of Climate, 32, 8713-8731, https://doi.org/10.1175/JCLI-D-19-
0184.1, 2019.

Maier, C., Felis, T., Pétzold, J., and Bak, R. P. M.: Effect of skeletal growth and lack of species effects
in the skeletal oxygen isotope climate signal within the coral genus Porites, Marine Geology, 207, 193—
208, https://doi.org/10.1016/j.margeo.2004.03.008, 2004.

Mann, M. E. and Rutherford, S.: Climate reconstruction using ‘Pseudoproxies,” Geophysical Research
Letters, 29, 139-1-139-4, https://doi.org/10.1029/2001GL0O14554, 2002.

Mann, M. E., Rutherford, S., Wahl, E., and Ammann, C.: Testing the Fidelity of Methods Used in
Proxy-Based Reconstructions of Past Climate, Journal of Climate, 18, 40974107,
https://doi.org/10.1175/JCLI3564.1, 2005.

Mann, M. E., Rutherford, S., Wahl, E., and Ammann, C.: Robustness of proxy-based climate field
reconstruction methods, Journal of Geophysical Research: Atmospheres, 112,
https://doi.org/10.1029/2006JD008272, 2007.

Matalas, N. C.: Statistical Properties of Tree Ring Data, International Association of Scientific
Hydrology. Bulletin, 7, 39—47, https://doi.org/10.1080/02626666209493254, 1962.

McCulloch, M. T., Winter, A., Sherman, C. E., and Trotter, J. A.: 300 years of sclerosponge
thermometry shows global warming has exceeded 1.5 °C, Nat. Clim. Chang., 14, 171-177,
https://doi.org/10.1038/s41558-023-01919-7, 2024.

22



15

20

25

30

35

40

McPartland, M. Y.: EarthSystemDiagnostics/McPartland etal 2024 DendroSNR: v1.1,
https://doi.org/10.5281/zenodo.10822165, 2024.

McPartland, M. Y., St. George, S., Pederson, G. T., and Anchukaitis, K. J.: Does signal-free detrending
increase chronology coherence in large tree-ring networks?, Dendrochronologia, 125755,
https://doi.org/10.1016/j.dendro.2020.125755, 2020.

McPartland, M. Y., Dolman, A. M., and Laepple, T.: Separating Common Signal From Proxy Noise in
Tree Rings, Geophysical Research Letters, 51, €2024GL109282,
https://doi.org/10.1029/2024G1.109282, 2024.

Meko, D. M.: Applications of Box-Jenkins methods of time series analysis to the reconstruction of
drought from tree rings, 1981.

Melvin, T. M. and Briffa, K. R.: A “signal-free” approach to dendroclimatic standardisation,
Dendrochronologia, 26, 71-86, https://doi.org/10.1016/j.dendro.2007.12.001, 2008.

Melvin, T. M. and Briffa, K. R.: CRUST: Software for the implementation of Regional Chronology
Standardisation: Part 1. Signal-Free RCS, Dendrochronologia, 32, 7-20,
https://doi.org/10.1016/j.dendro.2013.06.002, 2014a.

Melvin, T. M. and Briffa, K. R.: CRUST: Software for the implementation of Regional Chronology
Standardisation: Part 2. Further RCS options and recommendations, Dendrochronologia, 32, 343-356,
https://doi.org/10.1016/j.dendro.2014.07.008, 2014b.

Miinch, T. proxysnr: An R package to separate the common signal from local noise in climate proxy
records using spectral analyses (v1.0.1). Zenodo.https://doi.org/10.5281/zenodo.17098991. 2025.

Miinch, T. ice-colors-of-noise: R software to perform signal-to-noise ratio analyses for Greenland and
Antarctic ice-core data (v0.1.0). Zenodo. https://doi.org/10.5281/zenodo.17102273. (2025).

Miinch, T. and Laepple, T.: What climate signal is contained in decadal- to centennial-scale isotope
variations from Antarctic ice cores?, Climate of the Past, 14, 2053-2070, https://doi.org/10.5194/cp-14-
2053-2018, 2018.

Miinch, T., Werner, M., and Laepple, T.: How precipitation intermittency sets an optimal sampling
distance for temperature reconstructions from Antarctic ice cores, Climate of the Past, 17, 1587-1605,
https://doi.org/10.5194/cp-17-1587-2021, 2021.

Neukom, R., Steiger, N., Gdmez-Navarro, J. J., Wang, J., and Werner, J. P.: No evidence for globally
coherent warm and cold periods over the preindustrial Common Era, Nature, 571, 550-554,
https://doi.org/10.1038/s41586-019-1401-2, 2019.

23



45

50

55

60

65

70

75

PAGES2k Consortium, Emile-Geay, J., McKay, N. P., Kaufman, D. S., Gunten, L. von, Wang, J.,
Anchukaitis, K. J., Abram, N. J., Addison, J. A., Curran, M. A. J., Evans, M. N., Henley, B. J., Hao, Z.,
Martrat, B., McGregor, H. V., Neukom, R., Pederson, G. T., Stenni, B., Thirumalai, K., Werner, J. P.,
Xu, C., Divine, D. V., Dixon, B. C., Gergis, J., Mundo, . A., Nakatsuka, T., Phipps, S. J., Routson, C.
C., Steig, E. J., Tierney, J. E., Tyler, J. J., Allen, K. J., Bertler, N. A. N., Bjorklund, J., Chase, B. M.,
Chen, M.-T., Cook, E., Jong, R. de, DeLong, K. L., Dixon, D. A., Ekaykin, A. A., Ersek, V., Filipsson,
H. L., Francus, P., Freund, M. B., Frezzotti, M., Gaire, N. P., Gajewski, K., Ge, Q., Goosse, H.,
Gornostaeva, A., Grosjean, M., Horiuchi, K., Hormes, A., Husum, K., Isaksson, E., Kandasamy, S.,
Kawamura, K., Kilbourne, K. H., Kog¢, N., Leduc, G., Linderholm, H. W., Lorrey, A. M., Mikhalenko,
V., Mortyn, P. G., Motoyama, H., Moy, A. D., Mulvaney, R., Munz, P. M., Nash, D. J., Oerter, H.,
Opel, T., Orsi, A. J., Ovchinnikov, D. V., Porter, T. J., Roop, H. A., Saenger, C., Sano, M., Sauchyn, D.,
Saunders, K. M., Seidenkrantz, M.-S., Severi, M., Shao, X., Sicre, M.-A., Sigl, M., Sinclair, K., George,
S. S., Jacques, J.-M. S., Thamban, M., Thapa, U. K., Thomas, E. R., Turney, C., Uemura, R., Viau, A.
E., Vladimirova, D. O., Wahl, E. R., White, J. W. C., Yu, Z., and Zinke, J.: A global multiproxy
database for temperature reconstructions of the Common Era, Scientific Data, 4, 170088,
https://doi.org/10.1038/sdata.2017.88, 2017.

Pelletier, J. D.: The power spectral density of atmospheric temperature from time scales of 10—2 to 106
yr, Earth and Planetary Science Letters, 158, 157164, https://doi.org/10.1016/S0012-821X(98)00051-
X, 1998.

Peng, T.-H. and Broecker, W. S.: The impacts of bioturbation on the age difference between benthic
and planktonic foraminifera in deep sea sediments, Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms, 5, 346352,
https://doi.org/10.1016/0168-583X(84)90540-8, 1984.

Percival, D. B. and Walden, A. T.: Spectral Analysis for Physical Applications, Cambridge University
Press, 616 pp., 1993.

Reschke, M., Rehfeld, K., and Laepple, T.: Empirical estimate of the signal content of Holocene
temperature proxy records, Climate of the Past, 15, 521-537, https://doi.org/10.5194/cp-15-521-2019,
2019.

Rhines, A. and Huybers, P.: Estimation of spectral power laws in time uncertain series of data with
application to the Greenland Ice Sheet Project 2 6'%0 record, Journal of Geophysical Research:
Atmospheres, 116, https://doi.org/10.1029/2010JD014764, 2011.

Riedwyl, N., Kiittel, M., Luterbacher, J., and Wanner, H.: Comparison of climate field reconstruction
techniques: application to Europe, Clim Dyn, 32, 381-395, https://doi.org/10.1007/s00382-008-0395-5,
2009.

24



80

85

90

95

00

05

10

Ruddiman, W. F., Jones, G. A., Peng, T.-H., Glover, L. K., Glass, B. P., and Liebertz, P. J.: Tests for
size and shape dependency in deep-sea mixing, Sedimentary Geology, 25, 257-276,
https://doi.org/10.1016/0037-0738(80)90064-0, 1980.

Rypel, A. L., Haag, W. R., and Findlay, R. H.: Validation of annual growth rings in freshwater mussel
shells using cross dating, Can. J. Fish. Aquat. Sci., 65, 2224-2232, https://doi.org/10.1139/F08-129,
2008.

Saenger, C., Cohen, A. L., Oppo, D. W., and Hubbard, D.: Interpreting sea surface temperature from
strontium/calcium ratios in Montastrea corals: Link with growth rate and implications for proxy
reconstructions, Paleoceanography, 23, https://doi.org/10.1029/2007PA001572, 2008.

Schiffelbein, P.: Calculation of error measures for deconvolved deep-sea stratigraphic records, Marine
Geology, 65, 333-342, https://doi.org/10.1016/0025-3227(85)90063-5, 1985.

Schiffelbein, P. and Hills, S.: Direct assessment of stable isotope variability in planktonic foraminifera
populations, Palaecogeography, Palacoclimatology, Palacoecology, 48, 197-213,
https://doi.org/10.1016/0031-0182(84)90044-0, 1984.

Scott, R. B., Holland, C. L., and Quinn, T. M.: Multidecadal Trends in Instrumental SST and Coral
Proxy Sr/Ca Records, Journal of Climate, 23, 1017-1033, https://doi.org/10.1175/2009JCLI2386.1,
2010.

Shaw, F., Dolman, A. M., Kunz, T., Gkinis, V., and Laepple, T.: Novel approach to estimate the water
isotope diffusion length in deep ice cores with an application to MIS 19 in the EPICA Dome C ice core,
EGUsphere, 1-18, https://doi.org/10.5194/egusphere-2023-2549, 2023.

Shaw, F., Dolman, A. M., Kunz, T., Gkinis, V., and Laepple, T.: Novel approach to estimate the water
isotope diffusion length in deep ice cores with an application to Marine Isotope Stage 19 in the Dome C
ice core, The Cryosphere, 18, 3685-3698, https://doi.org/10.5194/tc-18-3685-2024, 2024.

Smerdon, J. E.: Climate models as a test bed for climate reconstruction methods: pseudoproxy
experiments, WIREs Climate Change, 3, 63—77, https://doi.org/10.1002/wcc.149, 2012.

Smerdon, J. E., Kaplan, A., Chang, D., and Evans, M. N.: A Pseudoproxy Evaluation of the CCA and
RegEM Methods for Reconstructing Climate Fields of the Last Millennium,
https://doi.org/10.1175/2010JCLI13328.1, 2010.

Speer, J. H.: Fundamentals of Tree-ring Research, University of Arizona Press, 370 pp., 2010.

Stenni, B., Curran, M. A. J., Abram, N. J., Orsi, A., Goursaud, S., Masson-Delmotte, V., Neukom, R.,
Goosse, H., Divine, D., van Ommen, T., Steig, E. J., Dixon, D. A., Thomas, E. R., Bertler, N. A. N.,
Isaksson, E., Ekaykin, A., Werner, M., and Frezzotti, M.: Antarctic climate variability on regional and

25



15

20

25

30

35

40

continental scales over the last 2000 years, Clim. Past, 13, 1609—1634, https://doi.org/10.5194/cp-13-
1609-2017, 2017.

von Storch, H., Zorita, E., Jones, J. M., Dimitriev, Y., Gonzalez-Rouco, F., and Tett, S. F. B.:
Reconstructing Past Climate from Noisy Data, Science, 306, 679-682,
https://doi.org/10.1126/science.1096109, 2004.

von Storch, H., Zorita, E., and Gonzalez-Rouco, F.: Assessment of three temperature reconstruction
methods in the virtual reality of a climate simulation, Int J Earth Sci (Geol Rundsch), 98, 67-82,
https://doi.org/10.1007/s00531-008-0349-5, 2009.

Suzuki, A., Hibino, K., Iwase, A., and Kawahata, H.: Intercolony variability of skeletal oxygen and
carbon isotope signatures of cultured Porites corals: Temperature-controlled experiments, Geochimica
et Cosmochimica Acta, 69, 44534462, https://doi.org/10.1016/j.gca.2005.05.018, 2005.

Tolwinski-Ward, S. E., Evans, M. N., Hughes, M. K., and Anchukaitis, K. J.: An efficient forward
model of the climate controls on interannual variation in tree-ring width, Clim Dyn, 36, 2419-2439,
https://doi.org/10.1007/s00382-010-0945-5, 2011.

Vaganov, E. A., Anchukaitis, K. J., and Evans, M. N.: How Well Understood Are the Processes that
Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring
Growth Dynamics, in: Dendroclimatology: Progress and Prospects, edited by: Hughes, M. K., Swetnam,
T. W., and Diaz, H. F., Springer Netherlands, Dordrecht, 37—75, https://doi.org/10.1007/978-1-4020-
5725-0_3,2011.

Vautard, R. and Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to
paleoclimatic time series, Physica D: Nonlinear Phenomena, 35, 395-424, https://doi.org/10.1016/0167-
2789(89)90077-8, 1989.

Walter, R. M., Sayani, H. R., Felis, T., Cobb, K. M., Abram, N. J., Arzey, A. K., Atwood, A. R.,
Brenner, L. D., Dassié, E. P., DeLong, K. L., Ellis, B., Emile-Geay, J., Fischer, M. J., Goodkin, N. F.,
Hargreaves, J. A., Kilbourne, K. H., Krawczyk, H., McKay, N. P., Moore, A. L., Murty, S. A., Ong, M.
R., Ramos, R. D., Reed, E. V., Samanta, D., Sanchez, S. C., Zinke, J., and the PAGES CoralHydro2k
Project Members: The CoralHydro2k database: a global, actively curated compilation of coral § '8 O
and Sr/ Ca proxy records of tropical ocean hydrology and temperature for the Common Era, Earth Syst.
Sci. Data, 15, 20812116, https://doi.org/10.5194/essd-15-2081-2023, 2023.

Weilbach, S., Wegner, A., Opel, T., Oerter, H., Vinther, B. M., and Kipfstuhl, S.: Spatial and temporal
oxygen isotope variability in northern Greenland — implications for a new climate record over the past
millennium, Climate of the Past, 12, 171-188, https://doi.org/10.5194/cp-12-171-2016, 2016.

Whillans, I. M. and Grootes, P. M.: Isotopic diffusion in cold snow and firn, Journal of Geophysical
Research: Atmospheres, 90, 3910-3918, https://doi.org/10.1029/JD090iD02p03910, 1985.

26



45

50

55

Zhang, H., Yuan, N., Esper, J., Werner, J. P., Xoplaki, E., Blintgen, U., Treydte, K., and Luterbacher, J.:
Modified climate with long term memory in tree ring proxies, Environ. Res. Lett., 10, 084020,
https://doi.org/10.1088/1748-9326/10/8/084020, 2015.

Zhu, F., Emile-Geay, J., McKay, N. P., Hakim, G. J., Khider, D., Ault, T. R., Steig, E. J., Dee, S., and
Kirchner, J. W.: Climate models can correctly simulate the continuum of global-average temperature
variability, Proceedings of the National Academy of Sciences, 116, 8728—-8733,
https://doi.org/10.1073/pnas.1809959116, 2019.

Zhu, F., Emile-Geay, J., McKay, N. P., Stevenson, S., and Meng, Z.: A pseudoproxy emulation of the
PAGES 2k database using a hierarchy of proxy system models, Sci Data, 10, 624,
https://doi.org/10.1038/s41597-023-02489-1, 2023.

Zuhr, A. M., Wahl, S., Steen-Larsen, H. C., Horhold, M., Meyer, H., and Laepple, T.: A Snapshot on
the Buildup of the Stable Water Isotopic Signal in the Upper Snowpack at EastGRIP on the Greenland
Ice Sheet, Journal of Geophysical Research: Earth Surface, 128, €2022JF006767,
https://doi.org/10.1029/2022JF006767, 2023.

27



