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Abstract.  
The complex biological and physical processes that shape and preserve paleoclimate information over 
centuries or longer introduce variations in proxy time seriesrecords that are unrelated to the true climate 10 
signals being reconstructed. These non-climatic variations often actdepend on differentn the timescales 
and are often referred to as “noise” of a specific color, based on similarities between thea time series’ 
power spectrum and the electromagnetic spectrum of light. For example, “white noise” equally affects 
all timescales, where “red noise” dominates only on long timescales, similar to longwave red light. 
Noise spectra foinr proxy records have far-reaching implications in paleoclimate research, but noise 15 
characteristics are often assumed based on first principles rather than estimated directly, risking either 
inflating or underestimating error at particular frequencies. Here, we provide concrete definitions of the 
various types of timescales-dependent errors that are present in proxy data, and review the literature on 
methods for  estimating quantifying noise termsthese errors in different types of proxy data. We then 
synthesize the results of several published studies that use a common empirical approach for estimating 20 
the noise spectrum in ice core, coral, and tree-ring data. We posit that the colors of proxy noise are 
archive- specific, with white noise dominating in depositional archives such as ice-cores and marine 
sediment cores, while red noise is likely more common in biological archives such as tree rings and 
corals. Our synthesis findings can supports assigning specific colored noise terms in proxy system 
models, data assimilations and other experiments. 25 

1 Introduction 

Paleoclimate proxy records archive past climate information via biophysical or depositional pathways 
and preserve it in rings, layers or strata. The processes that create these records integrate non-climatic 
variability alongside the climate signal either during the archiving process,, or afterwards as the 
physical record is modified over time (Cook 1987; Evans et al.et al., 2013). Recovering paleoclimate 30 
information from these archives requires sophisticated data processing and modeling techniques 
intended to extract climate-related variance from noisy time series (von Storch et al.et al., 2004; Cook 
& Kairiukstis 1990; Hughes & Ammann 2009; Dee et al.et al., 2016). Recognizing that these methods 
may be imperfect, the challenge lies in rigorously quantifying and minimizing the impact of non-
climatic variations on the signal of past climate changes. 35 
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Modification of climate signals in proxy time series records can result in the addition of variance from 
random or unrelated fluctuations, loss of variance through smoothing, shifts in timing due to 

irregularities in the deposition or uncertainties in dating, or 
a combination of these effects (Fig. 1). We regard a process 
that adds variance on top of an existing climate signal as a 40 
“noise process”, whereas the loss of variance through 
smoothing also constitutes error (i.e., any difference 
between the true and reconstructed climate at a given 
timescale), but not technically noise. Smoothing processes 
are typically deterministic to some extent. For example, two 45 
co-located ice-core records with similar physical properties 
are both affected by same isotopic diffusion and their 
correlation at a certain time-scale will not be affected if 
there is no additional noise (Whilans & Grootes 1985). It is 
further possible to correct individual records for 50 
deterministic errors if the process is well-understood 
(Shiffelbein 1985; Meko 1981; Dolman et al.et al., 2021a; 
Shaw et al.et al., 2023). By contrast, noise is typically 
independent, generating differences between nearby 
individual records as well as to the true climate signal. 55 
Observation and measurement errors are best represented 
by stochastic, uncorrelated noise unless they represent 
systematic bias, for example due to a change in the 
measurement apparatus. Because these types of noise are 
typically independent, averaging, or “stacking” individual 60 
records reduces noise while retaining the climate signal.  
 
Both noise and smoothing processes incorporate unique 
timescale-dependent uncertainties alongside climate 
signals. For example, trees integratecorporate multi-decadal 65 
age-growth trends alongside climate variations, such that 
tree-ring time series are typically ‘detrended’ before they 
are used in reconstructions (Fritts 1976; Cook & Kairiukstis 
1990; Speer 2010). Incomplete removal of age-growth 
trends results in long-term biases in tree-ring data, even if 70 
interannual correlations with climate data remain 
reasonably strong (Melvin & Briffa 2008; Melvin & Briffa 
2014 a,b). By contrast, pPhysical smoothing processes such 
as isotopic diffusion or bioturbation in sediments act on fast 
timescales by removingin sediments acts within the 75 
deposited layers on to remove climate information on 
fastfrom within deposited layers timescales (Johnson et al.et 

Figure 1: Conceptual diagram showing 
integration of different types of timescale-
dependent proxy errors alongside climate signals 
via stochastic noise and subtractive smoothing. 
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al., 2000; Whillans & Grootes 1985; Hutson 1980; Peng & Broeker 1984). Smoothing dampens the 
climate signal at annual to centennial timescaleson fast timescales, becoming less influential on longer 
timescales such that millennial-scale shifts in climate are retained (Schiffelbein & Hills 1984; Laepple 80 
& Huybers 2013; Münch & Laepple 2018; Bothe et al.et al., 2019).  
 
These timescale-dependent variations of a time series can be analyzed in the spectral domain and 
referred to using colors by loose analogy to the frequency spectrum of light (Fig 2). Time series with 
relatively more low- than high-frequency variability are considered to be ‘red’, by analogy to long-wave 85 
red light, whereas a ‘white’ time series implies that power spectral density is distributed evenly across 
the frequency space.  

 
 

Figure 2: Spectral noise models with correlation structures referred to by analogy to colored light. Left panels show a simulated 90 
time series with the noise spectra shown in the right panels. Top: white noise with no correlation with timescale (𝞫 = 0). Middle: red 
noise (sometimes referred to as pink noise) with a positive relationship to timescale (𝞫 = 1). Bottom: blue noise with a negative 
relationship to timescale (𝞫 = -1). Note that 𝞫 values for noise spectra are calculated as the slope of a linear model on a log-log plot, 
and expressed as 𝞫 = slope*-1, following the convention where 𝞫 describes the relationship between power and timescale. 
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Low-frequency temperature variability is generally understood to exhibit increasing power with 95 
timescale, meaning that noise-free temperature proxy spectra would theoretically display a red spectrum 

(Pelletier 1998; Huybers & Curry, 2006; Zhu et al.et 
al., 2019). Noise, because it originates from a variety 
of sources may display different correlation 
structures. The integration of noise and climate 100 
signals may either further ‘redden’ or ‘whiten’ the 
spectrum by modifying the correlation structure of 
the raw time series. The relationship between power 
spectral density S(ƒ) and frequency ƒ is often 
summarized using a power-law scaling exponent β 105 
such that S(𝑓)~f-β (Box 1) (Vautard & Ghil 1989, 
Fraedrich & Blender 2003; Hébert et al.et al., 2021). 
The exponent β represents the relationship between 
frequency (or time period) and power spectral 
density, which appears as a linear relationship plotted 110 
on a log–log scale. By convention, the exponent is 

defined as the negative of the relationship with frequency such that a positive exponent actually 
represents increasing variance with timescale. Red noise processes are represented with a positive slope 
value (β>0); the term ‘pink noise’ is sometimes used specifically for β=1 (Zhu et al.et al., 2023). Red 
noise is a common noise model that implies autocorrelated errors that affect low-frequencies at a greater 115 
magnitude. (Mann et al.et al., 2007; von Stoch et al.et al., 2009; Smerdon 2012). By contrast, a ‘white’ 
noise process implies errors uncorrelated in time such that the variance is distributed evenly across the 
frequency space (β=0), similar to the spectrum of white light. White noise is the simplest and most 
commonly-applied noise model in paleoclimate research (Fisher et al.et al., 1985, Amman & Whal 
2007; von Storch et al.et al., 2004; Mann et al.et al., 2005, Lee et al.et al., 2008; Smerdon et al.et al., 120 
2010; 2012). Finally, blue noise refers to processes with relatively higher variability at high frequencies 
(β<0). Blue noise is characterized by an anti-correlated structure, implying rapidly vanishing effects 
with increasing timescale (Mann & Rutherford 2002; Mann et al.et al., 2007).  
 
Our understanding of proxy noise characteristics has evolved out of the need to reconcile diverging 125 
results in records that should, in principle, contain the same climate signal. For certain processes, such 
as the effects of measurement error, aliasing due to under-sampling, or depositional noise from 
roughness at the snow surface, the noise power spectrum can be derived from first principles and 
expressed in closed-form solutions (Fisher et al.et al., 1985; Schiffelbein, 1985; Kunz et al.et al., 2020; 
Dolman et al.et al., 2021b). In cases where the physical and biological processes affecting proxies are 130 
well- understood, a more flexible approach is to use proxy system models (PSMs) (Jones et al.et al., 
2009; Vaganov et al.et al., 2011; Evans et al.et al., 2013; Tolwinski-Ward et al.et al., 2011; Dee et al.et 
al., 2016; Dee et al.et al., 2017; Dolman and Laepple, 2018). In this case, climate data sets of 
temperature and precipitation from instrumental data, climate models or stochastic simulations are used 
as input to the PSM, and synthetic proxy time series are simulated. The spectrum of the noise can then 135 
be estimated through comparison to the climate time series (Dee et al.et al., 2017).  By omitting 

Box 1: Summarizing the timescale-dependency of proxy noise 
using spectral power-laws. 

Power-law scaling in frequency space
The spectral exponent β summarizes the  
      relative contribution of high- and low-  
      frequencies to the total variance.
The power spectral density S(𝑓) is assumed 
     to approximately follow a power-law with 
     frequency 𝑓 such that S(𝑓) ~𝑓-β  
β is typically expressed as the negative slope 
     of a linear regression on a log-log plot of 
     the power spectrum. 
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processes that are not well-understood, PSMs risk underestimatingmay underestimate the noise level. 
For example, stratigraphic noise in ice-core-based proxies can account for more than half of the isotope 
signal (Hirsch et al.et al., 2023) but stratigraphic processes are not represented in current isotope PSMs 
(Dee et al.et al., 2015). To account for “known unknowns” recent studies have added estimates of noise 140 
with specific spectral properties to mimic these extraneous sources of variability in PSM output, using 
models or reanalysis data as external validation. (Dee et al.et al., 2018; Evans et al.et al., 2014; Zhu et 
al.et al., 2023; Bothe et al.et al., 2019). 
 
Alternatively, empirical proxy noise spectra can be derived by relying solely on proxies by exploiting 145 
the spatial correlation of climate signals in nearby records, building on the assumption that non-climatic 
noise is independent between records. This approach has the advantage of being able to exploit the full 
length of paleoclimate time series without relying on climate models or short instrumental time series, 
and without the assumption that physical processes themselves are well-understood. One limitation is 
that this method relies on the availability of replicated or nearby records that have low time-uncertainty, 150 
such as corals, tree rings, and banded ice cores or laminated sediments. If empirical noise estimates are 
consistent with those derived from mechanistic models this both validates the processes represented in 
PSMs creates a strong basis for using the resulting noise spectra in a variety of research applications.  

In this study, we synthesize noise estimates derived directly from multiple proxy types and interpret 
their spectral characteristics in the context of known biological and physical processes. This provides a 155 
basis for evaluating signal fidelity and for refining assumptions commonly made in proxy system 
models and other experiments. We present noise estimates published in three studies where noise terms 
were derived using a simple empirical approach that partitions shared signal from independent variance 
on all timescales (Münch & Laepple 2018), which weand describe ind the extended data section 
(Appendix A). We show results for published ice cores from Münch & Laepple 2018, tree rings 160 
(McPartland et al.et al., 2024), and corals (Dolman et al.et al., in revision). By presenting these findings 
alongside evidence from first principles and existing literature we aim to deepen a collective 
understanding of the behaviourbehavior of proxy noise. 

The tree-ring and coral data were sourced from global databases compiled by the Past Global Changes 
(PAGES) initiative (PAGES Consortium 2017; Walter et al.et al., 2023), and the ice core data represent 165 
two large clusters of cores from Antarctica and Greenland (Graf et al.et al., 2002; Weißbach et al.,,et 
al., 2016; Hörhold et al.et al., 2023) (Appendix B). Full details on each result are provided in the 
aforementioned studies. We focus our discussion on the noise spectra and resulting signal-to-noise ratio. 
Evaluating the climate signal spectracurves would ideally involve comparison with data and models, 
which are beyond the scope of this paper. In the extended data section, we reproduce the signal spectra 170 
and sample density at each frequency to provide all information involved in the noise spectra 
calculations and their uncertainty estimates (Appendix C).  
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2 The colors of proxy noise across paleo archives 

Our review of published noise estimates demonstrates that tree rings and corals exhibit clear red noise 
spectra with positive scaling exponent β values of 0.8 and 0.5 respectively (Fig 3; a, b) such that the 175 
power of the noise increases with timescale (McPartland et al.et al. (2024), Dolman et al.et al. (in 
revision).. As the noise increases more than the climate signal, this leads to a decline of the signal-to-
noise ratio (SNR) (Fig 3; d, e). Tree-ring and coral records result from the growth or accretion of layers 
by an individual organism over time such that life history or changes in the biological archiving system 
may affect proxy formation. Evidence suggests We posit that proxy records composed of repeated 180 
measurements made on single long-lived organisms through time are susceptible to ontogenetic effects, 
the legacies of past disturbances, or slow changes in the behaviour of the sensor.  

In dendroclimatologytrees,  for example, the pitfalls associated with tree ontogeny have been well-
documented (Fritts 1976; Cook et al. 1995; Esper & Frank 2009). Cambial age impacts both tree-ring 
width and density such that detrending to remove juvenile age trends is a near universal practice in 185 
dendrochronology (Cook & Kairiukstis 1990). Even after detrending, residual age effects could partially 
explain the persistent low-frequency bias observed in tree-ring records (Franke et al.et al., 2013, Ault et 
al.et al., 2013). Detrending itself can also introduce biases at medium-frequencies, particularly when 
fitting raw time series with negative exponential curves, regional curves or rigid spline functions (Cook 
& Peters 1997; Melvin & Briffa 2008; Melvin & Briffa 2014 a;b, Esper 2003, Briffa & Melvin 2011). 190 
Techniques such as “signal-free” detrending have aimed at boosting low-frequency variability while 
minimizing bias (Melvin & Briffa 2008), but despite retaining more low-frequency variance, tests of 
this method indicated only minor improvements in signal strength and signal-free chronologies retained 
their red-noise spectra (McPartland et al.et al. 2020; McPartland et al.et al. 2024). By extension, red 
noise is likely a feature of bivalve and sclerosponge chronologies, which contain similar age-growth 195 
trends to those found in trees and are detrended using the methods originally developed in 
dendrochronology (Jones 1983; Rypel et al.et al. 2008; Hollyman et al.et al., 2018; McCulloch et al.et 
al., 2024). Tree rings are also smoothed on fast timescales as a result of the carryover, or ‘memory’, of 
prior years’ growth. Biological memory adds temporal autocorrelation to tree ring time series which has 
the effect of steepening the slope of the noise spectra by reducing high frequency power spectral density 200 
(Zhang et al.et al. 2015; Lucke et al.et al. 2019; McPartland et al.et al. 2024). ‘Pre-whitening’ 
chronologies by adjusting their temporal autocorrelation structure to match the climate target improves 
the interannual correlation between data and proxy (Meko 1981), but by virtue of removing additional 
variability at high-frequencies, decreases the ratio of high to low power spectral density that defines the 
noise slope term β.   205 
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Figure 3:  Estimates of proxy noise spectra (a, b, c) and timescale-dependent signal-to-noise ratios (d, e, f). Top: (a) Mean noise 
spectra for tree-ring width and density records from northern hemisphere tree-ring records, (b) Mean noise spectra for tropical 
coral 𝛅18O and strontium/calcium (Sr/Ca) ratios, (c) Noise spectra for ice core 𝛅18O from Dronning Maud Land (light blue) in 
Antarctica and the North Greenland Traverse (dark blue). Dashed lines represent an idealized spectral power-law with a slope β = 210 
1 for proxies containing predominantly red noise (i.e. tree rings and corals), and with β = 0 for proxies (i.e. ice cores) containing 
predominantly white noise.  Bottom: Timescale-dependent signal-to-noise ratios (SNR) for (d) tree rings, (e) corals, and (f) ice cores. 
Dashed lines represent an SNR of 1. Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric 
bootstrapping estimation method. Detailed methods for estimating proxy noise and SNR values can be found in McPartland et al.et 
al., (2024) (tree rings), Münch et al.et al., (2018) (ice cores) and Dolman et al.et al., (under revision) (corals). 215 

 
Coral aragonite records might similarly be affected by changes in the biology of individual or 
descendent polyps over time resulting in a slow drift in the temperature response of the proxy which 
would appear as low-frequency variability. Such changes could be growth-rate related due to reaction-
kinetic effects (Goodkin et al.et al., 2005; Hayashi et al.et al., 2013; Maier et al.et al., 2004; Saenger et 220 
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al.et al., 2008; Suzuki et al.et al., 2005), result from changes in the calcification process (Lough 2004), 
or persistent baseline shifts in trace element ratios following thermal stress events (D’Olivo & 
McCulloch 2017; D’Olivo et al.et al., 2019) perhaps mediated by changes in the composition of 
photosynthetic symbionts (Berkelmans and & van Oppen, 2006; Cohen, 2002; Little et al.et al., 2004).  
 225 
The stacks of ice cores from both Greenland and Antarctica that we analyzed show a high white noise 
level where β is approximately equal to zero (Fig 3 e, f) (Münch & Laepple 2018). As the climate 
variations become more pronounced on longer timescales, this leads to an increasing signal-to-noise 
ratio with time. We argue that proxies that are primarily the result of deposition, rather than growth or 
accretion primarily contain white noise stemming from stratigraphic processes. Precipitation 230 
intermittency and post-depositional redistribution in ice cores result in adjacent measurements that 
represent water from different precipitation events (Laepple et al.et al., 2018; Casado et al.et al., 2020; 
Zuhr et al.et al., 2023). By extension, in marine sediments where foraminifera or diatoms are deposited 
from the water column, each sample represents a new set of individuals such that biological effects are 
uncorrelated between measurements. From process-based experiments, it has been demonstrated that 235 
noise in sediment records is also predominantly white with the signal level increasing as more 
individuals are measured (Kunz et al.et al., 2020, Dolman et al.et al., 2021). In both ice and sediment 
core records of near-surface temperature, seasonal depositional cycles are much stronger than any 
interannual or even millennial climate change and the sparse subsampling of the seasonal signal leads to 
aliasing of independent noise within the signal of annual variation (Kunz et al.et al., 2020). 240 
Precipitation intermittency and depositional redistribution break up the signal of the large seasonal cycle 
that would appear as a large spike in the spectrum at annual timescales if the signal were recorded 
without disruption. Instead, the spike is redistributed as white noise across all frequencies (Casado et 
al.et al., 2020; Münch et al.et al. 2021). 
 245 
We identified fewer examples of blue noise processes in the paleoclimate literature. Because its effects 
diminish quickly with time, blue noise does not introduce error past fast timescales. An example of a 
true blue noise process is the infilling of troughs on ice sheets as wind redistributes snow causing blue 
noise in noise in annual layer thickness records from ice-cores (Fisher et al.et al., 1985). Blue noise 
models have occasionally been tested alongside red and white noise to account for a variety of potential 250 
types of error affecting high-frequencies, and to improve the fit between synthetic proxy records and 
climate model data (Mann et al.et al., 2007; Mann & Rutherford 2002). 
 
Like blue noise, smoothing processes predominantly affect high frequencies and becomes less 
significant with timescale. Biological memory in trees, diffusion in ice cores, and bioturbation in 255 
sediments are all examples of smoothing processes that lead to correlated errors between the climate 
and the proxy signal which theoretically, in theory,  can be accounted for using deterministic modeling 
(Matalas et al.et al., 1962; Berger et al.et al., 1977; Meko 1981; Ruddiman et al.et al., 1980; Whillans 
and Grootes, 1985). Given such a model, the smoothing effect can be reversed, as we applied in this 
example to as applied in our example to ice core data to reverse the effects of diffusion (Shaw et al.et al. 260 
2024) (see Appendix A). If, as in the case of diffusion, the smoothing process affects the signal and the 
noise equally,  during deposition or accretion, the SNR is unbiased at all timescales , regardless of 
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whether or not a correction for the smoothing effect is applied.applicable, as is the case for diffusion in 
ice cores. However, when noise is introduced after smoothing (e.g. measurement noise), the attenuated 
climate signal on the high-frequency side will be masked by a relatively stronger noise level, biasing the 265 
SNR spectrum downwards toward high frequencies. In any case, knowledge about and accounting for 
smoothing processes in paleoclimate time series is critical for evaluating the short-term effects of 
climate forcing events such as volcanic eruptions (Esper et al.et al., 2015; Zhang et al.et al., 2015; 
Lücke et al.et al., 2015), but is potentially less critical for reconstructing low-frequency variations in 
climate. 270 

3 Time uncertainty and noise color 

 

Dating for all three proxy types discussed here is primarily achieved by some kind of band 
datingcounting, or by counting annual cycles in geochemical tracers. If bands or cycles are missed, or 
double counted, this introduces time-uncertainty and an additional source of error in the reconstructed 275 
climate time series (Comboul et al.et al. 2014). Time uncertainty has little effect on the shape of 
individual power spectra when the spectra are broadband, as is typical for climate time series (Rhines & 
Huybers, 2011). However, it reduces coherence between records, diminishing high-frequency power in 
stacked spectra and biasing SNR estimates downward at shorter timescales (Münch & Laepple, 2018; 
Fig. D1). The effect of time-uncertainty acts as a linear transfer function on the stacked spectra and can 280 
be estimated and corrected for if the time uncertainty is known, although this was not applied here 
(Appendix D). For the ice-core records analysed here, the time-uncertainty is due to potential variations 
in the accumulation rate between volcanic tie-points and is negligible for frequencies below 1/10 years 
(Münch & Laepple 2018, their Fig. B1).  
 285 
For the sub-annual resolution coral records used here, age models mostly come from counting annual 
cycles in the geochemical tracers. However, for most coral records there are no independently dated tie-
points and so it is not possible to directly estimate counting error rates and correct for time-uncertainty. 
Simulations with potential error rates derived from corals show that the slope of the SNR is biased in 
the opposite direction to the one we estimate (Fig. D1) and that even for very large error rates of 1 in 10 290 
years’ time-uncertainty cannot account for the low SNR at decadal timescales. Time uncertainty is 
arguably less of an issue for tree-ring records as they are considered to be precisely dated and 
dendrochronologists routinely employ statistical cross-dating techniques to identify and eliminate dating 
errors (Holmes et al 1986). Through this process locally absent rings are identified during cross-dating 
and assigned a no-data value to avoid affecting the final chronology. The strength of the tree-ring SNR 295 
on sub-decadal timescales is indicative of this dating precision.  
 
For proxy archives that are not annually resolved such as reconstructions from non-varved terrestrial 
and marine sediment cores, the irregular spacing of samples in time and larger dating uncertainties 
makes stacking unsuitable for this type of noise estimation, representing a limitation of this  approach. 300 
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Alternative methods, such as estimating the SNR as a function of time uncertainty (Reschke et al.et al., 
2018), or applying tuning methods that align proxy records by maximizing covariance and assess 
significance against surrogate data (Haam & Huybers, 2010), may still allow for empirical SNR 
estimation in these cases. 

3 4 IImplications of colored noise for climate reconstruction 305 

The spectrum of temperature on local to global scales is generally accepted to be red (Huybers & Curry 
2006; Cheung et al.et al., 2017; Hasselmann et al.et al., 1976). For proxies with predominantly white-
noise spectra such as ice cores and sediments, this implies that the power spectral density of the climate 
signal relative to the noise, the SNR increases with timescale. This explains why ice cores are faithful 
recorders of millennial climate variability (e.g. EPICA, 2006), while they fail in many regions to 310 
reconstruct interannual to decadal changes (Stenni et al.et al., 2017). By contrast, in proxies that contain 
red noise, the SNR will rise more slowly or even decline with timescale if the power of the noise rises 
more steeply than the signal, as we demonstrate in tree rings and corals. These proxies are better 
recorders of fast time-scale variability where the ratio of signal to noise is highest. For example, corals 
can deliver unique information on tropical climate dynamics such as the El Niño Southern Oscillation 315 
(ENSO) (Fig. 3), but have challenges reconstructing multidecadal trends (Scott et al.et al., 2010).  
 
The color of the noise thus influences the timescales at which a robust climate signal can be 
reconstructed, because it introduces a frequency-dependence to the SNR. Information about proxy noise 
can be used to guide future study design (ei.ge. what proxies can be used to answer a climatic 320 
hypothesis) and to optimize the sampling and measuring design (ei.ge. how many cores are needed; 
what is the optimal sampling resolution to minimize noise). It can also be used to estimate time scale-
dependent uncertainty in climate reconstructions. For individual proxy time series where the signal 
increases more strongly with timescale than the noise, when the signal spectrum is “redder” than the 
noise, binning to a coarser timestep or by applying stronger smoothing reduces the noise. This improves 325 
the SNR, albeit at the cost of losing information at shorter timescales. The extent to which uncertainty is 
reduced by binning or smoothing depends on the relative spectral slopes of both the signal and noise.  
 
Knowing the color and level of proxy noise is valuable for a variety of research contexts in 
paleoclimatology. For example, accurate noise models are important for pseudo-proxy experiments 330 
(PPEs) in which climate model output is degraded into pseudo-proxy time series to test the skill of 
reconstruction methods and evaluate models (Jones et al.et al. 2009; Smerdon et al.et al. 2012). Often 
PPEs releyrely on sensitivity tests using different noise levels or spectral colors (Riedywl et al.et al. 
2009; Smerdon et al.et al., 2010; Mann and Rutherford, 2002; Gomez-Navaro et al.et al. 2017). Red 
noise is often may be tested alongside white or sometimes blue noise, but typically using a first-order 335 
autoregressive (AR(1)) process with a fixed spectral slope (β = 2) (Mann et al.et al. 2007; Riedywl et 
al.et al. 2009). However, this can lead to underestimation of the actual noise, especially at low 
frequencies where the spectrum of an AR(1) process levels out. More recent PPEs have integrated full 
PSM complexity with realistic noise estimates (Boothe et al.et al. 2019; Zhu et al.et al. 2023). Finally, 
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accurate noise estimation is important in data assimilations and field reconstructions to bring 340 
reconstructed time series into better alignment with calibration datasets, and to propagate uncertainty in 
estimates of past climate variability (Goose et al.et al. 2010; King et al.et al. 2021). 

Conclusion 

Building on prior insights from proxy system modeling, and with reference to a first-principles based 
understanding of proxy formation, we present here an overview of how colored noise is represented in 345 
different types of paleoclimate archives. Incorporating empirical, proxy-specific noise models as 
presented here into a range of paleoclimate research activities. This will help to move away from the 
assumption that noise is white or follows a first-order autoregressive process, which can lead to 
misinterpreting noise as signal and propagating biases into results. These noise models, or models 
derived using similar stacking and variance-partitioning methods, can be used account for the range of 350 
unique biological and physical processes affecting proxies in pseudo proxy experiments, data 
assimilation frameworks, and reconstructions efforts to improve the representation of patterns of past 
climate variability. 

Appendix  

Appendix A:  Estimating the spectrum of noise 355 

We apply the method of Münch et al.et al., (2018) of combining clustered proxy records into regional 
stacks and analyzing their variance in the frequency domain. ThisIt builds on the assumption that the 
proxy signal is a function of four main components: the climate signal, additive noise that arises during 
the proxy creation and archiving stages, measurement noise, and any smoothing processes that act 
during archiving but not on the measurement noise; i.e. 360 
 

 
 
where P, C, N, and 𝚺 stand for the power spectral densities of the proxy signal, the climate signal, the 
proxy noise, and the measurement noise, respectively, and where G is a transfer function that describes 365 
a specific smoothing process such as biological memory, diffusion, or bioturbation. 
 
Given a regional cluster of n proxy records with a similar climate between sites, the mean power 
spectrum, M, averaged across all individual records’ spectra, will yield a precise estimate of the proxy 
spectrum P. By contrast, the power spectrum, S, of the stacked record from averaging all records in the 370 
time domain, will also contain the full climate signal, but with the noise proportions reduced by a factor 
of n. By combining both quantities one can derive expressions for the climate and noise spectra (Münch 
and Laepple, 2018), 
 
 375 
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with the ratio of C:N yielding the frequency-resolved signal-to-noise ratio (SNR). A common 
smoothing process equally biases the signal and the noise spectrum, if not corrected for by means of the 
inverse transfer function G-1, and hence its effect cancels out in the SNR spectrum. We note that time 380 
uncertainty between individual proxy records can be another source of smoothing in the stacked record, 
but it is less straightforward to include into our methodology (Münch and Laepple, 2018) and is 
neglected here. 

Appendix B: Data 

B.1 Tree Rings  385 

For the tree-ring data we analyzed the tree-ring records contained within the Past Global Changes 2k 
(PAGES2k) database, a large database compiled to reconstruct global temperature variations during the 
last two millennia. This network of 647 unique paleoclimate records from around the globe includes 
450 tree-ring time series, of which we used 421 records of tree-ring width and density located across the 
Northern hemisphere (PAGES 2013, 2017; Neukom et al.et al., 2019). Spatial clusters were defined 390 
using 250-kilometer radii, such that no two sites were more than 500 kilometers apart. Tree-ring width 
and density records were clustered separately so that the proxies weren’t mixed within clusters. This 
resulted in 253 clusters containing a minimum of 3, and a maximum of 30 sites per cluster. The average 
number of sites per cluster was 8. There were 18 density sites and 235 ring width clusters. The average 
length of the overlapping period was around 450 years. The results of all clusters of both proxy types 395 
were averaged at the end to derive the signal, noise and SNR.  Uncertainty was calculated using a 
parametric bootstrapping approach. (McPartland et al.et al., 2024). 

B.2 Corals 

We used the coral records contained within the PAGES Coral Hydro 2k database to obtain coral SNR 
estimates (Walter et al.et al., 2023). The Coral Hydro2k database contains 54 oxygen (δ18O) and 400 
strontium calcium (Sr/Ca) records from the global tropics. The database was compiled to reconstruct sea 
surface temperature and ocean hydroclimate variability for the past two centuries. Due to fewer records, 
1000 km spatial clusters were used, resulting in 64 clusters. δ18O and Sr/Ca records were clustered 
separately and the results were averaged. More information on the coral data curation is contained in 
Dolman et al.et al., under revision. 405 

B.3 Ice Cores 

As an example for ice-core derived temperature proxies, we use stable isotope records from the 
Dronning Maud Land region in Antarctica (“DML data” in the following; Graf et al.et al., 2002) and 
from central-north Greenland (“NGT data” in the following; Weißbach et al.et al., 2016, Hörhold et 
al.et al., 2023). 410 
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The DML data consist of 15 records, 12 of which cover the time period from 1800 to 1998 CE and 3 
records cover 1000–1998 CE. We combine both datasets by using the individual spectral results (Münch 
and Laepple, 2018) of the shorter records on timescales below decadal and of the longer records on the 
supra-decadal timescales. We apply the diffusion correction as in Münch and Laepple (2018) but do not 415 
use their time-uncertainty correction. 
 
The NGT data comprise 14 cores covering the time span from 1505 to 1979 CE, including original 
records from the North Greenland Traverse published in Weißbach et al (2016) as well as the extended 
NGT records from exploiting new drillings as presented in Hörhold et al.et al., (2023). The 420 
corresponding NGT spectra shown in Hörhold et al.et al., (2023) were not diffusion-corrected; here, to 
be able to compare the NGT spectra to those from the DML data, we apply a diffusion correction to the 
NGT spectra following the method given in Münch and Laepple (2018) with diffusion length estimates 
calculated as described in Hörhold et al.et al., (2023). Note that the SNR spectrum shown in Hörhold et 
al.et al., (2023) used the ratio of the integrated signal and noise spectra, which is related to the 425 
correlation with the climate signal (Münch and Laepple, 2018), whereas here we show the direct ratio of 
the spectra. 

Appendix C: Signal, noise and signal-to-noise ratio estimation 

Full results for the uncorrected signal, noise and SNR estimates for tree rings, corals and ice core data 
(Fig. A1 a,b,c,d). Spectra in Fig. 3 represent truncated versions which have been cut off where sample 430 
density in corals and tree rings drop off (shaded regions), as seen in the spectral density plots (Fig A1 
bottom panels). In both corals and tree rings, the SNR rises again due to the reduction in replication and 
dominance by single or a small number of records with higher SNR than average (Fig A1, a,b) (see 
McPartland et al.et al. 2024; Fig 2, e,f). Confidence intervals on all spectra represent the 10th and 90th 
percentiles from a parametric bootstrapping estimation method. In addition to the truncation due to low 435 
sample size, the lowest two spectral estimates on all spectra are removed during SNR calculation and 
confidence interval estimation a the multitaper approach introduces a small bias at the lowest 
frequencies (Percival & Walden, 1993). 
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Figure C1: Timescale-dependent signal, noise and SNR estimates with sample density plots for tree-rings 440 
(a,e), corals (b,f), and ice core 𝛅18O  data from Dronning Maud Land in Antarctica (c,g) and the North 
Greenland Traverse (d,h).  Top graphs show signal (blue), noise (green) and SNR (purple) curves, with the 
uncorrected “proxy” spectra (yellow). Confidence intervals on all spectra represent the 10th and 90th 
percentiles from a parametric bootstrapping estimation method. The light grey shading indicates the cut-
off point for spectral estimates presented in Fig. 3 when sample density decreases and the results become 445 
more uncertain. Detailed methods for estimating proxy noise and SNR values can be found in McPartland 
et al.et al., (2024) (tree rings), Münch et al.et al., (2018) (ice cores) and Dolman et al.et al., (under revision) 
(corals).  	
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Appendix D: Simulated effects of time uncertainty on timescale-dependent signal-to-noise ratios 450 

To illustrate the potential effects of time uncertainty on estimates of signal-to-noise ratio we used the 
approach of Comboul et al.et al. (2014) as implemented by Münch and Laepple (2018). Münch and 
Laepple (2018) show that relative time-uncertainty between records in a stack acts as a linear transfer 
function, reducing power in the stack at high frequencies. The precise shape of the transfer function 
depends on the counting error rate, and on the lengths of the time series, as longer time series allow 455 

larger relative errors to accumulate. It does not depend on the 
power spectrum of the initial “true” signal. Here we show the 
effect on SNR for 100-year time series with band counting 
error rates of 1 in 10, 50 and 100 years, with equal probability 
of missing or double counting a band. The effect on estimated 460 
SNR is shown relative to a hypothetical true SNR of 1.  

 
 
	
 465 
 
 
 
 
 470 
 
 
 
 
 475 
 

 
Data Availability 
This work represents a synthesis of multiple independent research projects. The data needed to 
reproduce the tree-ring and coral data are publicly available through the NOAA National Centers for 480 
Environmental Information (Emile-Geay et al.et al., 2017; Walter et al.et al., 2023). The original 
Antarctic ice core isotope data are archived at the PANGAEA database (Graf et al.et al., 2002) as well 
as the Greenland data except for core NGRIP whose data is available from the Centre for Ice and 
Climate of Copenhagen University (Weißbach et al.et al., 2016; Hörhold et al.et al.,, 2023). 
PANGAEA is hosted by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research 485 
(AWI), Bremerhaven and the Center for Marine Environmental Sciences (MARUM), Bremen, 
Germany. 

Figure D1: The influence of time-
uncertainty on SNR estimated by 
the stacking method. Here time 
uncertainty is simulated for a set of 
100-year records with band 
counting error rates of 1 in 10, 50 
and 100, and a true SNR of 10 at all 
frequencies. The simulation was 
carried out following Münch and 
Laepple (2018) which implements 
the counting error model of 
Comboul et al.et al. (2014). 
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Code Availability 

The general software to conduct the separation of signal and noise in the spectral domain and to perform 
the signal-to-noise ratio analysis is available as the R package proxysnr from the open research data 490 
repository Zenodo (Münch, 2018). Additionally, specific code to reproduce the tree-ring, coral, and ice-
core analyses, respectively, are also available via Zenodo (McPartland 2024, Dolman 2024; Münch 
20254 a,b). 
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